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Coarse-grained spectral projection: A deep learning assisted approach to quantum
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We propose the coarse-grained spectral projection method (CGSP), a deep learning assisted approach for
tackling quantum unitary dynamic problems with an emphasis on quench dynamics. We show that CGSP can
extract spectral components of many-body quantum states systematically with a sophisticated neural network
quantum ansatz. CGSP fully exploits the linear unitary nature of the quantum dynamics and is potentially
superior to other quantum Monte Carlo methods for ergodic dynamics. Preliminary numerical results on
one-dimensional XXZ models with periodic boundary conditions are carried out to demonstrate the practicality
of CGSP.
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I. INTRODUCTION

The past several decades have witnessed the rapid growth
of research interest in dynamical quantum many-body systems
[1–5], leading to the observation of novel quantum phenom-
ena [6–10] outside the scope of equilibrium physics. The
possibility of realistic implementations of quantum computa-
tions has also been introduced [11–15].

At the same time, there has also been a great deal of
activity on scalable algorithms for numerical simulations of
quantum dynamics [16–26]. The main challenge in this pur-
suit is modeling highly entangled high-dimensional quantum
states present during evolution, a task that usually requires
exponential complexity in classical computing. Examples that
fall in this category include most tensor network ansatzes,
such as matrix product states (MPSs), projected entangled pair
states, and multiscale entanglement renormalization ansatzes
[27–29], originating from the density matrix renormalization
group method [30]. As a consequence, the application of these
ansatzes is usually limited to one-dimensional (1D) or two-
dimensional (2D) systems featuring area-law entanglement
with or without logarithmic correction [31,32]. Hence more
versatile ansatzes are desired in the face of quantum dynamics.

In recent years, the most promising candidate turned out
to be artificial neural networks, which are believed to have a
huge entanglement capacity [33]. An early practice along this
line of research was the application of the restricted Boltz-
mann machine in solving the ground state and the dynamics of
quantum spin models [34]. Later, symmetry-preserving deep
fully connected neural networks and convolutional neural net-
works were also shown to be efficient quantum state ansatzes
[35–39]. In particular, the convolutional neural network is
believed to support volume-law entanglement scaling while
being polynomially more efficient in resources compared to
the restricted Boltzmann machine–like ansatz in two dimen-
sions, due to an inherent reuse of information [40].

So far, the main algorithm accompanying black-box-like
neural networks for simulating quantum dynamics is the time-
dependent variational principle (TDVP) method [34]. In plain
words, TDVP projects a real-time quantum evolution tra-
jectory into a tiny useful subset, parameterized by a neural
network, of the Hilbert space. The projected dynamics is then
described by a low-dimensional time-dependent differential
equation of neural network parameters. In spite of the nu-
merical instability and the limited expressive power of the
neural networks, TDVP methods are potentially capable of
simulating quench dynamics of very large quantum spin sys-
tems with strong entanglement [41], ultrafast dynamics [42],
and evolution of open quantum systems as well as stationary
states [43,44]. However, TDVP methods do not give special
treatment to dynamics driven by a static Hamiltonian where
the quantum evolution has a certain spectral structure and
multiple intrinsic time scales. The ignorance of both may lead
to prohibitive numerical instability in integrating the TDVP-
induced low-dimensional dynamics step by step.

In this work, we show how to poke into the spectral
structure of unitary dynamics and extract limited but useful
high-dimensional information directly from the initial con-
dition. This is done through a coarse-grained representation
of the spectral projection with deep learning, a procedure we
have dubbed coarse-grained spectral projection (CGSP). The
results of CGSP can be used to simulate a unitary dynamics
driven by a static Hamiltonian directly without step-by-step
integration.

II. COARSE-GRAINED SPECTRAL PROJECTION

Considering a pure quantum state |�o〉 (in the following
the brackets for a ket are dropped in the absence of an inner
product) in a closed system as the initial condition of a unitary
evolution driven by the static Hamiltonian H , a complete
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eigendecomposition of �o can be expressed as

�o =
Nh∑
i=1

biψi, (1)

where {bi}i∈[1,Nh] are real constants. The eigenstates {ψi}i∈[1,Nh]

satisfy Hψi = Eiψi. They are orthonormal and increasingly
ordered with respect to the energy level Ei. Nh is the dimension
of the Hilbert space H. There exists trivial disjoint cover of the
entire energy spectrum on the real axis,[

E1, ENh

] ⊂ [x0, x1) ∪ [x1, x2) ∪ . . . ∪ [xN−1, xN ], (2)

such that {xi}i∈[1,N] is an arithmetic sequence satisfying x0 <

E1 < ENh < xN . Then for each interval [xi, xi+1] we associate
the direct sum of the eigensubspaces whose eigenvalues lie
in [xi, xi+1]. We obtain N subspace {Qi ∈ H}i∈[0,N−1] and N
corresponding projection operators {Pi}i∈[0,N−1]. Since H =
⊕
i

Qi, it is obvious that �o ∈ span(P0�o, . . . ,PN−1�o). Let

θi denote the normalized Pi�o. �o can be expressed as �o =∑N−1
i=0 ciθi, where ci are real constants.
Let ε = xi+1 − xi and λi = (xi + xi−1)/2 be the cen-

ter of the ith interval. The unitary evolution of �o(t ) =
e−iHt�o driven by time-independent Hamiltonian H can be
approximated by

ϕo(t ) =
N−1∑
i=0

cie
−iλitθi. (3)

The error has an evident upper bound given as ‖�o(t ) −
ϕo(t )‖ � εt

2 . To achieve ‖�o(t ) − ϕo(t )‖ < δ for small
enough δ, N should satisfy

N >

(
ENh − E1

)
t

2δ
. (4)

Note that the energy spectrum range (ENh − E1) usually in-
creases linearly with system size for quantum models defined
on (nearly) regular graphs with bounded short-range inter-
action and disorder. Recently, a similar bound has also been
derived in the context of quantum state compression via prin-
cipal component analysis [45].

It is both unnecessary and difficult, if not impossible,
to solve the N projected state θi exactly for simulating
dynamics. Compromises should be made for practical rea-
sons. Especially, the uniqueness of θi should be loosened by
allowing polluted projection, which implies a nonorthogo-
nal decomposition of �o(0). Assuming N normalized states
	i parameterized by N classical ansatzes, respectively, a
nonorthogonal decomposition of �o(0) can be achieved
through the objective function as a constrained optimization
problem,

minimize
{ci},{	i}

N−1∑
i=0

c2
i 〈	i|(H − 
i )

2|	i〉 ,

subject to d
(
�o(0),

∑
ci	i

) = 0. (5)

d can be any legal distance function in the Hilbert space
including the Fubini-Study metric and L2 norm, regardless
of U(1) symmetry. The fixed constant {
i} in the objec-
tive function is an arithmetic sequence satisfying 
0 � Emin

and 
N−1 � Emax, with a common increment of ε > 0. The
ground-state energy Emin of the system Hamiltonian and the
maximum energy Emax can be easily estimated using the usual
variational Monte Carlo (VMC) techniques with the same
classical ansatz.

With a slight abuse of notation, let λi = 〈	i|H |	i〉
〈	i|	i〉 . �o(t ) can

be approximated by ϕo(t ) = ∑N−1
i=0 cie−iλit	i up to a constant

phase difference φph. Without loss of generality, we assume
φph = 0 for all that follows. The quality of this approximation
is reflected by the “covariance” matrix

(K )i j = 〈	i|(H − λi )(H − λ j )|	 j〉. (6)

For small t , the error of the approximation is

‖�o(t ) − ϕo(t )‖2 ≈ t2c†Kc. (7)

Consequently, |Ki j |/ε2 
 1 is allowed for a successful de-
composition as long as |cic j | is small enough. Instead, the
weighted “covariance” |ciKi jc j |(i �= j) is always expected to
be much smaller than ε2. In practice, it is easier to calcu-
late only the diagonal element of K , i.e., the variance σ 2

i =
〈	i|(H − λi)2|	i〉 of each 	i. Let |σ |2 = ∑

i c2
i σ

2
i /

∑
i c2

i .
We have a very rough but inexpensive estimation of the error:

‖�o(t ) − ϕo(t )‖2 ≈ |σ |2t2. (8)

Notably, Eq. (5) minimizes a weighted sum of individual
variances. We show in Appendix A that this particular choice
of objective function leads to an N−1 scaling of each σi in the
ideal case.

When N → ∞, Eq. (5) converges to its continuous form:

minimize
c,	

∫ wb

wa

c2(w) 〈	(w)|(H − w)2|	(w)〉 dw,

subject to d

(
�o(0),

∫ wb

wa

c(w)	(w)dw

)
= 0. (9)

For many disordered systems, eigenstates with very close
energy levels can have completely different local observables
[46]. Hence a global minimizer 	m(w) of Eq. (9) is not ex-
pected to be continuous with respect to w. Therefore we adopt
the discrete form, Eq. (5), as the starting point for extract-
ing spectral information and call it “coarse-grained spectral
projection.”

III. NUMERICAL FRAMEWORK AND RESULTS

To show that CGSP is applicable to real quantum dynamic
problems, we propose a feasible numerical framework for us-
ing Eq. (5) in the quench dynamics of quantum lattice models.
When deep neural networks serve as ansatzes, it is desirable
to convert Eq. (5) into an unconstrained loss function for
practical training. A naive treatment is to handle the constraint
in Eq. (5) with the penalty method. We found this approach
very problematic because a noisy estimation of the empha-
sized penalty will greatly slow down the minimization of the
original objective function. A more considerate approach is
to construct the ansatzes in a way such that the constraint is
automatically satisfied.

Suppose the initial state �o(0) ∈ H can be parameterized
exactly by the classical ansatz ϒ0 with fixed parame-
ters. In addition, we have M classical ansatzes {ϒ j} j∈[1,M]
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⊂ H with free parameters. Let A = (Ai j )i∈[0,N−1], j∈[0,M] be a
real matrix. Then ci	i as a whole is constructed to satisfy
d (�o(0),

∑
ci	i ) = 0, given as

ci	i =
M∑

j=0

(
δ j0

N
+ Ai j −

∑N−1
i=0 Ai j

N

)
ϒ j . (10)

In principle, M should be larger than N to ensure the linear
independence of {	i}i∈[0,N−1]. Also, a larger M will provide
stronger variational freedom for {	i}i∈[0,N−1]. But in practice
M is flexible because some ci vanishes. Next, we define a new
objective function without explicit constraint:

L =
(

2(N − 1)


N−1 − 
0

)2 N−1∑
i=0

c2
i 〈	i|(H − 
i )

2|	i〉 . (11)

Equation (11) is used for training {ϒ j} j∈[1,M] and A. The
constant in front of the summation in Eq. (11) ensures that
the minimum of L is of the order of O(1) rather than O(N−2).

Due to the exponentially large Hilbert space, L should
be estimated with Monte Carlo methods. Compared to tradi-
tional sequential Monte Carlo sampling methods such as the
Markov chain Monte Carlo (MCMC), we find that recently
developed neural autoregressive quantum states (NAQSs) [47]
can achieve a higher efficiency and better sampling quality
at the same time, if employed on graphics processing units
(GPUs). Moreover, the NAQS allows exact normalization.
Therefore, we develop a CGSP-adapted NAQS that supports
parallel evaluation of {ϒ j} j∈[1,M] and also parallel sampling
for practical CGSP application. Because the CGSP-adapted
NAQS is not an essential part of the CGSP method and can
be substituted by any proper classical ansatz, we report the
detailed information of its construction in Appendix B.

In the following, with CGSP-adapted NAQSs as classical
ansatzes and the direct sampling algorithm associated with the
NAQS for Monte Carlo sampling, we demonstrate the practi-
cality of CGSP by simulating the unitary quench dynamics of
a 1D spin-1/2 XXZ model. The Hamiltonian is given by

H (J,�, h) =
l∑

k=1

J
(
Sx

k Sx
k+1 + Sy

kSy
k+1 + �Sz

kSz
k+1

) + hSz
k .

(12)

We assume periodic boundary conditions and work strictly
within the zero total Sz sector so h is irrelevant. For the nu-
merical results presented here, the XXZ chain contains l = 32
spins suddenly quenched from � → −∞ to � = −1 with
initial condition �0(0) = |↓↓ . . . ↓↑↑ . . . ↑〉. We compare
our results to the converged TDVP calculation with the MPS
(TDVP-MPS). In Fig. 1(a), we plot the σ z local magneti-
zation of several representative spins computed by CGSP
with (M, N ) = (32, 32) and (M, N ) = (32, 64), respectively.
In Fig. 1(b), we show the amplitude of nonvanishing projected
states. It is evident in Fig. 1(b) that the initial state �0(0)
contains mainly low-lying eigenmodes of H (J,−1, h). This
justifies using CGSP with M < N for �0(0). Based on this ob-
servation, M = 32 should be enough for CGSP with N = 32
and N = 64. In Fig. 1(a), we find that with N = 64 CGSP can
simulate longer dynamics than with N = 32. If we increase

FIG. 1. (a) Dynamics of local magnetization 〈σ z
k (t )〉 for spins

adjacent to the domain wall and spins in the middle of the ferromag-
netic domain (the scheme below the legend specifies the labeling).
The scattered data are calculated by CGSP with (M, N ) = (32, 32)
(left column) and (M, N ) = (32, 64) (right column). Solid lines are
results from the converged TDVP-MPS. The color of the solid line
matches the color of scattered data for the same spin. Due to the
mirror symmetry of the initial state, the solid lines associated with
k = 9, 16, 25, 32 are covered by the others. (b) The amplitude c2

i of
projected states for (M, N ) = (32, 32) (left column) and (M, N ) =
(32, 64) (right column). Because c2

i vanishes for all 
i > 0, we plot
only the lower section of the energy spectrum.

N further, CGSP should be more accurate until the expressive
power limited by M = 32 becomes the main bottleneck.

In Fig. 2, we show the dynamics of 〈σ z
k (t )〉 for all the

spins [Fig. 2(a)], compared to the TDVP-MPS benchmarks
[Fig. 2(b)]. For CGSP simulation with (M, N ) = (32, 64),
the evolution of the local magnetization shows the light-cone
structure predicted by the Lieb-Robinson bounds. In Figs. 2(c)
and 2(d), we plot the correlation function, calculated by CGSP
and TDVP-MPS, between pairs of spins the same distance
from the domain wall but on opposite sides according to
the initial state. A long-range correlation emerges during
evolution.

Based on Eq. (8), the numerical coherence time Tc with
respect to ‖�o(Tc) − ϕo(Tc)‖2 ≈ 0.5 can be estimated from
the training results for predicting the valid region of simu-
lated dynamics without benchmarking. We obtain JTc ≈ 3.5
for (M, N ) = (32, 32) and JTc ≈ 5.6 for (M, N ) = (32, 64).
Observing Figs. 1 and 2, we see that Tc may slightly underes-
timate the region of validity of the simulated dynamics.

For a successful CGSP like the ones shown here, we find
that the weighted “covariance” |c∗

i Ki jc j |/ε2(i �= j) should be
at most of the order of 10−3 to maintain approximate or-
thogonality among projected states. Meanwhile, |ci|2Kii/ε

2 is
expected to be at most of the order of 10−2 for all i.

Technical details of numerical experiments can be found in
Appendix C. Besides, in Appendix D, we propose a simple
parallel framework for breaking down CGSP into hierarchi-
cally organized subtasks. Note that the numerical experiments

024304-3



PINCHEN XIE AND WEINAN E PHYSICAL REVIEW B 103, 024304 (2021)

FIG. 2. (a) Dynamics of local magnetization 〈σ z
k (t )〉 after a

sudden quench calculated by CGSP for the 32-spin XXZ model.
(b) Exact dynamics of 〈σ z

k (t )〉 obtained with the TDVP-MPS. The
right column is a duplicate of the left column for easier compar-
ison. (c) The correlation function 〈σ z

k σ z
k
〉

c
between spin k and its

counterpart spin k (k = l
2 + 1 − k), averaged with 〈σ z

l+1−kσ
z
l+1−k

〉
c
.

(d) Exact dynamics of (〈σ z
k σ

z
k
〉

c
+ 〈σ z

l+1−kσ
z
l+1−k

〉
c
)/2 obtained with

the TDVP-MPS. The right column is a duplicate of the left column.

presented here do not utilize this parallel framework. The
codes for implementation of CGSP-adapted NAQSs and the
numerical experiments are available in [48].

IV. DISCUSSION

Our numerical experiments mainly showcase the practi-
cality of CGSP without further analyzing its scalability and
other issues such as entanglement, symmetry, nonlocality,
and thermalization. Nor do we show how different types of
classical ansatzes can be fitted into the framework of CGSP.
But this does not prevent us from estimating the complexity
of CGSP in terms of ansatz complexity and quantum system
specifications. Suppose that the spectrum range of an l-spin
Hamiltonian with only short-range interaction is E and the
time scale we want to simulate is represented by T . The num-
ber of necessary projected states obeys O(ET ). The number
of stochastic samples needed to control the noise level is
O(T 4). So the computational cost of estimating the loss func-
tion (including the sampling process) is O(lT 4) × C(l, ET ),
where C(l, ET ) denotes the computational complexity of one
forward propagation of the classical ansatz in terms of l and
ET . For optimization methods based on first-order gradient
descent, the total number of iterations required for conver-
gence is unknown.

Unfortunately, even though we guess C(l, ET ) to be
polynomial for some specific tasks, their is no conclusive
complexity theory yet to predict C(l, ET ) or the neural net-
work complexity in other numerical algorithms. This renders
the comparison between deep learning algorithms rather dif-
ficult, especially when there is no general-purpose neural
network structure for different kinds of quantum problems.
But we are still able to qualitatively compare CGSP with the
TDVP. First, one realizes that a classical ansatz like a neural
network can only represent a low-dimensional section of a
high-dimensional Hilbert space regardless of its entanglement
capacity. There should not exist a generic polynomial algo-
rithm for simulating quantum dynamics in the long term as
long as a classical ansatz is used to represent the whole or
the decomposition of the evolving quantum state. So both the
TDVP and CGSP will lose polynomial complexity for generic
problems, but in different scenarios. For TDVP methods,
polynomial complexity is not possible when the actual quan-
tum state trajectory travels away from the low-dimensional
section parameterized by the neural network. This failure is
inevitable for ergodic dynamics harnessed by few symmetries
and may be more easily detected in quench dynamics over
criticality [49]. For CGSP, the neural network is expected
to parametrize only O(T ) quantum many-body states rather
than a differentiable subset containing the real-time evolution
trajectory. This statement holds true, regardless of ergodicity,
for finite-time dynamics driven by a time-independent Hamil-
tonian. However, when T is large or the target quantum state is
featureless, even a countable finite subset of the Hilbert space
is too difficult for neural networks to represent fully. This is
when CGSP also encounters exponential complexity.

Based on the discussion above, CGSP seems to be less
demanding on the expressive power of classical ansatzes.
However, from the optimization perspective, CGSP requires
more training efforts compared to TDVP methods, which
propagate in a deterministic way when Monte Carlo sam-
pling is nearly exact. Because the optimization of a CGSP
task is nonconvex towards the objective Eq. (5), CGSP may
suffer from the local optimum and ill conditioning like almost
every deep learning task. Since gradient-based optimization
methods are almost the only practical choice for deep neural
networks, these issues could be the major obstruction to the
scalability of CGSP.

V. OUTLOOK

So far, we find CGSP to be potentially a good candidate for
studying the unitary dynamics of quantum systems, for it not
only provides access to almost all observables but also unfolds
the spectral structure of a unitary evolution. More meaningful
physics are encoded in the CGSP results than conventional
VMC simulations. Being fundamentally different from previ-
ous methods utilizing the TDVP or Krylov subspace, CGSP is
expected to solve specific problems that have been inaccessi-
ble in the past. In Appendix E, we also discuss the possibility
that CGSP can improve TDVP simulations driven by a slow-
varying time-dependent Hamiltonian.

Future development of CGSP may focus on more efficient
utilization of the spectral structure of an initial state or the
design of a more sophisticated loss function for enhancing
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the orthogonality between projected states. Moreover, a lot
of effort should be devoted to further developing a neural
network ansatz that can model quantum states in different
scenarios, for example, states near thermalization.
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APPENDIX A: IDEAL MINIMIZER OF THE
OBJECTIVE FUNCTION

We derive the global minimizer of Eq. (5) in the ideal
case where the classical ansatz {	i}i∈[0,N−1] can represent any
quantum state faithfully. We use the same notation {ψi}i∈[1,Nh]

to denote an increasingly ordered orthonormal eigenbasis as-
sociated with Hamiltonian H as in Eq. (1).

For each 	i, its unique eigendecomposition can be
expressed as

	i =
Nh∑

k=1

a(i)
k ψk . (A1)

In the same way, the initial condition can be decomposed into

�o(0) =
Nh∑

k=1

bkψk . (A2)

Using L2 norm as the distance measure, the original opti-
mization problem, Eq. (5), can be written as

minimize
{ci},{a(i)

k }

N−1∑
i=0

Nh∑
k=1

∣∣cia
(i)
k

∣∣2
(Ek − 
i )

2,

subject to
Nh∑

k=1

∣∣∣∣∣bk −
N−1∑
i=0

cia
(i)
k

∣∣∣∣∣
2

= 0. (A3)

Let gi,k = cia
(i)
k ; the necessary conditions for the minimizer

(gi,k = cia
(i)
k ) can be written as

gi,k (Ek − 
i )
2 = μk (A4)

and

bk −
N−1∑
i=0

gi,k = 0. (A5)

μk is an undetermined multiplier in Eq. (A4). Combining
Eqs. (A4) and (A5) yields

gi,k = bi∑N−1
j=0

(Ek−
i )2

(Ek−
 j )2

. (A6)

To understand Eq. (A6), recall that by definition {
i} is evenly
spaced with energy gap ε. We call di,k = |Ek − 
i|/ε the rel-
ative spectral distance between the kth eigenmode and 	i =∑

a(i)
k ψk . In addition, we interpret |gi,k/bi|2 as the disper-

sion of the kth eigenmode in the minimizer. When (
N−1 −

0) is fixed and N is large enough, Eq. (A6) suggests that

|gi,k/bi|2 scales with 1/d
2
i,k , which leads to the suggestion that

〈	i|(H−
i )2|	i〉
〈	i|	i〉 scales with ε2. Hence we can conclude that the

particular choice of objective function decided by Eq. (5) can
systematically improve the monochromaticity of each 	i by
squeezing the dispersion of every eigenmode ψk .

APPENDIX B: CGSP-ADAPTED NEURAL
AUTOREGRESSIVE QUANTUM STATES

In addition to serving as eligible VMC ansatzes, neural
autoregressive quantum states can greatly boost the efficiency
of stochastic importance sampling. Before the NAQS, the
sampling tool accompanying neural quantum states was the
Markov chain Monte Carlo by default. Though paralleliz-
able to some extent, the MCMC is essentially a sequential
algorithm. The fact that the MCMC requires a long mixing
time is not desirable for large-scale deep learning applications
using graphics processing units. In contrast, NAQSs realize
importance sampling in a parallel manner suitable for GPUs.

A NAQS is a normalized wave function that can be ex-
pressed as a product of the conditional wave function. For a
general introduction to NAQSs, readers are referred to [47].
Here we give only the example of NAQSs in the context of
spin-1/2 models. With the Sz basis of a 1D XXZ model, a
NAQS can be expressed as

ϒ(s1, . . . , sl ) =
l∏

i=1

φi
(
sμi

∣∣sμi−1, . . . , sμ1

)
, (B1)

where (μ1, . . . , μl ) is a permutation of the natural spin order
(1, . . . , l ) in a 1D chain. The conditional wave function φi

should satisfy a local normalization condition,∑
s′
μi

∈{↓,↑}

∥∥φi
(
s′
μi

∣∣sμi−1, . . . , sμ1

)∥∥2 = 1, (B2)

for any legal configuration (s1, . . . , sl ) that does not break
any conservation law. With Eqs. (B1) and (B2), the wave
function ϒ is automatically normalized. When ϒ is within
a specific Sz sector, any φi should vanish in illegal con-
figurations. In the realization of an NAQS, any spin-1/2
configuration (sμl , sμi−1 , . . . , sμ1 ) can be encoded by an l-
digit binary number where 0 denotes ↓ and 1 denotes ↑.
Then φi can be parameterized by neural networks with the
input (s′

μi
, sμi−1 , . . . , sμ1 ) and the output φi(s′

μi
|sμi−1, . . . , sμ1 ).

In practice, we find that having l different conditional wave
functions for a long chain (l > 20) is quite clumsy and hard
to optimize. So it is helpful to group consecutive spins to-
gether. Supposing that l can be divided by 4, a convenient
strategy is to convert the l-digit binary number associated
with a spin configuration to its hexadecimal equivalent. For
example, the spin configuration (0,1,1,0,1,1,0,0) is converted
to ((0110),(1100)). In this way the number of conditional wave
functions is reduced to one-fourth of the original number.
Let (hνl/4 , hνl/4−1 , . . . , hν1 ) be the hexadecimal equivalent of
(sμl , sμi−1 , . . . , sμ1 ). The total wave function is given as

ϒ(s1, . . . , sl ) =
l/4∏
i=1

φ̃i
(
hνi

∣∣hνi−1 , . . . , hν1

)
, (B3)
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FIG. 3. Structure of a CGSP-adapted NAQS and the workflow of forward propagation in the evaluation mode. The original input is a batch
of 1D spin configurations. The output is a batch of complex N vectors, i.e., {	k (s1, . . . , sl )}k∈[0,N−1]. The forward propagation consists of
four steps. (i) Preprocessing: Reordering of the original spin configuration and regrouping of the outcome into its hexadecimal equivalent. (ii)
Embedding: Dilated convolution layers. Only one end of the convolution input is padded with 0 such that the convolution output obeys the
conditional dependence required by the NAQS. (iii) Projection: Fully connected layers applied to each input node, respectively. The connection
is sparse for the entire input tensor. Let NB denote the batch size. The output is a 4D (5D) real tensor of size (M, NB, l/4, 16, (2)). The fourth
dimension is associated with [0, 1]4, i.e., the possible outcomes of h′

ν j
. The optional fifth dimension is devoted to representing the real part

and the imaginary part of a complex wave function separately. (iv) Postprocessing: Conservation law enforced by multiplication of the tensor
element corresponding to illegal spin configurations with 0. L2 normalization x → x/

√||x||2 is imposed for evaluating the conditional wave
function φ̃

(m)
j in possible configurations. Then with the input spin configuration, one can select the corresponding outcomes from the conditional

wave function and compute the total wave function ϒm(s1, . . . , sl ) (m ∈ [1, M]). Finally, with Eq. (10), {ϒm(s1, . . . , sl )}m∈[1,M] is recombined
together with the initial condition to produce the final results.

satisfying ∑
h′

νi
∈{0,1}4

∣∣φ̃i
(
h′

νi

∣∣hνi−1 , . . . , hν1

)∣∣2 = 1. (B4)

In CGSP, we need multiple linearly independent wave
functions {ϒm(s1, . . . , sl )}m∈[1,M]. It will be unnecessarily ex-
pensive if each of them is represented by a totally independent
NAQS. It is wiser to allow them to share some of the param-
eters. Because nonlinearity is applied in each hidden layer of
a deep neural network, the sharing of some parameters will
not violate the linear independence of the obtained M wave
functions. In practice, we let the sharing of parameters occur
in the first several hidden layers, which can be understood as
a global embedding process.

Figure 3 is a schematic of the NAQS satisfying these re-
quirements. We call it the CGSP-adapted NAQS for ease of
reference. A detailed explanation of the forward propagation
of the CGSP-adapted NAQS is given in the figure caption.

It is noteworthy that our design of the CGSP-adapted NAQS
was inspired by WaveNet [50], where dilated convolution with
an exponentially increasing dilation size is used to limit the
depth of the neural network. We use the same technique in the
CGSP-adapted NAQS. So the number of convolution layers
required by the conditional dependence of the NAQS is only
O(log l ).

The carefully designed structure of the CGSP-adapted
NAQS enables the direct sampling of spin configurations in
an efficient parallel manner as illustrated in Fig. 4. In the
sampling mode of the CGSP-adapted NAQS, we use an aux-
iliary NAQS, ϒ0(s1, . . . , sl ) = ∏l/4

i=1 φ̃
(0)
i (hνi |hνi−1 , . . . , hν1 ),

also satisfying the local normalization condition for approx-
imating the initial state �0(0). When �0(0) is a simple
product state, ϒ0(s1, . . . , sl ) can be easily constructed as an
exact representation of �0(0) and used in both the evaluation
and the sampling mode of the CGSP-adapted NAQS. Oth-
erwise, ϒ0(s1, . . . , sl ) will be utilized only in the sampling
mode.
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FIG. 4. Schematic of the direct sampling process (sampling mode) of the CGSP-adapted NAQS. Forward propagation is different in the
sampling mode in two aspects. First, between enforcing the conservation law and enforcing L2 normalization, there is an extra operation
devoted to softening the distribution to be sampled. The softening acts only on the (real) amplitude part of the unnormalized wave function
through x → x|x|γ−1. The purpose is to prevent mode collapse, i.e., the neural network continues to generate a small set of samples. The

resultant normalized conditional wave function is denoted ̂̃φm
j , to distinguished it from the original φ̃m

j . The second difference in the sampling

mode is that the postprocessing procedure is terminated immediately after obtaining ̂̃φm
j .

The whole sampling process consists of l/4 steps. In the
initial step, NB empty (all-0) spin configurations are gen-
erated to be placeholders and fed into the neural network.
The softened conditional wave function (softening operation
explained in the caption to Fig. 4) {̂̃φm

1 (h′
ν1

)}m∈[1,M] is obtained
to sample h′

ν1
with respect to the distribution

ρ1
(
h′

ν1

) =
∑M

m=0 wm

∥∥̂̃φm
1

(
h′

ν1

)∥∥2∑M
m=0 wm

, (B5)

where the importance weight wm is suggested by matrix A in
Eq. (10). Then the first positions of the NB placeholders are
updated accordingly.

The jth (1 < j � l/4) step in the sampling process is
feeding the NB placeholders back into the neural network and
obtaining {̂̃φm

j (h′
ν j

|hν j−1 , . . . , hν1 )}m∈[1,M]. Then h′
ν j

is sampled
with respect to the distribution

ρ j
(
h′

ν j

∣∣hν j−1 , . . . , hν1

) =
∑M

m=0 wm

∥∥̂̃φm
j

(
h′

ν j

∣∣hν j−1 , . . . , hν1

)∥∥2 ∏ j−1
p=1

∥∥̂̃φm
p

(
hνp

∣∣hνp−1 , . . . , hν1

)∥∥2

∑M
m=0 wm

∏ j−1
p=1

∥∥̂̃φm
p

(
hνp

∣∣hνp−1 , . . . , hν1

)∥∥2
.

. (B6)

It is straightforward to verify that ρ j (h′
ν j

|hν j−1 , . . . , hν1 ) also
satisfies the local normalization condition∑

h′
ν j

∈[0,1]4

ρ j
(
h′

ν j

∣∣hν j−1 , . . . , hν1

) = 1. (B7)

Therefore the target probability distribution of the whole sam-
pling process can be expressed as

P
(
h′

ν1
, . . . , h′

νl/4

) =
l/4∏
j=1

ρ j
(
h′

ν j
|h′

ν j−1
, . . . , h′

ν1

)
. (B8)

It is easy to see that the normalization condition is automati-
cally satisfied.

There are several ad hoc parameters to be determined in
the sampling mode of the CGSP-adapted NAQS. The first is
the real number 0 < γ � 1 in the softening operation. We
find its empirical optimum to be near 0.5. If γ = 1, this
operation is an identity and we find the training of neural

network inefficient and suffering from a large local optimum.
The second one is the importance weight wm (m ∈ [0, M]). In
our experiments, we let

wm =
∑

i

∣∣∣∣δm0

N
+ Aim −

∑N−1
k=0 Akm

N

∣∣∣∣. (B9)

In addition, there is the permutation (μ1, . . . , μl ) of the nat-
ural spin order (1, . . . , l ) to be determined. An adequate
permutation μ should minimize “long-range correlation” in
the CGSP-adapted NAQS to control the model complexity. In
straightforward terms, 〈sμi sμ j 〉t

− 〈sμi〉t 〈sμ j 〉t
should be small

for large |i − j| and the time scale with which we are con-
cerned. The design of μ should also take the symmetry of the
initial condition, Hamiltonian, and topology of the lattice into
consideration. Empirically, we find that the natural spin order
is already satisfactory for a 1D chain with open boundary
conditions. For periodic boundary conditions, the design of
μ relevant to the initial state will require more strategies.
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FIG. 5. (a) Estimated loss L versus iterations. (b) Estimated log L versus iterations. (c) Estimated
∑N−1

i=0 c2
i versus iterations.

In summary, the direct sampling algorithm of the CGSP-
adapted NAQS allows the generation of NB samples simul-
taneously through l sequential tailored forward propagation.
This is extremely GPU-friendly compared to MCMC algo-
rithms, which usually require O(103–106) many sequential
forward propagations.

APPENDIX C: TECHNICAL DETAILS OF NUMERICAL
EXPERIMENTS

The CGSP-adapted NAQSs used for our numerical ex-
periments were implemented in PyTorch [51] as introduced
in Appendix B. For the 32-spin 1D XXZ model and our
initial state, the projected states could all be real func-
tions. So we restricted our CGSP-adapted NAQS to represent
real wave functions only. Our numerical experiments cov-
ered two cases: (M, N ) = (32, 32) and (M, N ) = (32, 64).
Because M was identical in these two simulations, the neu-
ral network structure was also identical except that the
matrix A = (Ai j )i∈[0,N−1], j∈[0,M] associated with (M, N ) =
(32, 64) had more parameters than the one associated with
(M, N ) = (32, 32). For the forward propagation process in
these experiments, the neural network contained four di-
lated convolution layers [dilation = (1, 1, 2, 4), kernel size =
(2, 2, 2, 2), out channel = (128, 128, 128, 128)]. The outputs
of the last three convolution layers were concatenated through
the channel dimension and rescaled by a 1 × 1 convolution
layer. This completed the “embedding” stage in Fig. 3 and
yielded a 3D tensor of size (l/4, NB, 384), where l/4 corre-
sponded to the number of vertical nodes in Fig. 3. The next
stage, “projection,” had two sparsely connected linear layers.
The first linear layer consisted of l/4 small fully connected
layers operating on each node independently, yielding a 3D
tensor of size (l/4, NB, 64M ). The result was reshaped into
a 4D tensor of size (M, l/4, NB, 64) and fed into the sec-
ond linear layer consisting of Ml/4 small fully connected
layers assigned to the first two dimensions, yielding a 4D
tensor of size (M, l/4, NB, 16). The output was reshaped
into size (M, NB, l/4, 16), which completed the projection
stage. The last stage, “postprocessing,” has been described in
Appendix B as well as in the text.

For the 32-spin 1D XXZ model, the dimension of the
underlying Hilbert space is about 6 × 108 within the zero
total Sz sector. The number of parameters used in TDVP-
MPS simulations is about 2 × 105. The number of trainable

parameters in both CGSP experiments is about 7 × 106. For
about 1% of the Hilbert space complexity, our CGSP-adapted
NAQS demonstrated its parameter sharing strategy to be very
efficient. The training part of the two CGSP experiments was
accomplished by ADAM [52], a first-order gradient descent
optimizer with an adaptive learning rate for each parameters.
We did not rule out the possibility that second-order optimiza-
tion methods could be more efficient for CGSP tasks. In both
experiments, the total number of stochastic samples for each
update (iteration) was 4000 and the learning rate was fixed
at 1 × 10−3. We did not find a learning rate decay improv-
ing the convergence. We plot the training curve in Fig. 5.
For (M, N ) = (32, 32), the wall-clock time for 105 iterations
trained with two NVIDIA Tesla V100 GPUs was about 6 h.
For (M, N ) = (32, 64), the wall-clock time for 105 iterations
trained with four NVIDIA Tesla V100 GPUs was about 5 h.

APPENDIX D: A PARALLEL FRAMEWORK FOR CGSP
BREAKDOWN

Training a large neural network with a complicated loss
function can be numerically unstable and troubled by the local
optimum. So we propose a simple parallel framework for
breaking down CGSP into hierarchically organized subtasks.
A flowchart of its realization is shown in Fig. 6, where the
whole CGSP process is divided into several layers. An initial

FIG. 6. A parallel scheme for CGSP breakdown. The label of
each state implies a tree structure. The label ι = o denotes the root
node, ι = 1_i denotes the ith child of the root node, and ι = 1_i_j
denotes the jth child of ι = 1_i.
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CGSP of the initial state �o(0) is carried out in one processor
with an affordable M and N . Then the N projected states
whose amplitude is above a certain threshold � are sent to
different processors for the next-layer CGSP. Note that the
second-step CGSPs are independent and naturally parallel.
This procedure can be repeated for a higher resolution of the
spectrum if satisfactory convergence is achieved at each step.
At the end, one obtains a family of neural network quantum
states organized in a tree structure.

To recover the unitary quantum dynamics, the energy ex-
pectation λι of the leaf state labeled ι should be computed for
all leaf nodes. The approximation to �o(t ) thus becomes

ϕo(t ) =
∑

ι∈leaf nodes

cιe
−iλιt	ι. (D1)

APPENDIX E: CGSP-INITIALIZED TDVP SIMULATION

Let H (t ) be a slowly varying Hamiltonian that the spectral
norm ‖dH (t )/dt‖s is bounded by B > 0. Let �o(t ) be the pure
state evolving with H (t ).

Suppose the initial state �o(0) has already found its CGSP
representation, �o(0) = ∑N−1

i=0 ci	i, with λi = 〈	i|H (0)|	i〉
〈	i|	i〉 . By

allowing the parameters of the neural networks to be time
dependent and identifying 	i as 	i(t = 0), a new ansatz can
be defined with ηi(t ) = 	i(t )e−iλit . If ηi(t ) evolves under the

Schrödinger equation exactly, then
∑N−1

i=0 ciηi(t ) is identical
to �o(t ). The time-dependent variational principle for ηi(t ) is
written

δ

∫ t

0

∥∥∥∥i
dηi(s)

ds
− H (s)ηi(s)

∥∥∥∥2

ds = 0, (E1)

which can be translated into

minimize

∥∥∥∥i
d	i(t )

dt
− (H (t ) − λi )	i(t )

∥∥∥∥. (E2)

Considering that the Hamiltonian is slowly varying, we have∥∥∥∥d	i(t )

dt

∥∥∥∥ < Bt + ‖(H (0) − λi )	i(t )‖. (E3)

If CGSP is successful, one expects ‖(H (0) − λi )	i(t )‖ �
1 for t small enough. Equation (E3) suggests how CGSP
may help with TDVP-based simulation. For the plain TDVP
approach, the variation of the ansatz || d�(t )

dt || is bounded by
||H (t )||s, which usually increases linearly with the system size
for lattice models. This means that the differentiable manifold
that the neural network should parametrize increases rapidly
for ergodic dynamics. However, with CGSP-initialized TDVP
simulation, the desired expressive power of the neural network
increases much more slowly due to the constraint, Eq. (E3).
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