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Dynamical spin excitations of the topological Haldane gapped phase in the S = 1 Heisenberg
antiferromagnetic chain with single-ion anisotropy
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We study the dynamical spin excitations of the one-dimensional S = 1 Heisenberg antiferromagnetic chain
with single-ion anisotropy by using quantum Monte Carlo simulations and stochastic analytic continuation of
imaginary-time correlation function. Using the transverse dynamic spin structure factor, we observe the quantum
phase transition with a critical point between the topological Haldane gapped phase and the trivial phase. At
the quantum critical point, we find a broad continuum characterized by the Tomonaga-Luttinger liquid, and its
dynamical signatures are similar to a S = 1/2 Heisenberg antiferromagnetic chain. The broad continuum can be
seen as a dynamical signature of spinons. We further identify that the elementary excitations are fractionalized
spinons in the critical state.
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I. INTRODUCTION

An extensive body of research has been done on the
one-dimensional S = 1 Heisenberg antiferromagnetic chain,
which can be traced back to the original work by Haldane
[1,2]. Here we investigate the spin chain with single-ion
anisotropy [3] and present the quantum phase diagram [4–6]
with an Ising-type Néel phase, a Haldane phase, and a large-D
phase in Fig. 1. The phase transition from the Néel order to the
Haldane phase has been studied in detail before [7], which is
described by conformal field theory with a central charge c =
1/2 [8]. Thus, we are more interested in the other transition
from the Haldane phase to the large-D phase, i.e., a continuous
transition. This quantum phase transition is a Gaussian-type
transition [9] described by conformal field theory with a cen-
tral charge c = 1 [10,11]. The Haldane gapped phase is now
understood as a symmetry-protected topological phase [12],
while it will undergo a phase transition to a topologically
trivial gapped phase, the large-D phase, with increasing the
single-ion anisotropy D. When D is strong enough, the ground
state in the large-D phase is known as the product state with
Sz = 0 at each site. A symmetry-protected topological phase
cannot be continuously changed into a trivial gapped phase
without closing the energy gap [13], so the transition, between
the Haldane phase and the large-D phase, is a topological
phase transition that possesses a gapless critical point and does
not fit into the Landau-Ginzburg-Wilson paradigm [14].

The previous research [15] has suggested that a direct
transition from the Haldane phase to the trivial phase can
occur without accessing a Tomonaga-Luttinger liquid (TLL)
critical state in the absence of external magnetic field, which
is inaccurate, or rather easy to be neglected. The TLL
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behavior has been widely discussed particularly in half-odd-
integer spin chains and a number of quasi-one-dimensional
materials, e.g., in SrCuO2 and KCuF3 [16–19]. Recently, the
TLL phase of the S = 1/2 chain has also been realized ex-
perimentally by the rare-earth perovskite YbAlO3 [20] and
exhibited a broad continuum, a signature of fractionalized
spinon excitations, as predicted by various theoretical and
numerical methods [21–25]. This provides strong evidence to
identify that the critical point separating the Haldane phase
from the trivial phase is a TLL critical state by the spin
excitation spectra theoretically and experimentally. The S =
1 chain with single-ion anisotropy can be realized by ul-
tracold atomic condensates on optical lattices and various
compounds with Ni2+ ions, such as Ni(C2H8N2)2NO2(ClO4),
NiCl24SC(NH2)2, and so on [26–29]. In addition, experimen-
tal methods, including inelastic neutron scattering and nuclear
magnetic resonance, provide the dynamic probes of these ma-
terials [30]. Therefore, in the S = 1 Heisenberg antiferromag-
netic chain with single-ion anisotropy, a TLL critical state and
its broad spinon continuum can be verified experimentally.

In this paper, we study the dynamics of the one-
dimensional S = 1 Heisenberg antiferromagnetic chain with
single-ion anisotropy using numerical methods [31]. By
means of quantum Monte Carlo (QMC) [32–36] simulations
and stochastic analytic continuation (SAC), we present and
discuss our results for the transverse dynamic spin structure
factor. The QMC-SAC numerical methods provided excitation
spectra very well in previous studies [37–39]. Here, we study
the dynamical spin excitations of the topological Haldane
phase and its phase transition to the topologically trivial large-
D phase. At the quantum critical point, we show the quantum
critical TLL behavior in comparison with the TLL phase of the
S = 1/2 Heisenberg antiferromagnetic chain. We suggest the
broad continuum of the TLL critical state to be fractionalized
spinons deconfined from the magnons [40].
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FIG. 1. Quantum phase diagram of the S = 1 Heisenberg chain
versus single-ion anisotropy D/J . The quantum critical point
between the Haldane phase and the large-D phase is a Tomonaga-
Luttinger liquid phase (red dashed line).

II. MODEL AND NUMERICAL METHODS

A. Model

We investigate the anisotropic S = 1 Heisenberg antiferro-
magnetic chain defined by the Hamiltonian

H =
∑

i

[
J
(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + Sz

i Sz
i+1

) + D
(
Sz

i

)2]
, (1)

where Sx,y,z
i denotes the S = 1 spin operator on each site i,

J > 0 is the antiferromagnetic exchange, and the parameter D
is the single-ion anisotropy. For simplicity, we set J = 1 in the
whole paper.

As shown in Fig. 1, the phase diagram of this model
consists of the Néel phase, the Haldane phase, the TLL crit-
ical state, and the large-D phase. For the isotropic case, i.e.,
D/J = 0, the ground state belongs to the symmetry-protected
topological Haldane phase with a Haldane gap of � ≈
0.41J [41,42] and the lowest-lying excitations are magnon.
Whereas, at finite D, the magnon excitations will split into
a singlet branch (Sz = 0) and a doublet branch (Sz = ±1),
which show up in the longitudinal and transverse dynamic
spin structure factors, respectively [43]. In this paper, we are
more interested in the phase transition from the Haldane phase
to the large-D phase, in which the lowest-lying excitations
lie in the Sz = ±1 branch. Thus, we study the dynamics of
the anisotropic S = 1 Heisenberg antiferromagnetic chain by
calculating the transverse dynamic spin structure factor.

B. Methods

We numerically solve the model in Eq. (1) by using QMC
simulations based on the stochastic series expansion [44,45].
Using stochastic analytic continuation of imaginary-time cor-
relation function obtained from QMC simulations, we extract
the transverse dynamic spin structure factor Sxx(q, ω), which
is written in the basis of eigenstates |n〉 and eigenvalues En of
the Hamiltonian as

Sxx(q, ω) = π
∑

n

|〈n|Sx
q|0〉|2δ[ω − (En − E0)]. (2)

Here, the momentum-space operator Sx
q is the Fourier trans-

form of the real-space spin operator

Sx
q = 1√

L

∑
l

e−iql Sx
l , (3)

where q = 2nπ/L, n = 1, 2, . . . , L for periodic boundary
condition. Thus, we can study the dynamics of magnetic mate-
rials naturally by the transverse dynamic spin structure factor
Sxx(q, ω), which is convenient to compare with experiment.

The stochastic series expansion QMC algorithm is used to
compute the imaginary-time correlation function

Gxx
q (τ ) = 〈

Sx
−q(τ )Sx

q(0)
〉
. (4)

And its relationship to the transverse dynamic spin structure
factor is

Gxx
q = 1

π

∫ ∞

−∞
dω Sxx(q, ω)e−τω. (5)

The imaginary-time correlation function Gxx
q (τ ) can be cal-

culated by the spectral function Sxx(q, ω). However, the
inverse process is hard to solve because of statistical error
and nonuniqueness. In SAC, we propose a candidate spectral
function from the Monte Carlo process and fit them to the
imaginary-time data according to a likelihood function

P(S) ∝ exp

(
− χ2

2�

)
, (6)

where χ2 is the goodness of fit and � is the sampling temper-
ature. Finally, we can obtain the optimal spectra through such
Metropolis sampling algorithm. A more detailed account of
SAC can be found in Refs. [46–50].

III. NUMERICAL RESULTS

Here, we consider a S = 1 Heisenberg antiferromagnetic
chain of L = 64 with periodic boundary condition and the
inverse temperature β = 1/T = 2L unless specifically men-
tioned otherwise. For positive D, the lowest-lying excitations
are extracted in the transverse dynamic spin structure factor.
In this paper, we study the transverse dynamic spin structure
factor Sxx(q, ω) of the topological Haldane phase and its phase
transition to the topologically trivial large-D phase.

A. Transverse dynamic spin structure factor

In the Haldane phase [51–53], we assume an isotropic
case, i.e., D/J = 0. In Fig. 2(a), we show the results of the
transverse dynamic spin structure factor Sxx(q, ω) obtained
from QMC-SAC calculations. The most prominent contribu-
tion to excitation spectra is the single-magnon peak, with a
lowest energy gap of � ≈ 0.41J at the wave vector q = π .
The energy gap � in our methods is given simply by the
imaginary-time correlation function [54,55]

Gxx
q=π (τ ) ≈ a0e−�τ , (7)

where a0 is the amplitude of the single-magnon peak. As
shown in Fig. 3, the transverse imaginary-time correlation
function Gxx(τ ) obtained from stochastic series expansion
QMC calculations is exponential decay at the wave vector q =
π . It is easy to extract the energy gap � ≈ 0.41J from the fit-
ting to Eq. (7). The excitation spectra is a single-magnon peak
followed by extremely weak multimagnon continua at higher
frequencies, so we provide special treatment to the single-
magnon δ function at the lowest frequency when optimizing
the candidate spectral function [48]. In SAC, we also obtain
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FIG. 2. The transverse dynamic spin structure factor Sxx (q, ω) obtained from QMC-SAC calculations for the S = 1 Heisenberg chain with
L = 64 and β = 128. The values of single-ion anisotropy are (a) D/J = 0 in the Haldane phase, (b) D/J = 0.97 in the TLL critical state, and
(c) D/J = 1.5 in the large-D phase, respectively.

that the amplitude of the single-magnon δ function is a0 =
0.973 75(25) and its energy gap is � ≈ 0.4104J with higher
accuracy. The contribution of the single-magnon excitation
obtained from SAC nearly coincides with the real trans-
verse imaginary-time correlation function Gxx(τ ) as shown in
Fig. 3. The single-magnon peak of momenta q is displayed
in Fig. 4. The results obtained from QMC-SAC are perfectly
consistent with the previous density-matrix renormalization
group (DMRG) results [56]. Thus, our numerical methods and
results are accurate and reliable enough.

In addition, in Fig. 2(a), the two-magnon and three-magnon
continua can also be observed near the wave vectors q = 0
and q = π , respectively, although their spectral weights are
very small. The inset of Fig. 5(b) presents the three-magnon
continuum at q = π starting at higher frequency 3�. The
spectral weight of the three-magnon continuum at q = π is
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100 QMC
SAC

G
xx
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)

FIG. 3. The normalized imaginary-time correlation function
Gxx (τ ) at the wave vector q = π for the S = 1 Heisenberg chain
with D/J = 0, L = 64, and β = 128, computed in stochastic series
expansion QMC calculations. The error bars are much smaller than
the symbols. The straight line (blue solid line) corresponds to the
contribution from the single-magnon peak obtained from SAC, with
the amplitude a0 = 0.973 75(25) and the energy gap � ≈ 0.4104J .

2.7% compared to the single-magnon peak from SAC. These
results are proved to be well matched with previous work [56].
We have reason to believe that the elementary excitations of
the Haldane phase are the bosonic magnons [57].

The ground state of the topologically trivial large-D phase
includes the product state with Sz = 0 at every site if the
single-ion anisotropy D is strong enough. Here, we choose an
anisotropy D/J = 1.5 for this phase. Predictably, the lowest-
lying excitations can be viewed as single up or down spins
that move in a background of ground state with Sz = 0 [3].
The quasiparticle excitations can be termed as excitons and
antiexcitons, which reside in the Sz = ±1 branch as shown in
Fig. 2(c). Apparently, the large-D phase also has an energy
gap. A prominent peak can be observed near the wave vector
q = π and we consider it as single-exciton excitation. In addi-
tion, the extremely weak continua emerge at high frequencies
similar to the Haldane phase (see Fig. 5). We suppose that
they are multiexcitons and exciton-antiexciton bound states
because of the interaction between opposite spins.
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FIG. 4. The single-magnon dispersion. The red circles show
QMC-SAC data for the single-magnon peak (δ function) at the lower
frequency bound. The curve (green solid line) is the DMRG results
according to Ref. [56].
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FIG. 5. The transverse dynamic spin structure factor Sxx (q, ω) of
the S = 1 and S = 1/2 chains with L = 64 and β = 128 at two mo-
menta, (a) q = 3π/4 and (b) q = π . The S = 1 Heisenberg chain is
calculated with three different anisotropies, including D/J = 0 (blue
solid line), D/J = 0.97 (red dashed line), and D/J = 1.5 (green
dotted line). The blue solid line and green dotted line both have a
very sharp peak. The red dashed lines, at the quantum critical point,
possess a broad continuum similar to the S = 1/2 chain (yellow
dot-dashed line).

Next, we focus on the quantum critical point that belongs
to the TLL with a single-ion anisotropy D/J ≈ 0.97 in Fig. 1.
The accuracy of the critical point is high enough for the cal-
culations of the dynamical spin excitations and therefore the
single-ion anisotropy D/J = 0.97 can be treated as the critical
value of the quantum phase transition point. A symmetry-
protected topological phase cannot be continuously changed
into a trivial gapped phase without closing the energy gap,
so it is easily known that the critical point is gapless. How-
ever, there are no well-defined quasiparticle excitations at the
critical point. Recently, the TLL phase of the S = 1/2 chain
has been experimentally realized in YbAlO3, which verified
that it possessed a broad continuum and its excitations are
fractionalized spinons. Spinons are always excited in pairs.
Energy and momentum can be shared between each pair of
spinons that provides a peak. All possible peaks lead to a
broad continuum, which can be taken as evidence for spinons

[58]. From the spin excitation spectra shown in Fig. 2(b), gap-
less excitations appear at the wave vector q = π . Moreover, a
broad continuum can be seen in the spectral function.

Figure 5 shows the transverse dynamic spin structure fac-
tor Sxx(3π/4, ω) and Sxx(π,ω) of the S = 1/2 Heisenberg
antiferromagnetic chain and the S = 1 chain in the Haldane
phase, the TLL critical state, and the large-D phase. As
shown in Fig. 5, the excitation spectra of the TLL state has
a much broader continuum than prominent peaks of the Hal-
dane phase and the large-D phase. Meanwhile, we further
find that the broad continuum in the TLL critical state has
a similar shape to the S = 1/2 case and they both have a
high-frequency tail. These are all dynamical signatures of
fractionalized spinon excitations carrying half of the spin of a
magnon [21,40,48]. Thus, the quasiparticle excitations of the
S = 1 chain are spinon continuum excitations at the quantum
critical point. This is consistent with the expectation of the
one-dimensional TLL behavior.

In conclusion, the lowest-lying excitations of the topolog-
ical Haldane gapped phase are single-magnon, which is a
narrow prominent peak with 97.3% of the spectral weight near
q = π . However, a broad spinon continuum has been found at
the quantum critical point, which is a remarkable hallmark
of TLL in one-dimensional interacting systems. So such a
critical point is a TLL state as we expect.

B. Uniform magnetic susceptibility

We further identify that the low-energy excitations are
fractionalized spinons in the TLL critical state of the S = 1
chain, which can be compared with a S = 1/2 Heisenberg
antiferromagnetic chain. From the low-energy field theory, the
uniform magnetic susceptibility of the S = 1/2 Heisenberg
chain has the form [59,60]

χ (T ) = 1

2πv
+ 1

4πv ln(T0/T )
, (8)

where v is the spinon velocity. As shown in Fig. 6(a), the
dashed curve is the low-T form Eq. (8) of the S = 1/2 Heisen-
berg antiferromagnetic chain with v = π/2 and T0 = 7.7 [59].
The uniform magnetic susceptibility of the S = 1/2 chain has
been well studied before. We offer the details here in order to
compare with the S = 1 case.

In Fig. 6(b), we present the uniform magnetic suscepti-
bility of the S = 1 Heisenberg chain at the quantum critical
point with the chain length L = 2n, where n = 4, 5, . . . , 10.
Because of the finite-size effects, the uniform magnetic sus-
ceptibility always decays to zero below a temperature T (∼
1/L). For the S = 1 chain, the log-linear scale makes the
finite-size effects very clear and displays that the uniform
magnetic susceptibility satisfies χ (T ) ≈ 0.164 39(9) in the
low temperature as shown in Fig. 6(b). This result is consistent
with the T -independent susceptibility of TLL with the form

χ = K

πv
. (9)

Here, K and v are the Luttinger parameter and Fermi ve-
locity, respectively, which are characteristic parameters for
describing the TLL behavior. In Ref. [9], the Luttinger pa-
rameter K = 1.321(1) and velocity v = 2.564(2) are given
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FIG. 6. (a) The uniform magnetic susceptibility of the S = 1/2
Heisenberg chain. The red dashed curve is a fitting line based on
Eq. (8) with v = π/2 and T0 = 7.7. (b) The uniform magnetic sus-
ceptibility of the S = 1 Heisenberg chain in the TLL critical state.
Both of them are obtained from the QMC calculations. The error
bars are much smaller than the symbols.

at the quantum critical point of the anisotropic S = 1 chain,
which leads to χ = 0.164 based on Eq. (9). This value of
susceptibility is consistent with our result. Moreover, the
uniform magnetic susceptibility of the S = 1 chain does not
include a logarithmic correction which exists in the isotropic
S = 1/2 Heisenberg antiferromagnetic chain (Luttinger pa-
rameter K = 1/2). The Luttinger parameter K characterizes
the strength of the interaction between excitations. Thus, the
S = 1 chain at the quantum critical point and the S = 1/2
chain both belong to TLL phases, although they have different
interaction strengths.

To conclude, in the TLL state, the uniform magnetic sus-
ceptibility χ (T ) of the S = 1 chain will not alter with T in
the low temperature in the L → ∞ limit, which is similar
to the free fermion gas [61–63]. The TLL critical state of
the S = 1 chain is paramagnetic and here we can regard the
spinon excitations as bosons in this phase. The excitations
can be accounted for as composites of interacting spinons
that can be mapped to free fermions by the Jordan-Wigner
transformation.

1 10
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|C
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)|

r

FIG. 7. The transverse spin-spin correlation function obtained
from the QMC calculations for the S = 1 Heisenberg chain in
the TLL critical state and the S = 1/2 Heisenberg antiferromag-
netic chain with L = 64 and β = 128. The error bars are much
smaller than the symbols. The red dashed line shows the form ∝r−α

with α = 0.395(2) for S = 1. We consider a logarithmic correction
ln1/2(r/r0)r−α for S = 1/2 (blue dotted line) with r0 = 0.30(7) and
α = 1.

C. Transverse spin-spin correlation function

Additionally, we extract the transverse spin-spin corre-
lation function C(r) = 〈Sx

i Sx
i+r〉 of the S = 1 chain in the

TLL critical state. We know the spin-spin correlation function
〈Si · Si+r〉 of a S = 1/2 Heisenberg antiferromagnetic chain
has a power-law distribution as (−1)r/r while C(r) of an
isotropic S = 1 chain decays exponentially with distance r as
(−1)rr−1/2e−r/ξ [2,64].

In the TLL critical state, the transverse spin-spin correla-
tion function |C(r)| of the S = 1 chain is shown versus the
distance r and compared with a S = 1/2 Heisenberg antiferro-
magnetic chain in Fig. 7. For the S = 1 chain in the TLL state,
the transverse spin-spin correlation function has a power-law
decay like the S = 1/2 case or the S = 1 chain in a magnetic
field [65], which is different from the exponential decay in the
Haldane phase.

Moreover, the decay of the S = 1 chain is ∝r−α with the
exponent α = 0.395(2) in the TLL critical state. The corre-
lation exponent α of TLL can be expressed in terms of the
Luttinger parameter K ,

α = 1

2K
. (10)

The Luttinger parameter K = 1.321(1) results in α = 0.379
based on Eq. (10), which is in good agreement with our result.
Thus, the quantum critical point of the S = 1 chain is indeed a
TLL state. For the S = 1/2 chain, we consider a multiplicative
logarithmic correction ln1/2(r/r0)r−α with α = 1 (see Fig. 7).
The exponents of the S = 1 and S = 1/2 chains are different
because of their different values of Luttinger parameter K . The
S = 1/2 chain has an emergent symmetry described by the
SU(2) level-1 Wess-Zumino-Witten conformal field theory,
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which makes the spinon excitations available [66,67]. Never-
theless, at the topological quantum critical point of the S = 1
Heisenberg chain, there is a U(1) spin rotational symmetry.
They may belong to different universality classes and it is wor-
thy of further research. But it is worth mentioning that they
both have power-law correlations, which are in accord with
the TLL behavior. They both have broad spinon continuum
excitations with similar characteristics as shown in Fig. 5.
Therefore, in the TLL critical state, the low-energy excitations
of the S = 1 Heisenberg chain are fractionalized spinons, just
like a S = 1/2 Heisenberg antiferromagnetic chain.

IV. DISCUSSION AND CONCLUSION

In this work, we have investigated the transverse dynamic
spin structure factor Sxx(q, ω) of the S = 1 Heisenberg anti-
ferromagnetic chain versus the single-ion anisotropy D. We
have uncovered the quantum phase diagram, comprising the
Néel phase, the Haldane phase, the TLL critical state, and the
large-D phase, especially their spin dynamics and elementary
excitations.

In the Haldane phase, the amplitudes and positions of the
single-magnon peak are accurately obtained from QMC-SAC
calculations, including the energy gap � ≈ 0.4104J . More-
over, we find the two-magnon and three-magnon continua at
high frequencies. And the spectral weight of the three-magnon
continuum at q = π is probably 2.7%.

At the topological quantum critical point of topological
phase transition between the Haldane phase and the large-D
phase, a gapless critical state has undoubtedly been found
and is verified as a TLL state in various ways. Firstly, at this
quantum critical point, we find the T -independent uniform
magnetic susceptibility χ = 0.164 39(9) in the low temper-
ature, which is consistent with TLL behavior. Secondly, the
power-law decaying spin correlations are extracted as is ex-
pected in the TLL state. Last but not least, a broad continuum
has been found in the critical state and precisely its dynamical
signatures are similar to a S = 1/2 Heisenberg antiferromag-
netic chain near q = π . The single-ion anisotropy breaks the
SU(2) symmetry down to a U(1) spin rotational symmetry
explicitly. The TLL critical state of the S = 1 chain and
the isotropic S = 1/2 chain belong to different universality
classes. But the similar broad continuum can still be taken as
evidence for spinons. So in the TLL critical state, the elemen-
tary excitations of the S = 1 Heisenberg antiferromagnetic
chain are fractionalized spinons carrying half of the spin of
a magnon. Spinon excitations must be excited in pairs. The
excitations can be accounted for as composites of interacting
spinons that can be mapped to free fermions.

In addition, we have extracted the dynamic spin struc-
ture factor of the S = 2 Heisenberg antiferromagnetic chain
[68–72] as shown in Fig. 8. In contrast to the topological
Haldane phase of the S = 1 chain, the even-integral spin chain
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FIG. 8. The dynamic spin structure factor S(q, ω) of the S = 2
Heisenberg antiferromagnetic chain with L = 64 and β = 16. The
blue dashed line is the magnon dispersion law with the form ω(q) =
2J

√
S(S + 1)sin(q) [68].

only has a topologically trivial gapped phase with a very small
energy gap without a topological quantum phase transition
[73,74]. A prominent continuum of the S = 2 chain can be
observed and it seems to coincide with the previous results
ω(q) = 2J

√
S(S + 1)sin(q) [68].

Recently, the S = 1 triangular antiferromagnet with the
single-ion anisotropy has been realized experimentally by the
material CsFeCl3 using the inelastic neutron scattering [75].
The novel excitations and hybridization effect have been dis-
cussed in detail, which is interesting and enlightening. The
TLL critical state of the anisotropic S = 1 Heisenberg anti-
ferromagnetic chain and its fractionalized spinon excitations
can be verified in experiment. This is completely feasible
and constructive. We would like to compare our numerical
results with further experimental spectra to gain insight into
the excitations, including the high-energy regions.
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