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The one-dimensional transverse field Ising model with boundary fields is studied analytically and numerically.
The phase diagram in the ordered state is obtained. We find that there exist two types of phase transitions. The
longitudinal boundary fields applied to the left and right ends of the Ising chain are hL and hR, respectively. For
|hL|, |hR| <

√
1 − g, where g is the transverse field and hLhR < 0, a first-order phase transition occurs with the

changing hL or hR. The energy gap and boundary magnetization are solved exactly. The analytical expressions
of the finite-size scaling for the first-order phase transition are obtained. For |hR| >

√
1 − g and hLhR < 0, there

exists a continuous phase transition with changing hL and vice versa. This transition is identified as a quantum
wetting transition. The singularity of the boundary magnetization in this phase transition is explicitly shown. A
simple computational procedure with high accuracy and efficiency is proposed to calculate the magnetization.
The magnetization profile, correlation functions, and wetting layer thickness are studied numerically.
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I. INTRODUCTION

Quantum phase transitions have attracted great interest in
recent decades, driven by the experiments on various new
materials, especially on topological materials in condensed
matter and novel quantum systems provided by cold atoms
[1–4]. The quantum Ising chain in a transverse field is a
paradigmatic quantum many-body system that shows con-
tinuous and first-order quantum transitions [5]. This topic
has been investigated in a vast number of studies [6–10].
Currently, it is still used as a testing field of new physics
concepts [11] and closely related to the Kitaev model with
topological order [12,13]. The cold atomic system can realize
this model experimentally [4]. Furthermore, it can be mapped
to the two-dimensional Ising model [1,14], which is the most
important model in statistical physics and is now well under-
stood [15–19].

However, some important and interesting phenomena are
still poorly understood in this model. For the transverse field
g < 1, the system is in an ordered state. If the boundary
fields are applied, as shown in Fig. 1(a), quantum phase tran-
sitions occur as we change the boundary fields hL, hR. The
red solid line representing −√

1 − g < hR = −hL <
√

1 − g
in Fig. 1(b) is the border between the phases “Positive” and
“Negative.” The phase transition between these two states
is a first-order transition. The blue solid lines in Fig. 1(b)
represent |hL| >

√
1 − g, |hR| = √

1 − g or |hR| >
√

1 − g,
|hL| = √

1 − g and hLhR < 0. Across these borders, a second-
order phase transition takes place.

The discontinuity in the first-order phase transition is
shown in Fig. 1(c). The boundary magnetization (of the left
first spin) shows a jump as we fix hR and change hL. In
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particular, for hR → 0 [red dashed curve in Fig. 1(c)], the
boundary magnetization at the equilibrium state jumps from
negative to positive as hL changes from negative to positive.
The finite-size scaling (FSS) for the energy gap and the bound-
ary magnetization are solved exactly. Figure 1(d) shows the
boundary magnetization versus hL for the second-order phase
transition, which has a cusp. The discontinuity in the deriva-
tive of the boundary magnetization is obtained rigorously.
In addition, we propose a simple computational procedure
to compute the correlation functions and magnetization with
high accuracy and efficiency. This procedure can be carried
out on very large lattice sizes of up to N = 6400. Figures 1(c)
and 1(d) show the numerical results obtained with this com-
putational procedure.

It is well known that the one-dimensional quantum spin
model can be mapped to the 1 + 1 dimensional classi-
cal spin model [14]. In other words, the one-dimensional
transverse field Ising model is the quantum version of the
two-dimensional Ising model, which is understood thor-
oughly [16,18]. There exists a wetting transition in the
two-dimensional Ising model with surface fields. The exact
solution of the wetting transition was obtained by Abraham
40 years ago [20,21], which is called the Abraham model. On
the other hand, the one-dimensional transverse Ising model
was solved earlier in 1970 by Pfeuty [5]. Interestingly, the
wetting transition in the transverse field Ising model has not
been studied until recently. Campostrini et al. studied the
transverse field Ising model with boundary fields several years
ago [22]. These authors pointed out that a wetting transition
exists. In their work, the boundary fields are antisymmet-
ric for the wetting transition. These boundary fields are not
suitable to study some important properties of the wetting
transition such as the wetting layer thickness. Moreover, their
work focused on the finite-size scaling of the energy gap and
correlation functions rather than the wetting transition, and
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FIG. 1. (a) Sketch of the model with surface fields. (b) Phase di-
agram. (c) First-order phase transition across the border represented
by the red line in panel (b) with g = 0.8. (d) Continuous phase
transition across the border represented by the blue lines in panel
(b) with g = 0.8.

the detailed critical behavior of the wetting transition was
not investigated. The second-order phase transition discussed
in this work is identified as a quantum wetting transition.
We compare the classical and quantum wetting transitions in
detail.

Because the basic reasoning for the one-dimensional trans-
verse field Ising model with boundary fields has already been
described in detail in the literature [22], we clearly state
the contribution of the present study. First, we solved the
eigenvectors in the exact diagonalization technique and com-
puted the boundary magnetization semianalytically. Second,
we obtained the exact finite-size scaling of the boundary
magnetization for the first-order phase transition. Third, we
studied the wetting layer thickness in detail due to the pres-
ence of opposite boundary fields with different strengths. This
information includes the finite-size scaling behavior of the
boundary magnetization, the magnetization profile and the
order-parameter correlation length.

The rest of the paper is arranged as follows. In Sec. II
we introduce the transverse field Ising model with boundary
fields. In Sec. III we solve the eigenvectors for the Bogoli-
ubov transformation. In Sec. IV we study the first-order phase
transition between the “Positive” and “Negative” phases. In
Sec. V we discuss the second-order phase transition, i.e., the
quantum wetting transition. Section VI summarizes this work.

II. HAMILTONIAN DIAGONALIZATION AND
FORMULATION OF MAGNETIZATION

A. Jordan-Wigner transformation and
Bogoliubov transformation

We consider the one-dimensional transverse field Ising
chain with boundary fields:

H = H0 − hLσ
(1)
1 − hRσ

(1)
N , (1)

where

H0 = −
i=N−1∑

i=1

Kiσ
(1)
i σ

(1)
i+1 − g

i=N∑
i=1

σ
(3)
i ; (2)

here σ
(1)
i , σ

(3)
i are Pauli matrices, Ki are the couplings, and

hL, hR are the left and right boundary longitudinal fields,
respectively. Following the well-known theories [22–25], we
transform the diagonalization problem to an effective Hamil-
tonian by appending one additional spin to the left and right
sides. The corresponding Hamiltonian is given by

He = H0 − |hL|σ (1)
0 σ

(1)
1 − |hR|σ (1)

N σ
(1)
N+1. (3)

Because σ
(1)
0 , σ

(1)
N+1 are free from the transverse field,

both σ
(1)
0 , σ

(1)
N+1 commute with the Hamiltonian. Hence,

they can be diagonalized simultaneously. The Hilbert
space can be divided into four sectors, which we la-
bel (1, 1), (1,−1), (−1, 1), (−1,−1), where (s0, sN+1) are
eigenvalues of σ

(1)
0 and σ

(1)
N+1. The restriction of He to the

four sectors gives rise to the Hamiltonian H with four cases
of different signs of hL, hR [22]. For example, the restriction
of He to sector (1,−1) gives rise to the Hamiltonian H with
hL > 0, hR < 0. The first- and second-order phase transitions
occur at the region hLhR < 0. Therefore, we investigate the
case hL > 0, hR < 0 and the sector (1,−1). The case hL <

0, hR > 0 can be obtained with symmetry.
To compute the spectrum of the Hamiltonian (3), we per-

form the Jordan-Wigner transformation and define fermionic
operators

c†
i = (−1)i

i−1∏
j=0

σ
(3)
j σ+

i , (4)

where σ± = (σ (1) ± iσ (2) )/2 (i is the imaginary unit). The
Hamiltonian becomes

He = −gN +
N+1∑
i, j=0

(
c†

i Ai jc j + 1

2
c†

i Bi jc
†
j − 1

2
ciBi jc j

)
, (5)

where A and B are symmetric and antisymmetric matrices,
respectively. For clarity here we write the matrix elements
explicitly for N = 3 in the following:

A =

⎛
⎜⎜⎜⎝

0 −|hL| 0 0 0
−|hL| −2g −K1 0 0

0 −K1 −2g −K2 0
0 0 −K2 −2g −|hR|
0 0 0 −|hR| 0

⎞
⎟⎟⎟⎠, (6)

B =

⎛
⎜⎜⎜⎝

0 −|hL| 0 0 0
|hL| 0 −K1 0 0

0 K1 0 −K2 0
0 0 K2 0 −|hR|
0 0 0 |hR| 0

⎞
⎟⎟⎟⎠. (7)

We perform a Bogoliubov transformation by introducing new
canonical fermionic variables [26]

ηk = gk,ici + hk,ic
†
i . (8)
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Using these variables, the Hamiltonian can be diagonalized.
The coefficients gk,i, hk,i satisfy the following equations:

gki = φk,i + ψk,i

2
, hki = φk,i − ψk,i

2
, (9)

where ψk is the eigenvector of the matrix

C ≡ (A + B)(A − B), Cψk = ε2
kψk (10)

and

φk = (A − B)ψk/εk . (11)

In the above equation, εk �= 0. There is a zero eigenvalue
ε0 = 0 for C, and this mode is treated in Ref. [22]. For the
convenience of the readers, we write the matrix C’s elements
explicitly for N = 3:

C = 4

⎛
⎜⎜⎜⎜⎝

h2
L g|hL| 0 0 0

g|hL| K2
1 + g2 gK1 0 0

0 gK1 K2
2 + g2 gK2 0

0 0 gK2 |hR|2 + g2 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠.

(12)

It is clear that there is a zero eigenvalue ε0 = 0 for C. The
spectrum is doubly degenerate due to this zero mode. This
degeneracy is the consequence of the Z2 global symmetry
of the Hamiltonian He. The zero mode is not related to the
spectrum of the Hamilton H . Only the nonzero modes are
relevant. There are N + 1 nonzero modes that we label by
k = 1, 2, . . . , N + 1. Here 0 = ε0 < ε1 < ε2 · · · .

Generally, the couplings Ki can be arbitrary. In this work,
we consider only the uniform couplings, Ki = 1.

B. Energy gap and magnetization for opposite boundary fields

The two degenerate ground states for the Hamiltonian He

belong to the sectors (−1,−1) and (1,1) [22]. Here we con-
sider the ground state of He belonging to the sector (−1,−1),
described by

σ
(1)
0 |�0〉 = σ

(1)
N+1|�0〉 = −|�0〉. (13)

For the Hamiltonian H with hL > 0, hR < 0, the ground state
and the first excited state are the first and second excited states
of He, respectively. They belong to sector (1,−1) and are
given by

|�1〉 = η
†
1|�0〉, |�2〉 = η

†
2|�0〉. (14)

The energy gap is given by the difference between the energies
of these two states:

� = ε2 − ε1. (15)

Why do |�1〉, |�2〉 belong to sector (1,−1)? Since it is
shown that [22] {

σ
(1)
0 , ηk

} = [
σ

(1)
N+1, ηk

] = 0, (16)

we have

σ
(1)
0 |�1〉 = σ

(1)
0 η

†
1|�0〉 = −η

†
1σ

(1)
0 |�0〉 = |�1〉 (17)

and

σ
(1)
N+1|�1〉 = −|�1〉. (18)

That is, η
†
k |�0〉 belongs to sector (1,−1). As mentioned

above, the restriction of He to sector (1,−1) gives rise to
the Hamiltonian with boundary fields H . Therefore, η

†
1|�0〉,

η
†
2|�0〉 are the ground and first excited states of H , respec-

tively.
To calculate the correlation function, we need to know the

basic properties of the ground state |�1〉 for the Hamiltonian
H with hL > 0, hR < 0. From Eq. (14), it is observed that

η
†
1η1|�1〉 = |�1〉, η1η

†
1|�1〉 = 0 (19)

and

η
†
jη j |�1〉 = 0, η jη

†
j |�1〉 = |�1〉, j > 1. (20)

We define two operators:

Bi = c†
i − ci, Ai = c†

i + ci. (21)

From Ref. [26]

Bi =
N+1∑
k=1

(η†
k − ηk )ψk,i (22)

and

Ai =
N+1∑
k=1

(η†
k + ηk )φk,i. (23)

In light of Eqs. (19) and (20), we obtain the contraction

Gi, j = 〈�1|BiAj |�1〉 = ψ1,iφ1, j −
N+1∑
k=2

ψk,iφk, j . (24)

These contractions are used in the calculations of the correla-
tion functions. Following Ref. [26], we obtain the correlation
function

〈�1|σ (1)
i σ

(1)
j |�1〉

= 〈�1|BiAi+1Bi+1 · · · Aj−1Bj−1Aj |�1〉

=

∣∣∣∣∣∣∣
Gi,i+1 Gi,i+2 · · · Gi, j

Gi+1,i+1 Gi+1,i+2 · · · Gi+1, j

· · · · · ·
Gj−1,i+1 Gj−1,i+2 · · · Gj−1, j

∣∣∣∣∣∣∣, (25)

where j > i.
Since σ

(1)
0 commutes with the Hamiltonian He, the magne-

tization of the jth spin is related to the correlation function
given by

mj = 〈�1|σ (1)
j |�1〉 = 1

s0
〈�1|σ (1)

0 σ
(1)
j |�1〉, (26)

where s0 is the eigenvalue of σ
(1)
0 . Based on the above

equation, we propose an efficient computational procedure
to calculate the magnetization. In the numerical calculation,
we diagonalize the matrix C using LAPACK and then obtain
ψk, φk . We calculate the contraction BiAj with Eq. (24). Then
we can obtain the magnetization of jth spin with Eq. (26).
The plots of the magnetization profile in the figures are the
numerical results of this computational procedure.

The boundary magnetization of σ1 can be investigated an-
alytically. Since σ

(1)
0 σ

(1)
1 = B0A1, from Eqs. (26), (24), and
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(11), we obtain

m1 = 1

2hLs0

[
−ε1ψ

2
1,0 +

N+1∑
k=2

εkψ
2
k,0

]
. (27)

C. Energy gap and magnetization for parallel boundary fields

Although we mainly study the case with opposite boundary
fields, we present the method for the parallel boundary fields.
In these cases, the ground state of H is the ground state of He.
The ground state for the Hamiltonian He belonging to sector
(1,1) is the ground state of H with hL > 0, hR > 0 [22]. For
the ground state of He belonging to sector (1,1), we have

σ
(1)
0 |�0〉 = σ

(1)
N+1|�0〉 = |�0〉. (28)

For the Hamiltonian H , the first excited state is merely the first
excited state of He. It is given by

|�1〉 = η
†
1|�0〉. (29)

The energy gap is given by the difference between the energies
of these two states:

� = ε1. (30)

This leads to the contraction

Gi, j = 〈�1|BiAj |�1〉 = −
N+1∑
k=1

ψk,iφk, j . (31)

Substituting these contractions into Eq. (25), we obtain the
correlation function [26]. Then we obtain the magnetization
with Eq. (26). The boundary magnetization of σ1 becomes

m1 = 1

2hLs0

[
N+1∑
k=1

εkψ
2
k,0

]
. (32)

Therefore, we can calculate the energy gap and magnetization
and the correlation function for all cases of hL, hR with differ-
ent signs.

III. EIGENVECTORS OF MATRIX C

There are two types of eigenvectors for the matrix C:
extended states and localized states. The extended states can
be solved by assuming

ψn,0 = c

hL
sin γL, ψn, j = (−1) jc sin( jkn + γL ), (33)

where j = 1, 2, . . . , N and the eigenvalue is given by

ε2
n = 1 + g2 − 2gcos kn. (34)

The phase shift γL and the wave vector kn are determined by
the boundary conditions. At the left boundary, we obtain

sin(kn + γL )

sin γL
=

(
h2

L − ε2
n

)
gh2

L

. (35)

Some calculation leads to

cot γL = a tan
kn

2
+ b

sin kn
, (36)

where

a = 1 − 2

h2
L

, b = 1 − g

g

(
1 − 1 − g

h2
L

)
. (37)

At the right boundary, we obtain

sin[(N − 1)kn + γL]

sin(Nkn + γL )
=

(
h2

R − 1 + 2gcos kn
)

g
. (38)

Letting knN + γL = nπ − γR, we obtain

sin(kn + γR)

sin γR
=

(
h2

R − 1 + 2gcos kn
)

g
. (39)

This leads to

cot γR = 1 − xR

sin kn
− tan

(
kn

2

)
, (40)

where xR = (1 − h2
R)/g. The wave vectors are given by

kn = nπ − γL − γR

N
, n = n0 + 1, n0 + 2, . . . , N, (41)

where n0 = 2 for 0 < hL,−hR <
√

1 − g; n0 = 1 for 0 <

hL <
√

1 − g < −hR; and n0 = 0 for
√

1 − g < hL,−hR. The
reason is as follows. We set 0 � γL, γR � π . For b > 0, we
have γL = 0 for kn → 0, while for b < 0, we have γL = π

for kn → 0. It is observed that b = 0 is a singular point at
which the phase shift jumps from 0 to π as b changes sign.
The parameter b changes sign at hL = √

1 − g. A similar
conclusion is reached for the phase shift γR. Therefore, we
obtain n0 for the three cases.

For small N , the normalization constant has some de-
pendence on the phase shift γL, γR. For N, n � 1, the
normalization constant is given by

c =
√

2

N
. (42)

There exist localized state eigenvectors of matrix C. For an
Ising chain with size N , these eigenvectors are given by

ψk,0 = (αu + βvx−N )/hL,

ψk, j = (−1) j (αux− j + βvx j−N ), (43)

where k = 1, 2 label the possible eigenvectors and 1 � j �
N . The parameters α, β are defined by

α =
hL

√
x2

L − 1√
x2

L + h2
L − 1

, β =
√

x2
R − 1

xR
, (44)

where

xL,R = 1 − h2
L,R

g
. (45)

The eigenvalues of these eigenvectors satisfy

ε2 = 4[1 + g2 − g(x + x−1)]. (46)

Substituting into Eq. (10), we obtain

(x − xL )u + δLv = 0,

δRu + (x − xR)v = 0, (47)
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FIG. 2. Magnetization profiles around the first-order phase tran-
sition at hL = |hR| with hR = −0.3. The transverse field is set to
be g = 0.8. The length of the chain is N = 400. The numerical
calculation is carried out with double precision.

where

δL = β

α
r(x−1 − xL )x−N , δR = α

β
(x−1 − xR)x−N (48)

and

r = 1 − gx

1 − gx−1
. (49)

The real root of x requires that

xL = 1 − h2
L

g
> 1 xR = 1 − h2

R

g
> 1. (50)

For |hL|, |hR| <
√

1 − g, there are two real roots for x. In the
limit of N → ∞, we have δL, δR → 0, and then, the two roots
are given by xL,R, corresponding to two states localized at
the two boundaries, respectively. It turns out that α, β are
the normalization constants for the two localized states. In the
state localized at the left end, u = 1, v = 0, and in the state at
the right end, u = 0, v = 1. It is observed from Eq. (46) that
the energies of these states are given by

εL,R = 2
√

1 + g2 − g
(
xL,R + x−1

L,R

)
, (51)

respectively. As we change hL, the energies cross at hL =
−hR. For |hL|, |hR| less than

√
1 − g, there is one real root.

For |hL|, |hR| >
√

1 − g, there is no real root. These cases
correspond to n0 = 2, 1, 0 in Eq. (41), respectively.

IV. FIRST-ORDER PHASE TRANSITION BETWEEN THE
“POSITIVE” AND “NEGATIVE” PHASES

The first-order phase transition occurs at

hL = −hR (52)

for |hL|, |hR| <
√

1 − g and hLhR < 0. We show the dramatic
change in the magnetization profile with N = 400 in Fig. 2.
We fix hR = −0.3 and change hL. For hL = 0.29 < |hR|, the
right boundary field dominates, and the magnetization of most
spins are negative. We call this state the “Negative” phase. For

hL = 0.31 > |hR|, the left boundary field dominates, and the
magnetization is positive for the majority of the spins. We call
this state the “Positive” phase. In the infinite-volume limit, the
phase transition occurs at hL = |hR| = 0.3. However, due to
limit of the precision, the phase transition does not occur only
at hL = 0.30. Even for hL = 0.3 + 8.0 × 10−16, the system
still stays in the “Negative” phase. For hL = 0.3 + 9 × 10−16,
the system changes drastically to the “Positive” phase due to
the dominance of the left boundary field. The physical picture
is simple: for two opposite boundary fields, the field with
larger absolute value dominates.

It should be noted that the magnetization profiles are the
values at the equilibrium state. Their changes are not the
real dynamic process, which is a fluctuation-induced process.
Such a process can be studied with out-of-equilibrium dynam-
ics [10]

The inversion of the magnetization occurs in a very small
range of hL for large N . In the limit of N → ∞, this range
approaches zero. For a chain with size N in the scaling region
|hL − |hR|| 
 |hR|, in Eq. (47), we have

δL ≈ δR ≈ δ = hR
(
x−1

R − xR
)

√
1 − gx−1

R

x−N
R . (53)

Since xR > 1, δ decays exponentially with the system size N .
In the case of δ 
 1, Eq. (47) yields two real roots:

x1,2 = 1
2 [(xL + xR) ±

√
(xL − xR)2 + 4δ2]. (54)

Substituting them into Eq. (46) obtains the energies ε1, ε2 of
the two lowest states:

ε1,2 = 2
√

1 + g2 − g
(
x1,2 + x−1

1,2

)
. (55)

From � = ε2 − ε1, we obtain the scaling relation for the en-
ergy gap:

� = �0

√
1 + κ2, (56)

where

�0 = 4g
(
1 − x−2

R

)
δ

εR
, κ = |hR|(hL − |hR|)

gδ
; (57)

here κ is the scaling variable. We test this scaling relation with
the numerical solution of eigenvalues. Figure 3(a) shows the
energy gaps versus hL for the lattice sizes N = 40, 50, 60, 70.
The data collapse on the above scaling relation is shown in
Fig. 3(b). This scaling relation is in agreement with the two
lowest energy states ansatz for the first-order quantum phase
transition proposed by Campostrini et al. [6]. Moreover, it is
exactly solved in this model.

Now, we discuss the jump of boundary magnetization m1

shown in Fig. 3(c). The jump is related to the two lowest
eigenvectors. For the two real roots x1,2, the corresponding
u, v are given by

u1 = 1√
2(κ1 + κ

√
κ1)

, v1 = − κ + √
κ1√

2(κ1 + κ
√

κ1)
(58)

and

u2 = 1√
2(κ1 − κ

√
κ1)

, v2 = − κ − √
κ1√

2(κ1 − κ
√

κ1)
, (59)
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FIG. 3. (a) Numerical results for the energy gap for lattice sizes
N = 40, 50, 60, 70 with hR = −0.3. (b) Rescaled energy gaps ap-
proach the scaling relation Eq. (56). (c) The jumps of the boundary
magnetization m1 around the transition point. (d) The rescaled singu-
lar parts of boundary magnetization m1s approach the scaling relation
(62). In all cases, the transverse field is set to be g = 0.8.

where κ1 = 1 + κ2. Substitution into Eq. (43) leads to the
eigenvectors of the two lowest states ψ1, ψ2.

To study the jump of the boundary magnetization as shown
in Fig. 3(c), we define the singular boundary magnetization:

m1s = m1(hL ) − m10, (60)

where m10 is the boundary magnetization at the transition
point:

m10 = m1(hL )|hL=−hR . (61)

The transition point hL = −hR is the midpoint of the jump as
shown in Fig. 3(c). Since the scaling region in which the jump
occurs approaches zero in the limit of N → ∞, the variations
in the extended state eigenvectors approach zero. Then the
contribution from the extended states can be ignored so that
the singular boundary magnetization is given by

m1s ≈ 1

2hLs0

( − ε1ψ
2
1,0 + ε2ψ

2
2,0

) = �m1
κ√

1 + κ2
, (62)

where the boundary magnetization jump amplitude is given
by �m1 = εRα2/(2h3

R). Figures 3(c) and 3(d) show the jump
of the boundary magnetization and the FSS of the singular
boundary magnetization. At the transition point hL = −hR,
κ = 0, and then, we have m1s = 0. From Eqs. (60) and (62),
we can see that

m10 = 1

2hLs0

N+1∑
k=3

εkψ
2
k,0|hL=−hR . (63)

In particular, the boundary magnetization jump can be
given exactly hR → 0−. In this case, the above equation
leads to

lim
hR→0−

lim
hL→−hR+0+

lim
N→∞

m1 =
√

1 − g2. (64)

Since sin γL = 0 in Eq. (36) for hL → 0, ψk,0 = 0 and the
contribution to the boundary magnetization from all the ex-
tended states is zero. This boundary magnetization near the
critical point g < gc = 1 behaves as m1 ∝ (gc − g)β1 , where
β1 = 1/2. It has the same critical exponent of the boundary
magnetization as the rectangular Ising model on a half-plane
obtained by McCoy and Wu [17].

There should exist a first-order phase transition on a clas-
sical Ising strip with two surface fields as we change one
surface field. To our knowledge, this has not been mentioned
in previous work [19]. A possible reason is that those studies
focused on the temperature-driven phase transition and ig-
nored the boundary-field-driven phase transition. In the work
by Campostrini et al. on the one-dimensional transverse field
Ising model with boundary fields, the authors mentioned the
wetting transition. However, in their setup, the boundary fields
are perfectly asymmetric, so the interface is always at the
middle of the chain, and the delocalization of the interface
cannot be demonstrated explicitly [22].

V. THE CONTINUOUS WETTING TRANSITION

A. Connections between the classical wetting transition
and the quantum wetting transition

Wetting phenomena have attracted enormous theoretical
and experimental attention [27,28]. Such phenomena occur,
e.g., in binary liquid mixtures below the consolute point,
where one phase will generally be adsorbed on the wall of
the container and may wet its surface at phase coexistence.
The wetting transition can be viewed as a delocalization of the
interface between the adsorbed phase and the bulk phase of the
mixture. Far from the bulk critical temperature Tc, the inter-
face is localized near the wall, but at some finite temperature
less than Tc, the thickness of the wetting layer diverges. Due to
the well-known correspondence between Ising ferromagnets
and lattice-gas models of gas-fluid systems, the wetting tran-
sition can be studied using Ising models with surface fields
[29]. In the ordered state, a continuous wetting transition is
observed in the two-dimensional Ising model [20,21,30–32].
For an Ising ferromagnet with positive magnetization in the
bulk, at zero bulk field, a negative boundary field H1 at the
wall may stabilize a domain with oppositely oriented magne-
tization at the surface.

Here we make some remarks on the classical wetting tran-
sition and its relation to the quantum transverse field Ising
model. Classical wetting is the phenomenon in which a thick
wetting layer of liquid is adsorbed at a planar wall-vapor inter-
face. The wetting transition is described by three characteristic
lengths: the thickness of the liquid x∗, the correlation length
ξ⊥ for the fluctuation perpendicular to the wall and ξ‖ for the
fluctuation parallel to the wall. The reduced temperature is
defined by t = 1 − T/Tw, where Tw is the wetting transition
temperature. The exponents related to x∗, ξ⊥, ξ‖ are defined by
x∗ ∼ |t |−βs , ξ⊥ ∼ |t |−ν⊥ and ξ‖ ∼ |t |−ν‖ , respectively. For d =
2, the exact solution yields βs = 1, ν⊥ = 1, ν‖ = 2 [20,21].

It is known that the one-dimensional quantum spin model
can be mapped to the 1 + 1 dimensional classical spin model
[14]. The match of the wall in the classical model should
be the left end of the spin chain in the quantum model. The
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FIG. 4. Magnetization profiles for different hL and hR =
−1.0, g = 0.8. The interface is delocalized as hL approaches the
wetting transition point hw = 0.4472 . . . .

parallel direction of the classical model should be the virtual
time direction in the quantum model. The perpendicular direc-
tion in the classical model corresponds to the direction along
the chain in the quantum model. There are one-to-one matches
between the classical model and the quantum model.

The dynamical exponent is a basic critical exponent in the
quantum phase transition. Here it corresponds to the correla-
tion length exponent in the parallel direction in the classical
model. The energy gap determines the dynamical exponent.
According to the general theory of the quantum critical point,
the energy gap vanishes as the zth power of the inverse cor-
relation length [1]. In the Abraham model, ν‖ = 2ν⊥ [20].
Therefore, we should have ν‖ = zν⊥. Since ν‖ = 2, ν⊥ = 1,
z = 2. Below, our numerical results verify this conclusion.

The other critical exponents for the Abraham model is
summarized in Table 1 of Ref. [32].

B. Rigorous proof of the second-order phase transition

The wetting transition occurs at

hL = hw =
√

1 − g (65)

for hR < −√
1 − g. The other three cases for the wetting tran-

sition can be obtained by considering the symmetry.
Since the boundary fields have opposite signs, the mag-

netization profile has an interface, where the boundary
magnetization changes sign. In Fig. 4 we show the mag-
netization profile for a chain with size N = 400 and g =
0.8, hR = −1. The thickness of the positive magnetization
layer becomes very large as hL approaches hw = √

1 − g =
0.4472 . . . as shown in Fig. 4. In fact, this phase transition is
the quantum version of the wetting transition on the Abraham
model, which is an Ising strip with two surface fields [19,20].
We call this phase transition the quantum wetting transition.
In the wetting phase shown in Fig. 1, the interface is delo-
calized and is located far away from the boundaries. In the
“Positive” and “Negative” phases, the interface is localized at
one boundary, so they can be called“Nonwet” phases.

In this wetting transition, a cusp in the boundary mag-
netization m1 is present, as shown in Fig. 1(d). This cusp
indicates that the derivative of m1 with respect to hL is discon-
tinuous. We present some more detailed numerical results for

FIG. 5. Boundary susceptibility and magnetization (inset) for
different sizes and g = 0.8, hR = −1.0.

the boundary magnetization and susceptibility for finite-size
lattices and g = 0.8, hR = −1 in Fig. 5. In the numerical
calculation, we compute the boundary magnetization m1 with
Eq. (27). Then, we use the difference method to calculate the
boundary susceptibility:

χ11 = ∂m1

∂hL
≈ m1(hL + �hL ) − m1(hL − �hL )

2�hL
. (66)

In our calculation, we set �hL = 10−7. In Fig. 5 the boundary
susceptibility shows the typical features of a continuous phase
transition. The boundary magnetization is continuous at the
transition point (see the inset in Fig. 5), but χ11 makes a
finite jump. This observation indicates that the critical index
αs linked to the boundary susceptibility χ11 ∼ (hw − hL )−αs is
given by

αs = 0. (67)

In the continuous wetting transition in the Abraham model
[20], the boundary susceptibility has a jump. Our result shows
that the quantum model is in perfect agreement with the Abra-
ham model.

This singularity can be shown analytically. As discussed
in Sec. III, a localized state eigenvector exists for hL <

hw < |hR| and vanishes for hL > hw, which is described by
Eq. (27). We denote the contribution from this localized state
eigenvector ψ1 to the boundary magnetization m1 by I1. For
hw − hL → 0, in the limit N → ∞, it is given by

I1 = − 1

2hL
ε1ψ

2
1,0 = −εLα2

2h3
L

= 4

g
(hL − hw ), (68)

where ψ1,0 is the value of localized eigenvector at the site
zero. For hL < hw, ψ1 is a localized eigenvector, and ψ1

becomes extended for hL > hw so that we have I1 = 0 for
hL > hw. Hence, this term causes a jump −4/g in χ11. The
contribution to m1 from the extended states eigenvectors is
given by

I2 =
{

1
2hL

∑N+1
n=2 εnψ

2
n,0, hL < hw

1
2hL

(−ε1ψ
2
1,0 + ∑N+1

n=2 εnψ
2
n,0

)
, hL > hw

(69)
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for hL > hw, where ψ1 is the extended state with the lowest
energy. The derivative of this quantity ∂I2/∂hL is also discon-
tinuous at hL = hw. In the limit of N → ∞, this becomes

I2(hL, a, b) =
∫ π

0

2
√

1 + g2 − 2gcos k

πh3
L[(a tan(k/2) + b/ sin k)2 + 1]

dk

(70)

for both cases hL < hw and hL > hw. The parameters
a, b are defined in Eq. (37). The singularity stems from
the term b/ sin k. Near the wetting transition point, b ≈
2hw(hL − hw )/g. We investigate the singular behavior of I
around |hL − hw| 
 1. To calculate ∂I2/∂hL, we consider
I2(hw, a(hw ), b(hL )) − I2(hw, a(hw ), b(hw )) in the limit b →
0. The integrand is almost zero for k � b. The integration is
contributed mainly from k ∼ b. Therefore, we obtain

lim
hL−hw→0

I2(hw, a(hw ), b(hL )) − I2(hw, a(hw ), b(hw ))

=
∫ ∞

0

2(1 − g) dk

πh3
w

[
1

(b/k)2 + 1
− 1

]
= −|b|

hw

. (71)

Some calculations shows that this term causes a jump −4/g
in χ11. Combining two parts I1, I2 from the localized state and
extended states, we obtain the jump of the boundary suscepti-
bility χ11 at the wetting transition point hL = hw according to

χ11|hL=hw+0+ − χ11|hL=hw−0+ = −8

g
. (72)

In Fig. 5, g = 0.8, the jump of χ11 in the numerical result
for N = 1600 is indeed close to −10. It should be noted that
for hLhR > 0, the singularities from the localized state and
the extended states cancel so that there is no phase transition
because the two boundary fields have the same sign.

C. Energy gap

For hL > hw = √
1 − g, the system is gapless. For

|hL|, |hR| >
√

1 − g, all the eigenvectors are extended states,
and the energies are given by Eq. (34). It is clear that the gap
� = ε2 − ε1 → 0 as the lattice size N approaches infinity.

For hL < hw = √
1 − g, the system is gapped. In the limit

of N → ∞, the ground state is localized at the right boundary
with energy εR given in Eq. (51). The first excited state is the
extended state with energy given by Eq. (34), with k → 0.
Then, we have ε2 = 2(1 − g) and

� = ε2 − ε1 = 2

[
(1 − g) − hL

√
1 − g2

1 − h2
L

]
. (73)

Considering the critical regime hw − hL 
 1, where hw =√
1 − g, the gap behaves as

� = 4

g
(hw − hL )2 + O((hw − hL )3) (74)

for hw − hL 
 1. Therefore, the critical exponent for the en-
ergy gap is given by

zν⊥ = 2, (75)

FIG. 6. Energies of the first excited state and the ground state
for g = 0.8. The critical surface field is given by hw = √

1 − g =
0.44721 . . . .

where ν⊥ is the correlation length exponent and z is the
dynamical critical exponent that determines the relative
rescaling factors of the space and time [1]. As mentioned
above, the one-dimensional transverse field Ising model can
be mapped to the two-dimensional Ising model. The trans-
verse correlation in the two-dimensional Ising model should
correspond to the correlation in the virtual time direction in
the one-dimensional transverse field Ising model. The diver-
gence of ξ‖ in the two-dimensional Ising model means that
the gap vanishes in the one-dimensional transverse field Ising
model. Later we will show that ν⊥ = 1, such that we have
z = 2, in agreement with the exact solution of the Abraham
model, in which ν‖ = 2, ν⊥ = 1 [20,21].

We also verify the above conclusion on finite-size lattices
numerically. We diagonalize the matrix C using LAPACK.
Such diagonalization can be carried out easily for lattice
sizes up to L = 3200. Figure 6 shows the first and the
second eigenvalues ε1 and ε2 for the lattice sizes L =
400, 800, 1600, 3200. For L = 3200, one can see that for
hL < hw = √

0.2 ≈ 0.4472, the energy gap opens, and for
hL > hw ≈ 0.4472, the gap closes.

In Fig. 7 we show the finite-size scaling of the gap � versus
the scaling field hw − hL. The log-log plot shows that � ∼
(hw − hL )2, in agreement with Eq. (74)

D. Magnetization profile, universal profile,
and thickness of wetting layer

Similar to the boundary magnetization, we can calculate
the magnetization at any site with Eq. (26). To compare our
results with the field theory result for the two-dimensional
Ising model with surface fields [32], we define

m(x) = mj, x = j, (76)

where x is a continuous variable.
Figure 8(a) shows the magnetization profile away from the

transition point and at the critical point for different lattice
sizes. At the transition point hL = √

0.2, as shown in Fig. 8(b),
the curves m versus x/L collapse for lattices from L = 50
to L = 1600. This result indicates the scale invariance at the
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FIG. 7. Finite-size scaling of the energy gap.

critical point. By contrast, away from the critical point hL =
0.44, the curves of m versus x/L do not collapse, as shown in
Fig. 8(a).

To demonstrate the universality of the magnetization pro-
files at the different wetting transition points for different
g, we also calculate the magnetization profile at the wetting
transition point for g = 0.36, 0.5, 0.64, 0.8 for lattice size L =
1600. The wetting transition point is given by hL = √

1 − g.
The curves m/m∗ versus x/L collapse perfectly for the four
situations.

Furthermore, we also obtain the analytical expression for
the universal magnetization profile, even though we do not
solve the model exactly. In Refs. [31,33], the magnetization
profiles for a d = 2 Ising strip with opposite surface fields are
studied. The universal magnetization profile is given by

m(x)

m∗ = 1 − 2x

L
− 2

π
sin

(πx

L

)
, (77)

FIG. 8. Magnetization profile away from the transition point
(a) and at the transition point (b).

FIG. 9. Universality of the critical magnetization profile for dif-
ferent g. The exact result is given by Eq. (77). The inset shows the
original curves of m versus x/L.

where m∗ is the spontaneous magnetization in the bulk system.
For the one-dimensional transverse field Ising model, it is
given by [5]

m∗ = (1 − g2)1/8. (78)

As shown in Fig. 9, the magnetization profiles at the critical
point for g = 0.36, 0.5, 0.64, 0.8 and the lattice size being
L = 1600 collapse on the curve given by Eq. (77). The in-
set shows the original curves of m versus x/L. It should be
emphasized that the above equation is not an analytical result
for the one-dimensional transverse field Ising model but rather
a result for the two-dimensional Ising model. Although we
know that the two-dimensional Ising model can be mapped
to the one-dimensional transverse field Ising model [14], this
perfect collapse of the data and the perfect correspondence
are still surprising. Moreover, we can conjecture that the
above equation is precisely the rigorous result for the one-
dimensional transverse field Ising model.

The thickness of the wetting layer is another diverging
quantity at the transition point; in the present model, it is the
number of sites where the magnetization is positive. From the
magnetization profile, we can obtain the position x∗ of the
interface (or domain wall, where the magnetization is zero).
x∗ is the thickness. If mj > 0 and mj+1 < 0, the magnetization
changes sign, we obtain x∗ by a simple interpolation

x∗ = j + mj

mj − mj+1
. (79)

It diverges near the wetting transition point as

x∗ ∼ (hw − hL )−βs . (80)

Figure 10 shows the divergences of the thickness x∗ and their
finite-size scaling. From the figure, we observe that

βs = 1. (81)

This exponent is the same as that in the Abraham model
[20,32].
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FIG. 10. Thickness of the wetting layer for a lattice size from
L = 50 to L = 3200 and g = 0.8.

E. Correlation function and correlation length

The classical wetting transition in the Abraham model is
anisotropic [20,21]. The correlation lengths along the direc-
tions parallel and perpendicular to the surface are different.
Mapping to the one-dimensional transverse field Ising model,
the parallel direction is the virtual time direction. The per-
pendicular direction is the direction along the Ising chain
direction.

We can calculate the correlation function along the chain
direction with Eq. (25). For simplicity, we calculate c1, j :

c1, j = 〈�1|σ (1)
1 σ

(1)
j |�1〉 − m1mj, (82)

where m1, mj are the magnetization at sites 1, j, given by
Eq. (26). Since the magnetization on each site is not zero,
it is necessary to subtract the product of the magnetization
at the two sites. Some examples of the correlation function
are shown in Fig. 11, which is plotted in semilog scale. For
hL = 0.48, 0.5, 0.6, where the system is in the wetting phase,
the correlation of other spin with the first left decays rapidly
to become negligible. For hL < 0.447, where the system is
at the nonwet phase, the correlation decays with distance from
the first spin exponentially, i.e., c1, j ∼ e−( j−1)/ξ . Then, we can
define the correlation length at this regime. We choose two
spins at sites j1 and j2 and calculate the correlation length
with

ξ = ( j2 − j1)/ ln(c1, j1/c1, j2 ). (83)

In the numerical calculation, we set j1 = 50, j2 = 100.
Figure 12 shows the divergence of the correlation length near
the wetting transition point. It should diverge at the wetting
transition point as

ξ ∼ (hw − hL )−ν⊥ . (84)

FIG. 11. Correlation functions near the left end. These correla-
tion functions are obtained on the lattice with L = 400, g = 0.8.

From Fig. 8 we observe that the critical exponent should be

ν⊥ = 1. (85)

This exponent is also the same as that in the classical Abraham
model [20,32].

VI. SUMMARY

In summary, we present the diagram of the one-
dimensional transverse field Ising model with boundary fields.
The exact FSS of the boundary magnetization in the first-order
phase transition is obtained. The singularity of the boundary
magnetization in the second-order quantum wetting transition
is explicitly shown. Tuning the boundary fields should be sim-
ple in the experimental realization. Our work may be tested in
future experiments with cold atoms [4].

We also proposed a computational procedure to numeri-
cally study the one-dimensional transverse field Ising model
with boundary fields. The computational procedure provides

FIG. 12. Correlation length near the wetting transition point for
the lattices with different sizes L = 200, 400, 800, 1600, g = 0.8.
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an numerical method that is different from DMRG [22]. Our
computational procedure can be carried out for L = 3200.
To show the efficiency of this computational procedure, we
compare it to the algorithm for the study of the wetting
transition in the two-dimensional Ising model [34]. In that
computational procedure, the the maximum of the transverse
size is less than 400. The length of the Ising chain in our com-
putational procedure can be 3200, or even larger. Moreover,
this computational procedure can be extended to study the

model with disorder, for which it is very difficult to obtain
the exact solution.
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