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We have recently shown that the logarithmic growth of the entanglement entropy following a quantum quench
in a many-body localized phase is accompanied by a slow growth of the number entropy SN ∼ ln ln t . Here we
provide an in-depth numerical study of SN (t ) for the disordered Heisenberg chain and show that this behavior is
not transient and persists even for very strong disorder. Calculating the truncated Rényi number entropy S(α)

N (t ) =
(1 − α)−1 ln

∑
n pα (n) for α � 1 and p(n) > pc—which is sensitive to large number fluctuations occurring with

low probability—we demonstrate that the particle number distribution p(n) in one half of the system has a
continuously growing tail. This indicates a slow but steady increase in the number of particles crossing between
the partitions in the interacting case and is in sharp contrast to Anderson localization for which we show that
S(α→0)

N (t ) saturates for any cutoff pc > 0. We show, furthermore, that the growth of SN is not the consequence
of rare states or rare regions but rather represents typical behavior. These findings indicate that the interacting
system is never fully localized even for very strong but finite disorder.
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I. INTRODUCTION

In a one-dimensional system of free particles with short-
range hoppings, even the smallest amount of potential
disorder leads to a localization of the single-particle wave
functions, a phenomena termed Anderson localization [1–3].
A question which has remained open for more than 50 years
is whether or not localization is also possible in an interact-
ing many-body system. This question has been put back to
the forefront of research in condensed-matter physics by a
seminal work by Basko, Aleiner, and Altshuler arguing pertur-
batively that at weak interactions a metal-insulator transition,
i.e., a many-body localization (MBL) transition, will occur
at some finite temperature Tc [4]. This paper has sparked
a number of studies of possible ergodic-MBL transitions in
disordered lattice models. The most studied of these models
is the spin-1/2 Heisenberg chain with local magnetic fields
drawn from a box distribution [5–17], which is equivalent to
the fermionic t-V model with potential disorder. The results
have been interpreted in terms of an ergodic-MBL transition
at finite disorder strength. Under the assumption of limited
level attraction, perturbative arguments for the stability of a
MBL phase in spin chains have been put forward [18,19] but
a rigorous proof is lacking. Very recently, numerical studies
have cast some doubt on the stability of the MBL phase in the
thermodynamic limit [20–25]. However, the interpretation of
these results is still a matter of debate [26–30].

Another recent development is the study of symmetry-
resolved entanglement measures [31–36]. For a system with
particle number conservation, the von Neumann entanglement
entropy S can be split into two contributions,

S = SN + Sc, SN = −
∑

p(n) ln p(n),

Sc = −
∑

n

p(n)tr[ρ(n) ln ρ(n)]. (1)

Here SN is the number entropy which is entirely characterized
by the probability p(n) to find n particles in the considered
subsystem. Sc is the configurational entropy with ρ(n) being
the block of the reduced density matrix with particle num-
ber n. Using symmetries is, on one hand, of fundamental
interest from a quantum information perspective to calculate
the amount of operational entanglement which is available
[31,37–39], it is, on the other hand, also helpful to understand
how much of the entanglement is caused by particle fluctua-
tions and how much is due to the superposition of different
configurations in a sector of constant particle number. The
usefulness of this approach has recently been demonstrated in
a cold-atomic gas experiment where entanglement following
a quench in a one-dimensional Aubry-André Bose-Hubbard
model was studied [33]. The experimental results have been
interpreted in terms of a number entropy which saturates
and a configurational entropy which then continues growing
logarithmically on top of the constant number entropy [see
Fig. 1(a)]. The resulting logarithmic growth of the total en-
tanglement entropy has been confirmed in several numerical
studies [40–44]. The behavior of the number entropy SN ,
however, has received much less attention. Very recently, we
have shown that in the numerically accessible time regime
the logarithmic growth of entanglement in the MBL phase is
accompanied by a growth SN ∼ ln ln t of the number entropy
[see Fig. 1(b)] [24,25]. If this behavior does persist in the
thermodynamic limit for all finite disorder strengths, then the
MBL phase would ultimately not be localized and the system
would likely always remain ergodic.

The purpose of this paper is to further study the two sce-
narios for the entanglement evolution in MBL phases, shown
schematically in Fig. 1. To do so, we will carefully study the
timescales where the scaling behavior holds as well as the dis-
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FIG. 1. (a) The standard MBL scenario: The number entropy
saturates. A further logarithmic increase in the entanglement entropy
is caused entirely by the configurational entropy. (b) Alternative sce-
nario: The number entropy never saturates. The logarithmic increase
in the total entanglement coexists with a SN ∼ ln ln t increase in the
number entropy.

tributions of the total entanglement entropy and of the number
entropy. It has also been suggested recently by Luitz and Bar
Lev [27] that the increase in the number entropy observed in
our previous publication Ref. [25] might be a result of disorder
strengths that were still relatively close to the transition point.
In order to address this point, we will extend our numerical
study to disorder strengths up to twice of what is believed to
be the critical value. It is known that on the localized side
but still close to the ergodic-MBL transition, rare regions with
less disorder can cause a very slow dynamics [45,46] and
can destabilize the MBL phase in small systems. In order to
exclude such a scenario we will compare the average with the
median number entropy and show that the observed growth of
the number entropy is not a consequence of rare initial states
or rare regions.

To further investigate if the observed slow growth of the
number entropy is transient, we study the time evolution of the
(discrete) probability distribution p(n, t ). If MBL is associated
with a very slow formation of localized states, there could be
a long transient time period where probabilities redistribute
in a very narrow range of particle numbers, whereas larger
fluctuations are strictly suppressed. The number entropy is
not sufficiently sensitive to large particle number fluctuations
occurring with small probability and, thus, cannot unam-
biguously exclude such a scenario. A much more sensitive
measure are the number Rényi entropies,

S(α)
N = (1 − α)−1 ln

∞∑
n=0

pα (n), (2)

with α � 1. The family of Rényi entropies provides in-
formation about different characteristics of the probability
distribution. S(1)

N = −∑
n p(n) ln p(n), for example, is the

well-known Shannon entropy. For growing values of α the
Rényi entropies are increasingly determined by the largest
probability values. S(∞)

N = − ln pmax(n), in particular, is given
by the logarithm of the maximum probability. For decreasing
values of α � 1, S(α)

N becomes increasingly sensitive to all
nonvanishing probabilities including those that are small. Tak-
ing the limit α → 0, S(α)

N gives the so-called Hartley number
entropy, which essentially counts all values of n which have
a nonvanishing probability p(n). In order for the Hartley en-
tropy to become a useful physical quantity to investigate the
properties of p(n) one has to introduce a cutoff probability

pc > 0. E.g., if p(n) > pc for M values of n, then S(0)
N = ln M.

If the system is localized then the truncated Hartley entropy
for a system in the thermodynamic limit has to saturate for
any cutoff pc to a value that depends on pc but which is
much below the equipartition value, corresponding to a fully
thermalized state.

Our paper is organized as follows: In Sec. II we introduce
the model and notation and also discuss the numerical meth-
ods and the averaging procedure. In Sec. III we then present
the results of our numerical investigations for the entangle-
ment and number entropy. The section is subdivided into two
subsections, dealing with the coexistence of the growth of S
and SN and a comparison between the average and the median,
and the distributions of entanglement for different realiza-
tions, respectively. The results for the Hartley number entropy
are discussed in Sec. IV. In Sec. V we present our conclusions
and discuss some of the remaining open questions.

II. MODEL AND METHODS

We concentrate here on the isotropic Heisenberg model in
the fermionic representation (t-V model),

H = −J
∑

j

{(c†
j c j+1 + H.c.) + Djn j + V njn j+1}, (3)

with nearest-neighbor interaction V = 2J . We assume a half-
filled system and draw random values of the local potential
from a box distribution Dj ∈ [−D/2, D/2]. Throughout, we
are using open boundary conditions. Note that in the notation
used here, Dj = 4h j where h j are the local magnetic fields
in the spin representation used, for example, in Refs. [6–8].
We are interested in the growth of entanglement following a
quantum quench from a random product state |�0〉. This state
is then time evolved, |�(t )〉 = exp(−iHt )|�0〉. We set J = 1
throughout this paper.

For system sizes L � 14 we use exact diagonalizations
of the Hamiltonian matrix to obtain the time-evolved state
|�(t )〉. We then calculate the reduced density matrix by
tracing out half of the system ρ = trA|�(t )〉〈�(t )| and
calculate the number distribution p(n, t ). Typically, we pick
10 000 random disorder configurations, and for each disorder
configuration we average over 50 random half-filled initial
product states. To avoid any possible issues due to the double
precision limitations of standard exact diagonalizations [47],
we limit ourselves to system sizes where the saturation times
remain �1014.

As a complementary method, we use a Trotter-Suzuki
decomposition of the time-evolution operator [48–50]. This
allows to reach larger system sizes; we restrict ourselves here
to L � 24—for even larger systems the computational cost
of calculating several thousand samples becomes prohibitive.
Since the Trotter error of the decomposition accumulates over
time, the simulation times for the chosen Trotter parameter
δt ∼ 10−4 are limited to t � 103. Here, we typically average
over 1500 disorder realizations for D � 28 and 2000 for D >

28 and pick a random initial product state for each realization.
We note that the various entropies are calculated first for
each sample separately and are then, in a second step, either
averaged over all realizations or used to calculate the median.
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FIG. 2. (a) Entanglement entropy, and (b) number entropy for
L = 14 and different disorder strengths D > Dc. The dashed lines
are logarithmic (double logarithmic) fits, respectively. In all cases,
finite-size saturation sets in at the same timescale (marked by vertical
lines) in both quantities.

III. ENTANGLEMENT ENTROPY AND NUMBER
ENTROPY

Here we present and analyze the results for the entan-
glement and number entropies obtained by the numerical
simulations described above. We provide evidence that the
unbounded growth of the number entropy persists even deep
in the MBL phase and that it is associated with subexponen-
tial tails in the probability distribution p(SN ) of the number
entropy, which grow in time. We also show that not only the
average number entropy grows as SN ∼ ln ln t , but also the
median number entropy, providing evidence that the observed
behavior is typical and not due to rare cases.

A. Growth of S(t ) and SN (t )

First, we want to demonstrate that the S ∼ ln t growth
of the entanglement entropy and the SN ∼ ln ln t growth of
the number entropy are intimately related and persist over
the same timescales, only limited by the considered system
size. Second, we want to demonstrate that this behavior is
not restricted to a narrow range of disorder strengths near the
localization transition but is also present deep in the MBL
phase. Previous numerical calculations put the critical dis-
order in the range of Dc ∼ 14 · · · 17. In Fig. 2, we therefore
present results for disorder strengths up to about twice the
critical value. The main point we want to make is that both
S(t ) and SN (t ) start to saturate due to the finite size of the

FIG. 3. Averaged number entropy [panel (a)] and median num-
ber entropy [panel (b)] for L = 24 and different disorder strengths
D > Dc. The SN ∼ ln ln t scaling (represented by the dashed-line
fits) persists for all disorder strengths in both quantities up to the
longest times reached in our simulations.

system at the same timescale. We never find a case where SN

starts to saturate whereas S continues to grow logarithmically
as would be expected in the standard scenario, Fig. 1(a). We
find, furthermore, that a perfect SN ∼ ln ln t scaling holds up
to the largest simulation times even at very large disorder, see
Fig. 3(a). Since there is still some debate about the precise
value of the critical disorder strength for the onset of MBL,
one could argue that our results in Ref. [25] might only be
valid close to the transition point [27]. Our new results clearly
show that this is not the case.

An important question then is what causes the slow growth
of the number entropy. In Ref. [46] it has been argued that
rare thermal regions in the localized phase can dominate its
low-frequency response. To investigate whether or not the
observed growth is related to rare initial states or rare disorder
configurations leading to rare thermal inclusions, we show in
Fig. 3(b) the median number entropy. This quantity is defined
by sorting the number entropies for each realization in terms
of magnitude at a given point in time and then choosing
the value in the middle for an odd number of realizations
or the average of the two middle values for an even num-
ber of realizations. The answer is unambiguous: The median
number entropy shows the same double logarithmic growth
in time as the average number entropy. We conclude that
the observed growth is not the consequence of rare regions
but rather represents the typical behavior of the number en-
tropy. The scenarios discussed in Ref. [46] do not explain our
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observations: We find that the short time rather then the long
time behavior is strongly influenced by rare nontypical sam-
ples. When comparing Fig. 3(a) with Fig. 3(b) we see that the
main qualitative difference is a suppression of the initial ap-
proximatively logarithmic increase in the median as compared
to the average number entropy. A natural explanation is that
rare regions with little disorder (called “thermal regions” in
Ref. [46]) are responsible. Indeed, we have shown that in the
ergodic phase at small disorder SN ∼ ln t [25]. Excluding rare
configurations from the average as we do when calculating the
median therefore strongly reduces the number entropy at short
times—and, thus, also the overall values for all times—but
does not change the scaling at long times.

B. Variance of entropies and entropy distribution functions

The numerical study of disordered systems requires a care-
ful sampling of disorder realizations. So far, we have either
considered averages over all realizations or have calculated
the median. As pointed out in Ref. [27], it is, however, useful
to consider also the probability distributions of these entropies
with respect to the different realizations for a deeper under-
standing of the underlying physics. In fact, numerical studies
in Ref. [27] have shown that whereas the variance of the
asymptotic entanglement entropy �S approaches a constant
value with increasing system size, the corresponding value of
the number entropy �SN decreases. In addition, it was shown
that the probability distribution p(S) of the entanglement en-
tropy for a given system size L and large disorder has an
exponential tail. In contrast, the probability distribution of the
corresponding number entropy p(SN ) shows a sharp cutoff at
about ln(3), corresponding to a single-particle hopping back
and forth across the boundary between the two halves of the
system. Both findings could be taken as an indication that
there is no particle redistribution deep in the MBL phase
beyond the level of a single particle and that the increase
in the entanglement entropy is solely due to configurational
entanglement. The latter would also imply that the asymptotic
relation between entanglement and number entropies derived
in Ref. [24] for noninteracting systems and demonstrated to
hold also for interacting particles in Ref. [25] of the form

SN ∼ 1

Dν
ln S + γ (4)

ceases to hold deep in the MBL phase. Here ν > 0 is an
exponent of the order of unity. In the following we argue that
this interpretation is too naive. The behavior of the probability
distribution of entropies, observed in Ref. [27], is fully consis-
tent with the relation (4) as it implies a subexponential tail of
p(SN ).

First, by assuming a small variation of the entanglement
entropy from its average value S, i.e., S = S + �S and using
Eq. (4), we find

SN + �SN ∼ 1

Dν

[
ln(S) + ln

(
1 + �S

S

)]
+ γ

≈ 1

Dν
ln(S) + 1

Dν

�S

S
+ γ . (5)

From this we can read off the variance of the number entropy.
Using, furthermore, the scaling of the average entanglement

FIG. 4. Distribution of saturation values for D = 40 and L = 16.
(a) von Neumann entropy S and (b) number entropy SN . Symbols
denote numerical data from Ref. [27], orange lines are fits, see the
text.

entropy with system size S ∼ L/D [51] we obtain �SN ∼
�S/(DνS) ∼ �S/L. The variance of the number entropy,
therefore, decreases with increasing system size. There is,
thus, no contradiction between the results in Ref. [27] and
relation (4).

The authors of Ref. [27] found, furthermore, that the prob-
ability distribution of the asymptotic entanglement entropy in
a finite system of length L has an exponential tail, which we fit
as p(S) ∼ exp(−2DS/L)/S. This is shown in Fig. 4(a) where
the distributions are based on the data from Ref. [27] and
the fit is based on the relation above. Note that the prefactor
in the exponent is in agreement with the asymptotic scaling
S ∼ L/D found in Ref. [51]. If we plug Eq. (4) into p(S) we
find, using dSN ∼ dS/S,

p(SN ) ∼ exp

{
−2D

L
exp

[D

4
(SN − γ )

]}
. (6)

This asymptotic expression shows a sharp cutoff for large
values of D as soon as SN exceeds γ . Figure 4(b) shows a com-
parison between the numerical data for p(SN ) from Ref. [27]
and the prediction (6) with γ used as a fitting parameter.
The agreement is good. Thus, the seemingly sharp drop off
of the probability distribution p(SN ) does not contradict the
relation between number and entanglement entropies found
in Ref. [25] and is not a sufficient indicator for a complete
suppression of particle transport beyond the level of a single
particle.

Finally we note that the presence of a seemingly sharp
drop in the probability distribution p(SN ) is consistent with
the absence of localization in other, exactly solvable models of
noninteracting fermions. The case of free fermions on a lattice
with off-diagonal (bond) disorder is discussed in Appendix
A. This model is known to be not fully localized, but the
probability distributions of the entropies show qualitatively
the same behavior as for the disordered Heisenberg chain. We
conclude that the features of the probability distributions for
the entanglement and number entropy found in Ref. [27] do
not contradict the relation SN ∼ ln S and are, therefore, not
sufficient indicators for localization.

024203-4



SLOW DELOCALIZATION OF PARTICLES IN MANY-BODY … PHYSICAL REVIEW B 103, 024203 (2021)

FIG. 5. (a) SN for the full and the truncated distribution p(n)
where only contributions from p(nmax), p(nmax ± 1) are taken into
account. (b) Rényi number entropies S(α)

N for α = 0.001 (circles)
and double logarithmic fits (lines). Also shown is the Anderson case
(diamonds), i.e., Eq. (3) with V = 0. p(n) is truncated at pc = 10−10.
The full entropies are compared to those where only p(nmax) and
p(nmax ± 1) are taken into account (triangles). The latter approach
the maximum value of ln 3.

IV. HARTLEY NUMBER ENTROPY AND NUMBER
DISTRIBUTION

The pronounced drop off of p(SN ) shown in Fig. 4 at
SN ∼ ln 3 ≈ 1.098 could be taken as an indication that at suf-
ficiently long times only a single particle fluctuates between
the two halves of the system. If the system is localized, one
expects that the probability distribution of particle numbers
p(n) in one partition for a given realization and initial state
develops a sharp maximum at some value nmax in the thermo-
dynamic limit after a transient. Thus, allowing fluctuations of
a single particle one would expect nonvanishing probabilities
only for the three values of n, n = nmax, and n = nmax ± 1,
limiting the number entropy to values less than ln 3. Since
the number entropy does not exceed ln 3 in our simulations at
strong disorder, a possible scenario consistent with the stan-
dard picture of MBL would be a long transient redistribution
of probabilities within the restricted range nmax ± 1.

To assess the possibility of such a strictly bounded redistri-
bution of probabilities, we have calculated the time evolution
of SN from a truncated distribution taking into account only
the values p(nmax) and p(nmax ± 1). Figure 5(a) shows a com-
parison of the full with the truncated number entropy for
two different disorder strengths. One recognizes—in partic-
ular, for the larger disorder value—that SN in this regime is
indeed dominated by those three probabilities. The number
entropy is, however, insensitive to the dynamics in the tails
of the probability distribution. Due to the extremely slow

FIG. 6. Rényi number entropy S(α)
N (t ) for α = 0.001, D = 32,

and different values of pc. S(α)
N increases with a decreasing cutoff

value, leading effectively to a simple constant shift. For the Anderson
case (diamonds) S(α)

N (t ) always saturates whereas S(α)
N ∼ ln ln t in the

MBL case (circles).

growth of number fluctuations, reflected in the ln ln t scaling
of the number entropy, the probabilities for large number
fluctuations will remain very small for numerically accessible
timescales. Nevertheless, these fluctuations will eventually
become large and destroy localization if they continue to
grow. It is thus important to consider a quantity that is sen-
sitive also to the tails of the number distributions. A potential
candidate for such a quantity is the Hartley number entropy
which is the Rényi entropy, Eq. (2), of degree α = 0. The
Hartley entropy is the logarithm of the cardinality of p(n),
i.e., it counts the number of configurations with probabilities
different from zero.

Since quantum mechanically the unitary time evolution
immediately leads to a nonzero probability for any particle
distribution (although most of them will be extremely small)
consistent with total particle number conservation indepen-
dent of whether or not the system is localized, it is important
to introduce a cutoff pc and to only consider configurations
with p(n, t ) > pc. All values below the cutoff are set to zero,
and the distribution is renormalized. The important point then
is that for a localized system this truncated Hartley number
entropy with any cutoff pc > 0 has to saturate in the ther-
modynamic limit, i.e., there can only be a finite number of
configurations with p(n) > pc for long times. The saturation
value will, of course, depend on the cutoff pc.

We here choose a very small but nonvanishing value of α

and calculate the time evolution of S(0.001)
N . The results for

the Hartley entropy are shown in Fig. 5(b) for pc = 10−10.
For each disorder realization, p(n, t = 0) = 1 for n corre-
sponding to the initial number of particles in the partition
and zero otherwise. The truncated Hartley entropy for each
realization—and, consequently, also the average—is therefore
zero at t = 0. The entropy then continues to increase ∼ln ln t
well above the value of ln 3. Even more importantly, we do not
find any signatures for a saturation for all numerically accessi-
ble times. Also shown is the result for the Anderson case, i.e.,
Eq. (3) with V = 0. Here the Hartley entropy saturates, which
is consistent with a strict localization of particles. Figure 6
shows that whereas the values of the entropies for the MBL
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FIG. 7. Distribution of saturation values for the free fermion
model with off-diagonal disorder, Eq. (A1), for L = 1024 using
20 000 disorder realizations: (a) von Neumann entropy and (b) num-
ber entropy. Symbols represent numerical data, the line in (a) is
an exponential fit p(S) ∼ e−(3/2)S , and the line in (b) is the cor-
responding fit for SN using the relation (4), p(SN ) ∼ exp[4(SN −
γ )]exp{− 3

2 exp[4(SN − γ ]} with γ = ln 3.75. Here the constants are
fit parameters.

and Anderson case do depend on the chosen cutoff pc, the
qualitative behavior is independent of pc.

We can define the occupied particle number state ñ(pc)
which is furthest away from the most likely value nmax while
still obeying p(ñ) � pc. The dynamical behavior of the trun-
cated Hartley number entropy, shown in Fig. 5, must then be
understood as an increase in ñ according to

ñ ∼ (ln t )β, (7)

where β � 1
2 . In other words, the width of p(n) measured at pc

is increasing logarithmically in time. This must be interpreted
as a constant flow of probability to higher particle number
fluctuations.

V. CONCLUSIONS

We have presented a detailed study of particle number fluc-
tuations in the putative MBL phase of the isotropic Heisenberg
model. Our results indicate that particles continue to spread
through the system at a very slow rate even for strong disorder,
far from the ergodic-MBL transition. Our conclusions are
based on two main findings: (1) For all disorder strengths
D > Dc investigated, the time regime where S ∼ ln t holds in
a finite system is exactly the same where SN ∼ ln ln t holds.
A saturation of SN (t ) while S(t ) continues to grow is never
observed. We have also shown that the growth of SN is not
a consequence of rare regions but rather represents typical
behavior. (2) For all disorder strengths D > Dc investigated,
the Hartley number entropy grows as S(α→0)

N ∼ ln ln t and
reaches value larger than ln 3. The width of the distribution
p(n) measured at some small cutoff pc thus grows ∼ ln t :
There is a constant probability flow towards higher particle
number fluctuations. The system seems to be able to access
all allowed particle distributions at long times in the thermo-
dynamic limit, which would be inconsistent with localization.

In addition, we have also shown that the sharp cutoff in
the distributions of number entropies at SN ∼ ln 3 observed
in Ref. [27] does not contradict the relation S ∼ exp(SN ) es-
tablished in Refs. [24,25] but is rather fully consistent with
it. Other arguments in favor of a full localization given in
Ref. [27] were based on a study of the saturation values of

FIG. 8. SN (t ) as a function of ln ln t for L = 6, 8, 10, 12, 14,
and different D’s. The saturation values show no clear consistent
scaling with system size. Note, in particular, that the saturation values
scale nonmonotonically with L for D = 28, 32.

SN . This quantity, however, is difficult to analyze because the
long saturation times for large systems are causing numerical
issues, the lack of a known scaling, and the possible nonmono-
tonicity of the saturation values as a function of system size.
These issues are discussed further in Appendix B.
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APPENDIX A: p(SN ) FOR FREE FERMIONS WITH
OFF-DIAGONAL DISORDER

Here we want to demonstrate that also for exactly solvable
models which are known to not fully localize, the probability
distribution of the number entropy has a seemingly sharp
decline. To this end, we consider free fermions on a lattice
with off-diagonal (bond) disorder,

H = −
∑

j

J j (c
†
j c j+1 + H.c.), (A1)

where the random hopping amplitudes Jj are drawn from a
box distribution. For this model all properties can be calcu-
lated from the single-particle correlation matrix allowing to
study very large system sizes. It is known that the model is
critical with a localization length that diverges at zero energy.
This leads to the interesting scalings [24,47] S ∼ ln ln t and
SN ∼ ln ln ln t . Despite the fact that this model is known to
not fully localize, the probability distributions of the entangle-
ment entropy and the number entropy show qualitatively the
same behavior as for the disordered Heisenberg chain found
in Ref. [27]. In particular, p(SN ) has a sharp drop off. This is
illustrated in Fig. 7.

APPENDIX B: SATURATION VALUES OF ENTROPIES

Here we want to address the question of what information
can be obtained from trying to extrapolate the saturation val-
ues of the number entropy in system size. We will demonstrate
that no clear scaling law emerges from numerical simulations
for the available system sizes. Note that the scaling function
is not known a priori.

We start by showing in Fig. 8 the results for SN (t ) for
four different disorder strengths and various system sizes. By

comparing the different disorder strengths, it is obvious that
there is no simple scaling function f (D, L) of the saturation
values as a function of system size L and disorder strength
D. Second, the scaling in system size is not monotonic for
D = 28, 32. I.e., the saturation value as a function of system
size can show a “dip” which is not indicative of the thermody-
namic limit, making any extrapolation difficult. Finally, we
note that the saturation times are roughly increasing expo-
nentially with system size and already reach times ∼109 for
L = 14. Since the calculations are performed in double pre-
cision, times t � 1014 are not accessible, and averaging over
times beyond what is reliably possible in double precision can
potentially lead to incorrect results. Overall, it appears to be
very difficult to make any reliable statements about the scaling
of the saturation values of the number entropy based on exact
diagonalizations of small systems in double precision at very
large disorder.

Our best try to estimate the saturation values for system
sizes up to L = 24 is shown in Fig. 9. For system sizes
L > 14 we proceed as follows: First, we extrapolate the satu-
ration times tsat ∼ exp(L), obtained for smaller system sizes,
in L, see the Supplemental Material of Ref. [25]. Second,
the double logarithmic fit of SN obtained for smaller times
is used to determine the saturation value of SN (t → ∞) ≈
(ν/2) ln ln tsat + b. This leads to the shaded bands with the
width of the shaded bands being a consequence of the un-
certainty in estimating tsat, ν, and b. As we have already
seen in Fig. 8 for smaller system sizes, the scaling of the
saturation value with L is, in general, nonmonotonic. We note,
in particular, that also for D = 32 the saturation value appears
to increase for system sizes L � 16. We, thus, believe that
the interpretation in Ref. [27] of the decrease in the saturation
values in a certain range of system sizes as an indication of a
saturation in the thermodynamic limit is not justified.

A more useful approach—less prone to issues with
the finite-size scaling—is to study the dependence of the
timescale where S (SN ) start to deviate from a logarithmic
(log-log) scaling. This point has been investigated in Sec.
II A of the main text, and the corresponding timescales are
indicated in Fig. 2 in the same section.
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