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Mode localization and suppressed heat transport in amorphous alloys

Nicholas W. Lundgren , Giuseppe Barbalinardo , and Davide Donadio *

Department of Chemistry, University of California, Davis, Davis, California 95616, USA

(Received 10 October 2020; accepted 6 January 2021; published 20 January 2021)

Glasses usually represent the lower limit for the thermal conductivity of solids, but a fundamental un-
derstanding of lattice heat transport in amorphous materials can provide design rules to beat such a limit.
Here we investigate the role of mass disorder in glasses by studying amorphous silicon-germanium alloy
(a-Si1−xGex) over the full range of atomic concentration from x = 0 to x = 1, using molecular dynamics and the
quasiharmonic Green-Kubo lattice dynamics formalism. We find that the thermal conductivity of a-Si1−xGex as a
function of x exhibits a smoother U shape than in crystalline mass-disordered alloys. The main contribution to the
initial drop of thermal conductivity at low Ge concentration stems from the localization of otherwise extended
modes that make up the lowest 8% of the population by frequency. Contributions from intermediate frequency
modes are decreased more gradually with increasing Ge to reach a broad minimum thermal conductivity between
concentrations of Ge from x = 0.25 to 0.75. Modal analysis unravels the correlations among localization, line
broadening, and the contribution to thermal transport of modes within different frequency ranges.
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I. INTRODUCTION

Understanding the mechanism of heat transport in glasses
at the atomistic level is essential to designing functional amor-
phous materials for a wide range of applications in which
thermal management is a key issue, including energy con-
version and storage, thermal insulation in electronics, and
thermal barrier coating in turbines. In solids, thermal energy
is carried primarily by quantized atomic vibrations, which, in
crystals, can be expressed as Bloch functions and are formally
referred to as phonons. Due to the lack of periodic order, in
amorphous materials, the strict definition of phonons does not
apply. Still, quantized vibrational modes are responsible for
heat transport in glasses, however, through different, less effi-
cient mechanisms than in crystalline solids. As a consequence
of disorder, some vibrational modes exhibit a certain degree
of localization, which further hinders heat transport. Because
of this, for a given chemical composition, glasses usu-
ally exhibit among the lowest limit of thermal conductivity,
which makes them ideal materials for thermal insulation but
also potential candidates for efficient thermoelectric energy
conversion [1,2].

The interpretation of heat transport in glasses is com-
plicated by the nature of vibrational modes in disordered
systems, for which standard phonon properties, such as group
velocity and mean-free path, cannot be defined. Nevertheless,
atomistic simulations have identified some of the main fea-
tures that control the lattice thermal conductivity of glasses
[3]. On the one hand, molecular dynamics (MD) is the pre-
ferred method to compute thermal conductivity in disordered
systems, as it does not rely on the definition of phonons
and entails full anharmonicity [4–6]. On the other hand, the
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pioneering work by Allen and Feldman established a frame-
work to use lattice dynamics for this purpose, which provided
insight into how vibrational modes with different frequency
and localization character contribute to the overall thermal
conductivity of glasses [7–11]. The Allen-Feldman frame-
work was eventually combined with the Peierls-Boltzmann
theory of thermal transport in crystals to model heat transport
in partially disordered materials and nanostructures [12–16].
This practical approach successfully identified the salient
features of heat transport in amorphous silicon, highlight-
ing the combined contribution of low-frequency propagating
phonons and intermediate-frequency diffusive modes to the
total thermal conductivity [17–19], though the strength of
the relative contributions is still debated [5,20,21]. The two
transport models were finally unified in a general formula
of thermal transport that describes equally well both or-
dered and disordered materials [22,23]. In particular, the
quasiharmonic Green-Kubo (QHGK) approach proved re-
liable to compute the thermal conductivity of crystalline,
amorphous, and nanostructured silicon, showing excellent
agreement with MD simulations and available experimental
measurements [23–25]. The advantage of QHGK over previ-
ous lattice dynamics methods is that it does not require any a
priori assumption on the nature of the heat carriers, whether
propagons, diffusions, or locons [11], as all the vibrational
modes are treated on equal footing. This approach may then
be used to carry out further unbiased studies of the physics of
heat transport in glasses, considering more complex systems,
for example, the effect of extrinsic defects in glasses. Attain-
ing a deeper understanding of these systems would allow one
to engineer glasses with designed thermal transport properties.

Alloying is an effective approach to reduce the thermal
conductivity of crystalline silicon (c-Si) and nanostructures
[26–34]. The thermal conductivity κ of c-Si as a function
of Ge concentration traces a U-shape curve, with a drop in
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conductivity by up to a factor of 20 (κ = 150 W m−1 K−1 for
c-Si, κ ∼ 7 W m−1 K−1 for c-Si1−xGex with 0.2 < x < 0.8)
Such reduction stems from mass-disorder phonon scattering,
which abates the phonon mean-free path, with especially high
scattering rates for phonons with frequency higher than ∼2
THz [27,32]. A recent study found that Anderson localization
of phonons may occur in binary isotopic alloys [35] and when
the light element (in our case Si) prevails, low-frequency
modes are more heavily localized and vice versa. Equal con-
centrations of 0.5 would produce the maximum localization
over the spectrum. Furthermore, an increased difference be-
tween the masses causes stronger localization effects [35] and
lowers lattic thermal conductivity [32]. Giri et al. addressed
heat transport in a-SiGe by a combination of equilibrium and
nonequilibrium MD [36]. They interpreted the observed ther-
mal conductivity reduction (up to ∼53%) as a combination of
reduced mean-free path of phononlike modes and lowered dif-
fusivity of diffusons, according to the classification proposed
in Ref. [11]. Mode localization was proposed as the mecha-
nism that hinders heat transport in glassy Si/Ge superlattices,
but its relation to the reduction of κ upon alloying was not
clarified.

In this paper, we investigate the effect of alloying and mass
disorder on lattice thermal transport in amorphous silicon. We
use MD and QHGK lattice dynamics to compute the thermal
conductivity of a set of different models obtained by simu-
lating quenching from the melt and random Ge substitutions
with the full range of Ge concentrations from 0 to 1. The
thermal conductivity is computed by both QHGK and MD,
and we analyze the contribution of the vibrational modes
to the total thermal conductivity. Modal analysis, enabled
by QHGK, shows that the thermal conductivity reduction is
tightly connected to phonon localization induced by mass dis-
order, which affects to the largest extent the lowest-frequency
part of the vibrational spectrum of a-Si1−xGex.

II. METHODS

In the MD simulations and lattice dynamics calculations,
we model amorphous Si1−xGex using the many-body Tersoff
potential [37]. Silicon glass models were generated through
MD simulations of quenching from the melt. MD trajec-
tories are computed using the velocity Verlet algorithm as
implemented in LAMMPS [38] with a time step of 1 fs.
For simulations in the constant-volume canonical ensemble
(NVT), the temperature is controlled by stochastic velocity
rescaling [39], whereas for the constant pressure canonical
ensemble the Nose-Hoover algorithm is employed [40]. Crys-
talline silicon models were molten at 4000 K for 3 ns, and then
quenched to 2000 K, about 20% below the freezing point of
the model, over 5 ns in line with the work of Ishimaru et al.
[41]. The models were then annealed for 30 ns, while being
cooled at a constant rate from 2000 K to 1400 K, and were
finally brought to 300 K over 5 ns. All these steps were carried
out in the NVT ensemble at the fixed density of 2.32 g/cm3.
Lastly, the models were run for 1 ns at constant pressure. In
total, four models of 1728 atoms and single models containing
4096 and 13 824 atoms were produced for a total of six glass
structures.

Ge-doped alloy models were obtained by replacing ran-
domly selected silicon atoms with germanium atoms. The
structures were then optimized at zero temperature and at
constant volume using a quasi-Newton optimization algo-
rithm [42], imposing the Frobenius norm of interatomic forces
below 1e-6 eV/Å. Each model has ten variants with Ge con-
centrations ranging from 0 to 100% with a finer sampling for
configurations nearer to pure a-Si.

We first computed the room temperature thermal con-
ductivity κ of the 1728 atom systems by equilibrium MD,
evaluating the Green-Kubo integral of the heat flux Ĵ (t ) au-
tocorrelation function [43],

κ = 1

KBT 2V

∫ ∞

0
〈J (t )J (0)〉dt, (1)

where kB is the Boltzmann constant, T is the temperature, and
V is the volume. κ is evaluated using cepstral analysis, which
eases the time-convergence issue of taking the infinite time
integral in Eq. (1) by estimating the zero-frequency limit of
the log spectrum of the heat flux computed over a finite-time
MD simulation [44]. The cepstral analysis, performed with the
thermocepstrum code, was carried out on heat flux outputs of
10 ns microcanonical equilibrium MD trajectories integrated
with a 0.5 fs time step using the GPUMD package [45], which
implements the correct partitioning of the many-body forces
to compute Ĵ (t ) [46]. The sampling frequency for calculating
the power spectral density in the cepstral analysis was 12 THz.

The QHGK calculations for the thermal conductivity of
a-SiGe systems were performed with the open-source lattice
dynamics calculator κALDo [47]. The models were studied at
300 K with quantum mechanical treatment of heat capacities
and phonon populations. In QHGK the thermal conductivity
is computed as

καβ = 1

V

∑
nm

cnmvα
nmτ ◦

nmvβ
nm, (2)

where we introduced the generalized specific heat cnm, the
generalized lifetime τ ◦

nm, and the generalized velocity vα
mn. The

subscripts n and m refer to the indexes of the eigenvectors en
and em of the dynamical matrix D of the system, and vα

mn:

vα
nm = 1

2
√

ωnωm
〈en|Sα|en〉 (3)

is proportional to the matrix element of the operator rep-
resenting the heat flux in the direction α in the harmonic
approximation Sα

iδ, jγ = (R◦
iα − R◦

jα )D jγ
iδ [7,23] . The general-

ized lifetimes are defined by

τ ◦
nm = γn + γm

(γn + γm)2 + (ωn − ωm)2
+ O(ε2), (4)

where γn is the decay rate (or linewidth), ωn is the frequency
of mode n, and ε is the ratio γ /ω. We stress that the gen-
eralized lifetimes naturally account for the mass difference
scattering without the need for ad hoc scattering terms or
empirical parameters. Phonon linewidths are calculated ex-
plicitly for the 1728 and 4096 atom systems using Fermi’s
golden rule [48]. The linewidths of the 13 824 atom system
were interpolated from a third-order spline curve fit of the
4096 atom system. The details of this procedure have been de-
scribed in a previous work [23]. Anharmonic lattice dynamics
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calculations are carried out computing the second and third
derivatives of the potential for the optimized models by finite
differences with atomic displacements of 1e-5 Å. Because the
Tersoff potential is smoothed to zero by a sigmoid function
between 2.7 and 3.1 Å, in amorphous models, atoms falling
in this transition region may be subject to an unphysically
steep potential that introduces large numerical errors in the
calculation of second and third derivatives. For this reason, in
lattice dynamics calculations, we cut off the potential at 2.7 Å.
QHGK calculations using the Tersoff potential provide excel-
lent agreement with experimental measurements of thermal
conductivity at temperatures below 600 K, without the need
of adjustable parameters [23,25,49].

Using the QHGK approach, we can also calculate the diffu-
sivity with the last three terms of Eq. (2), which quantifies the
rate of heat transfer in units of area per time for each mode. It
is defined as

Dn = 1

NatomsV

∑
m

vα
nmτ ◦

nmvβ
nm, (5)

where Natoms is the number of atoms. The localization of the
vibrational modes was evaluated by calculating the participa-
tion ratio (PR),

p(n) =
(

Natoms

Natoms∑
m=1

|em(n)|4
)−1

, (6)

where em(n) is a norm of the vector comprised of the three
Cartesian components of the mth eigenvector acting on atom
n [50].

III. RESULTS AND DISCUSSION

A. a-Si1−xGex structures

In Fig. 1, we provide the atomistic structural features of
1728, 4096, and 13 824 atom amorphous silicon models, in
terms of radial distribution function g(r) (RDF) and angular
distribution function (ADF). The structure of this model is
representative of all the other models considered in this paper.
The glass structure consists of a tetrahedral random network,
with minimal occurrence of fivefold over-coordinated sites.
The RDF agrees well with those measured experimentally for
a-Si, a-Ge, and a-SiGe glasses [51–53]. In particular, Fig. 1(a)
shows that the peak positions of the RDF of our model cor-
respond to those measured by x-ray scattering for a-SiGe,
and the two RDFs feature the same range of ordered shells,
up to ∼6.5 Å. However, the experimental peaks have lower
intensities than the simulations. In particular, the measured
nearest-neighbor peak, centered at 2.3 Å is much lower and
slightly broader, but these differences may stem from the lack
of correction for termination effects in the x-ray scattering
experiments [51,54]. It is important to note that experiments
show that there are no substantial structural differences in
the structure of these glasses, which justifies the procedure,
through which we generate amorphous alloys by random sub-
stitution of Si atoms with Ge.

Experimental techniques to measure ADFs of multicom-
ponent amorphous materials are still being developed, though
former works suggested that the root mean square devia-
tion from the tetrahedral angle of the angular distribution

FIG. 1. Structural features of the 1728, 4096, and 13 824 amor-
phous silicon: (a) radial distribution function, compared to that
measured for a-SiGe by x-ray scattering [51]. (b) Angular distribu-
tion function.

determined by Raman scattering lies between 11 and 15 de-
grees [55,56]: the 12.0 degree width of the distribution in
Fig. 1(b) falls in this experimental range. Finally, we stress
that neither RDF nor ADF exhibit significant size effects, as
they are indistinguishable for all the models considered.

B. Thermal conductivity

Size convergence needs to be carefully checked in the cal-
culations of κ either by EMD or by lattice dynamics methods,
such as QHGK [57]. To this aim, we have computed the
thermal conductivity of models containing 1728, 4096, and
13 824 atoms using QHGK. The comparison of the cumu-
lative κ as a function of frequency (Fig. 2) for these three

FIG. 2. Cumulative thermal conductivity of a-Si and a-Si0.8Ge0.2

models containing 1728 (dotted line), 4096 (dashed line), and 13 824
atoms (solid line) as a function of increasing frequency for a-Si (blue
lines) and for a-Si0.8Ge0.2 (orange lines).
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FIG. 3. Room-temperature thermal conductivity of a-Si1−xGex as
a function of Ge concentration x%, computed by anharmonic lattice
dynamics QHGK (black) and equilibrium MD (green). The MD error
bars are computed as the average error obtained by cepstral analysis
[44] of 10 ns trajectories for each of the four models. The QHGK
error bars represent the standard deviations of single conductivity
calculation for the same four models.

system sizes for a-Si and a-Si0.8Ge0.2 shows that size effects
are similar irrespective of the composition. In particular, the
differences between the small systems of 1728 atoms and
the well-converged 13 824 atom systems mostly build in the
low-frequency part of the spectrum, below 4 THz, and are
roughly the same for both compositions. This means that we
can investigate thermal conductivity trends at room tempera-
ture using relatively small 1728-atom models, while accurate
quantitative estimates of κ and of the modal contribution,
especially from low-frequency modes, need to be carried out
for larger models.

Figure 3 displays the thermal conductivity as a function
of the Ge concentration x, calculated using either equilibrium
MD or the QHGK formula with classical phonon populations.
The two results agree very well within the confidence inter-
val obtained by the variance over ten different models and
the statistical error in the evaluation of κ from the cepstral
analysis of the heat current time series from equilibrium MD.
Such an agreement allows us to use QHGK with confidence
to compute and analyze thermal transport in larger a-Si1−xGex

models using the correct quantum statistics for phonons.
Calculations on a 4096 atom model (Fig. 4) show that κ (x)

exhibits a U-shape pattern, qualitatively similar, but much
shallower than that found for the crystal analog [26]. In agree-
ment with previous calculations [36], the maximum thermal
conductivity reduction produced by alloying a-Si with Ge is
about a factor of 2. This is relatively small compared to the
case of c-SiGe mentioned for which κ drops by more than
20 times [26,27]. According to our simulations, starting from
a reference κ = 2.2 W m−1 K−1 for a-Si, the substitution of
5% Ge results in a 0.6 W m−1 K−1 drop of κ . A further
0.55 W m−1 K−1 reduction of κ is obtained raising the Ge
concentration to 15%, but increasing germanium content be-
yond 20% does not produce significant changes in the thermal
conductivity. Similar to the cases of crystalline and nanostruc-
tured silicon [27,28,33,58]. this trend indicates that the effect

FIG. 4. Thermal conductivity of the 4096 atom, a-Si1−xGex alloy
models as a function of Ge concentration, split into contribution
by frequency ranges. The red, black, and blue regions represent
the contributions from the 8% lowest frequency modes, the 8–50%
modes with intermediate frequency and the remaining 50% highest
frequency modes. These frequency ranges correspond to <4 THz,
between 4 and 10 THz and >10 THz for a-Si, and they shift toward
lower frequencies as the vibrational density of states shifts when Ge
is increased [see Fig. 5(b)].

of alloying on lattice thermal transport is prominent at low
Ge concentrations and tends to saturate for x > 0.1. How-
ever, in a-SiGe we cannot attribute the thermal conductivity
change to phonon scattering from mass disorder, as the heat
transport mechanism in glasses is different from crystalline
materials.

Hereafter, we exploit the detailed information obtained
from lattice dynamics analysis and the QHGK formalism to
resolve the contribution of each vibrational mode to the total
thermal conductivity of a-Si1−xGex as a function of x. Figure 4
shows the cumulative thermal conductivity of a-Si1−xGex as a
function of the concentration x, split into lower, middle, and
higher frequency contributions. The three frequency ranges
are defined in terms of the number of modes as the density of
vibrational states changes as a function of the Ge content, with
the low-frequency range consisting of 8% of the modes, the
middle range of 8–50% of the modes, and the high-frequency
range the remnant top 50%. In a-Si, the modes with frequen-
cies less than 10 THz contribute to about 95% of the total κ ,
despite representing only 50% of the population. Of these, the
lowest 8% of the population, comprising the 0–4 THz region,
contribute about half of the total conductivity, in agreement
with previous work that identified this frequency range as the
most important to thermal conduction [17,18,23]. The other
half of κ is supplied by the midrange 8–50% of the modes.
The last 50% of the population contributes only ∼5% of
the total conductivity, making them negligible in comparison.
x = 0.05 Ge substitution reduces the thermal conductivity
contribution of the 0–4 THz modes by ∼30%, accompanied
by a ∼25% reduction in the contribution from the midrange
frequencies. Yet, the latter group contains many more vibra-
tional modes than the former, providing a higher contribution
in total. The somewhat negligible contributions of the high-
frequency modes do not change significantly as x is increased.
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FIG. 5. Modal analysis of the 4096 atom a-Si1−xGex model for
x = 0, 5, 20 and 50%: (a) cumulative conductivity, (b) density of
states, (c) lifetimes, (d) modal diffusivity, and (e) participation ratio
for each normal mode plotted against frequency.

Increasing x to 0.25 produces an overall ∼50% reduction
of the contribution to κ from both low- and midfrequency
modes, leading to the minimum κ plateau that extends up to
x = 0.75. Remarkably, the contribution from low-frequency
modes is not restored by adding Ge beyond x = 0.5, and it
even keeps decreasing slightly to reach a minimum for pure
amorphous Ge. In turn, the contribution from midfrequency
modes increases and it becomes prominent, thus making the
κ (x) curve asymmetric. The lower thermal conductivity of a-
Ge with respect to a-Si stems from the larger mass of Ge, and,
to a lesser extent, from the larger anharmonicity of the Ge-Ge
bonds. Larger mass leads to a reduction of the generalized
group velocities and the increased anharmonicity abates life-
times. These effects are more prominent on the low-frequency
modes, which have a propagating character.

The spectral contribution to heat transport is further
analyzed in Fig. 5(a), in which the cumulative thermal con-
ductivity for x = 0, 0.05, 0.2, and 0.5 is plotted against
frequency. Thermal conductivity differences among the four
models are more dominant at low frequency and remain
roughly constant for frequencies larger than 8 THz. There
is only a minimal difference between the models with Ge
concentration of 0.2 and 0.5. The phonon density of states
[Fig. 5(b)] shows that increasing the germanium content
causes an uptick in the phonon population in the low-
frequency region, due to the larger atomic mass of Ge atoms
and the slightly softer Ge-Ge and Si-Ge bonds. However,

FIG. 6. Difference in the norm of the generalized velocities be-
tween a-Si and a-Si1−xGex with x = 0.05 and x = 0.2 in the low
frequency block diagonal.

the increasing number of low-frequency modes comes with
a decrease in their ability to transfer heat, as seen in the
accumulation function. Figure 5(c) shows the vibrational
mode lifetimes τ and shows that the large reduction of κ

upon alloying a-Si with 5% Ge is not associated with a
significant reduction of τ . Hence, the main mechanism that
hinders heat transport in the alloy glass at low Ge content
is not mass scattering, but it is related to changes in the
generalized velocities [Eq. (2)], which account for resonant
transport among delocalized modes. Figure 6 shows the ab-
solute changes in the generalized velocity matrix 
vnm for
the first 400 low-frequency modes (bottom 8%) upon alloying
with Ge concentration x = 0.05 and 0.2. The vnm reduction is
particularly significant at the lowest frequencies and it is the
main mechanism that leads to the observed overall κ reduc-
tion. Conversely, at higher concentrations of Ge, lifetimes are
significantly reduced by mass disorder. Such reduction of τ ,
which implies a broadening of the spectral linewidth, reduces
the efficiency of the resonant heat-transport mechanism. This
effect combines with a reduction of generalized group veloc-
ities and leads to an overall further decrease of the low- and
midfrequency modal contributions to κ . The modal diffusivity
Dn [Fig. 5(d)] convolutes the reduction of vnm with the in-
creased line broadening. A significant decrease in Dn with the
increase of Ge concentration is observed both in the low and
intermediate frequency range. Figure 5(e) displays the modal
participation ratio, which is a measure of modes’ delocaliza-
tion [50]. The spectrum of a-Si features mostly delocalized
extended modes, except for a small subset of optical modes
at high frequency [9]. In particular, low-frequency vibrational
modes extend over the whole model and this feature accounts
for their large contribution to heat transport. The effect of Ge
alloying is the enhancement of spatial localization over the
whole frequency spectrum. In particular, localization at low
frequency already occurs at low Ge concentration.

The generalized velocities, and therefore the mode diffu-
sivity defined in Eq. (5), are related to the spatial overlap of
vibrational modes with similar frequency, which is necessary
to make the matrix elements in Eq. (3) finite, enabling energy
transport among different modes. It is therefore reasonable
to hypothesize that mode localization is the main physical
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FIG. 7. Correlation between mode diffusivity Dn [see Eq. (5)]
and mode delocalization (participation ratio, PR%) for the 4096 atom
pure a-Si (a) and a-Si0.8Ge0.2 (b) models. Data are colored according
to the frequency ranges defined in Fig. 4. Transparent bubbles indi-
cate the center of the respective distributions.

mechanism through which κ is suppressed in glassy alloys. To
explore the relationship between mode localization and their
contribution to κ , in Fig. 7, modal diffusivity is plotted against
the participation ratio for pure a-Si and the x = 0.2 model,
and data are color coded according to their previous classifi-
cation of low (red), mid (black), and high (blue) frequencies.
The graph shows that there is indeed a correlation between
localization and diffusivity, but modes in each frequency
range exhibit different trends and get affected in different
ways by Ge alloying. Consistent with our previous analy-
sis, the low-frequency modes are the most affected by mass
disorder, as they get localized and their diffusivity decreases
accordingly. Interestingly, the diffusivity of the midrange fre-
quency modes is also suppressed but with less significant
localization, thus suggesting that spatial localization is not the
only mechanism responsible for the observed κ reduction but
line broadening contributes as well. For the x = 0.2 model,
the contribution of these modes to κ is nearly halved with
respect to a-Si and it is roughly equivalent to that of the low-
frequency modes. High-frequency modes get more localized
but their small contribution to heat transport does not vary
significantly.

IV. CONCLUSION

In summary, our MD and lattice dynamics simulations
predict that the thermal conductivity reduction from alloying
in glasses is much less prominent than in crystals, although
with a similar trend of κ as a function of concentration. In
particular, we observe that a small concentration of heavy Ge
atoms may halve the already low thermal conductivity of a-Si,
but further increasing such concentration has minimal effects
on κ .

In contrast with the effect of mass disorder on lattice
thermal transport in crystalline alloys, which is customarily
interpreted in terms of phonon-mass scattering [27], modal
analysis of a-Si1−xGex shows that thermal conductivity re-
duction in glassy alloys mostly stems from the localization
of low- and midfrequency vibrational modes, accompanied
by spectral line broadening. The latter reduces the efficacy of
the resonance mechanism through which heat is transferred
in disordered materials. This finding for glassy Si1−xGex

complements the observation of phonon localization in mass-
disordered crystalline alloys [35] and highlights the general
connection between the localization of lattice vibrations and
thermal transport.

Although our numerical experiments target a specific sys-
tem, we argue that the observed mode localization and
suppression of thermal transport are general and intertwined
phenomena that may be exploited to engineer the thermal con-
ductivity of amorphous solids, including ceramic, polymer,
and macromolecular glasses by harnessing mass disorder.
We envisage a direct impact of these findings for several
technological applications, such as the development of more
efficient dense ceramics for thermal barrier coating [59,60]
and the optimization of heat management in plastic commodi-
ties, organic electronics, and organic thermoelectric materials
[61–63].
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