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When a group of compactly packed free fermions is allowed to spread over an empty one-dimensional lattice,
the spreading particles can create entanglement between different parts of the lattice. We show, although breaking
of translational invariance (TI) of the lattice by disorder slows down the spreading of local observables, the en-
tanglement entropy of a subsystem can nonetheless receive a remarkable enhancement as long as the subsystem
lies within the single-particle localization length. We show the main mechanism behind this enhancement is the
reentrant exchange of particles between the subparts due to transport of mutual information due to backscattering.
We discuss the length and timescales relevant to the phenomenon. We study the phenomenon for breaking of TI
by both quasiperiodic and random potentials. We further explore the effect of randomness only in the initial
state. This also exhibits a similar enhancement effect even in a TI lattice. We also touch upon the special
case of periodic potential where qualitatively similar phenomenology emerges, although the coherence in the
backscattering in this case leads to effects not captured by our simple yet generic picture.
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I. INTRODUCTION

In this paper we study the effect of disorder on the dynam-
ics of entanglement formation between two nonoverlapping
parts of a one-dimensional lattice due to spreading of nonin-
teracting fermions on the lattice over time.

Dynamics of spreading of particles and entanglement in
such setups have widely been studied under the general proto-
col “inhomogeneous quench” for translationally invariant (TI)
lattices [1–11] as well as in some special systems where trans-
lational invariance is broken locally (local quenches) [12–15]
or in critical systems where conformal symmetry dictates the
dynamics [16–30]. Here we study the effect of extensive (i.e.,
spread over the entire lattice) disorder in the form of random
and quasiperiodic potentials on the growth of entanglement in
the absence of any simplifying symmetry.

A suitable initial state for studying such spreading dynam-
ics is the so-called “domain-wall state” where one part of
the lattice is completely filled whereas the rest of the lattice
is empty (domain wall refers to the boundary between the
completely filled and the completely empty parts). This initial
state has been used for most of the above-mentioned works as
well as for illustrating most of our results here.

Already in the TI case, the dynamics of the entanglement
entropy (EE) of a subsystem of the lattice exhibits a curi-
ous feature if one starts with a domain-wall-like initial state:
Whereas the spreading of the particle density is linear in time,
the entanglement entropy of the subsystem grows logarith-
mically with time [1,31]. Such slow growth of entanglement
is a hallmark of many-body localization [32–35] where the
disorder suppresses the growth of entanglement. In this case,
however, the slow entropy growth happens in the presence of
total translational invariance.

What we show here is, introduction of disorder actually
has an opposite effect in this case—it actually enhances the
entanglement growth substantially as long as the subsystem
in question is within the localization length from the initial
domain wall. We also show that within the relevant length
scale, the entanglement growth is linear in time. The most
spectacular manifestation of the phenomenon is in the weak
disorder limit when the localization length is large.

For disordered (quasiperiodic or random) systems, we
identify incoherent backscattering as the main mechanisms
behind this enhancement in the entanglement entropy. We also
study the effect of the strength of the TI-breaking potential in
spreading of the entanglement. Since for weak disorder the
localization length is significantly large, the understanding of
the phenomenon might play a role in designing systems for
efficient storage and transfer of information in the presence of
disorder in quantum devices.

Finally, we explore the effect of randomness put solely in
the initial state and demonstrate that the well-known result
of logarithmic growth of entanglement in the TI case for a
single domain-wall initial state [1–3,36] is a rather fine-tuned
result—small disorder in the occupied domain can turn this
logarithmic growth to a linear one. Our paper also shows the
phenomenon of enhancement of entanglement due to breaking
of TI of the lattice is not fine-tuned and is robust to random
variation of initial states within a certain form.

We also provide a glimpse of the phenomenology in a
rather special case of TI breaking, namely, the one due to
periodic potentials where a qualitatively similar enhancement
of entanglement is observed. However, coherence in scatter-
ing due to the regularity of the lattice structure also plays
a dominant role, making the scenario more complex. We
find entanglement entropy growth shows a a ln t + b scaling
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FIG. 1. A schematic showing the case of inhomogeneous
quench. In an inhomogeneous quench we take two systems X1X2

and Y1Y2 and glue X2 and Y1 together at t = 0. The system X1X2

has a different filling fraction (denoted by the gray shade) than Y1Y2.
AB denotes the subsystem considered in the paper. The system size
is denoted as L, and the subsystem size is denoted as M, which
represents the number of sites. See the text for details.

behavior for the lattice periodicity p � L with the coefficient
a ∝ p. We also recover the linear scaling behavior found in
the TI case [15] for p ∼ L/2. We then discuss the respective
regimes of periodicity where one expects the two different
behaviors. Curiously, although the backscattering is still the
dominant mechanism of enhancement of entanglement even
in the periodic case, we do not see greater enhancement with
an increased number of scatterer/unit length here, rather, the
above scaling relations imply a higher growth rate with larger
p, i.e., a smaller number of scatterers per unit length. Coher-
ence in the scattering from the periodically placed scatterers
forbids simple addition of contributions from different scat-
terers (a detailed analysis of this is outside the remit of this
paper).

The plan of the rest of the paper is as follows. In Sec. II
we discuss the model Hamiltonians and give a brief summary
of the various cases we consider and quantities we calculate.
Then in Sec. III we discuss in detail the cases of a random
disordered potential and a quasiperiodic (Fibonacci) poten-
tial, showing the growth of entanglement entropy in various
scenarios, discuss the scalings, and explore various factors
that control the spreading. Then in Sec. IV we touch upon the
behavior of periodic lattices, and finally in Sec. V we discuss
our observed results and conclude.

II. THE SETUP

Figure 1 describes our quench in a schematic. We take one
system X1X2 with a certain particle density and another system
Y1Y2 with a different particle density and then at t = 0 glue X2

and Y1 together and let the system evolve. This difference in
particle densities will induce a flow of particle current which,
in turn, creates entanglement between the two halves of the
system. Equivalently, we can consider the full system X1Y2

and start with a domain-wall initial state with a domain wall at
i = L/2 separating the different density sectors. This picture
may be more useful for qubit systems for specific initial states
where using Jordan-Wigner transformation, one can go from
the spin-1/2 language to the fermionic language and would
end up with a domain-wall initial state with densities 0 and 1
on two sides. Additionally, the domain-wall picture is easier
to use for analysis, and we will refer to it in rest of our paper.

Throughout the paper, the model Hamiltonian used for
calculations is

H = −J

2

∑
m

(c†
mcm+1 + c†

m+1cm) + J
∑

m

μmc†
mcm, (1)

where cm [c†
m] are fermion annihilation [creation] operators

and μm is the form of the on-site potential which we will take
to be random, quasiperiodic, or periodic. The Hamiltonian is
now scaled in units of J which is the hopping strength. The
specifics of the setups are as follows.

(1) Quasiperiodic. We will consider the quasiperiodic po-
tentials which can be viewed as a superposition of multiple
periodic potentials with incommensurate periods. We will fo-
cus on an example of such a sequence, namely, the Fibonacci
word sequence in the main text. A Fibonacci sequence is
generated by the following recursion relation:

Fn = Fn−1 + Fn−2,

with F0 = 0 and F1 = 1. Thus, the well-known Fibonacci
sequence looks like 0, 1, 1, 2, 3, 4, 8, 13, . . . . Later, Chuan
[37,38] introduced a concept of Fibonacci words, defined on
the alphabet set {0, 1} in which the length of the nth word
in the sequence is given by Fn. These words are generated
by the concatenation of the previous two words. Formally,
Sn = Sn−1Sn−2 where Sn is the nth Fibonacci word. S0 is taken
to be 0 and S1 = 01. Thus, the first few terms of the words are
as follows:

S0 = 0, S1 = 01, S2 = 010, S3 = 01 001,

S4 = 01 001 010,

... .

Even at N → ∞ it can be shown that SN has no periodicity,
and the word is unique. However, it is clear that the letters
(digits) in the word are correlated.

For a system of size L, where L is chosen to be a number
in the Fibonacci sequence, we generate the Fibonacci word
sequence and then define

μi = μ0 − δμ, Si
L = 0

μi = μ0 + δμ, Si
L = 1, (2)

where we have labeled the ith letter (digit) in Sn as Si
n. This

can be shown to result in a quasiperiodic lattice [39–43].
(2) Random. The potential on-site μm is chosen randomly

between μ − δμ and μ + δμ. For numerical calculations av-
eraging over several realizations of the random numbers is
performed.

(3) Periodic. We choose to work with two kinds of peri-
odic potential.

(a) μm = μ0 + (−1)
∑L

n=1 δm,npδμ. This represents a peri-
odically varying potential with period p in which every pth
site has a potential μ − δμ and every other site has a potential
μ + δμ.

(b)

μm = μ0 + δμ, m = 1 · · · q/2,

μm = μ0 − δμ, m = q/2 + 1 · · · q

repeated over all the length of the lattice, i.e., a square pulse
potential varying between μ0 + δμ and μ − δμ with period q.
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FIG. 2. Growth of entanglement entropy, mutual information, and local densities and correlations for various lattices. We have taken
L = 2048 for the TI and the random case and L = 2584 for the Fibonacci case. (a) Plot of the entanglement entropy S vs time (in units of
J−1) for a subsystem of size M = L/2. The site A (see Fig. 1) is chosen at i = L/2 + 1, μ = δμ = 0.1. We have averaged over 2000 disorder
realization for the random potential cases. The enhancement of entanglement due to the breaking of translational invariance is clearly visible.
This is quite in contrast with the spreading of the density of the particles, which is seen to have a slower spreading in TI-broken systems
as expected [shown in (c)]. The inset shows the fit of entanglement entropy vs t for the disordered cases. The blue line denotes linear fit to
0.747 + 0.14t whereas the magenta line denotes a logarithmic fit to −50.43 + 15.03 ln t in the two time regimes where the particles move
within and beyond the localization length of the system. The green line is the fit for entanglement entropy growth for Fibonacci systems,
which is linear and is 3.97 + 0.07t (b). Plot of mutual information vs time for subsystem α spanning sites i = L/2 + 1 to i = L/2 + 40 and
β-spanning sites i = L/2 + 41 to i = L/2 + 80. (c) This frame shows the growth of total density within the initially empty subsystem with
time: ntot = ∑L

i=L/2+1〈c†
i ci〉 vs t . The inset is showing ni = 〈c†

i ci〉 at time t = 500 vs the normalized lattice coordinate x [x = (i − L/2)/L],
giving us the idea of spreading/localization in space until the given time.

These two sequences yield qualitatively similar results as will
be shown in Sec. IV.

We consider a system with L sites with open boundary
conditions occupied by L/2 spinless fermions with the initial
condition,

〈c†
mcn〉 = δmn, m � L/2,

= 0, otherwise. (3)

Starting from t = 0, our aim is to study the evolution of
entanglement between the subsystem AB and the rest of the
environment. We would calculate two quantities, Von Neu-
mann entropy and mutual information for this purpose.

To calculate Von Neumann entropy, we first choose a sub-
system of M sites. For most cases we would deal with a
subsystem of i = L/2 + 1 to i = L/2 + M which gives the
same S value as a subsystem chosen between i = L/2 and
i = L/2 − M + 1. We will mostly focus on the case when
M = L/2, i.e., the bipartite system.

Since our Hamiltonian is bilinear in fermions, all its many-
body eigenfunctions can be written as Slater determinants
of one-body eigenfunctions. Hence, one can write the Von
Neumann entropy for any instant of time t as [44,45]

S(t ) =
M∑

i=1

λi(t ) ln λi(t ) + [1 − λi(t )] ln[1 − λi(t )], (4)

where λ(t )’s are the eigenvalues of Cres
mn (t ). Cmn(t ) =

〈c†
m(t )cn(t )〉, and res denotes indices restricted to the subsys-

tem under consideration.
〈c†

m(t )cn(t )〉 can be exactly calculated for any value of time
using the Heisenberg picture. For our system the expression
can be written in terms of single-particle eigenfunctions and
eigenvalues as

〈c†
m(t )cn(t )〉 =

∑
k,l,i, j

RkmRlnRkiRl je
i(Ekt−El t )〈c†

i (0)c j (0)〉, (5)

where Ek’s are the one-particle eigenvectors and R is the
unitary matrix diagonalizing the one-particle sector of the

Hamiltonian (See Appendix for details). We also measure the
mutual information between two subsystems labeled by α and
β is defined as follows:

Mαβ = Sα + Sβ − Sα∪β. (6)

III. THE DISORDERED CASE

A. Enhancement of entanglement

The central result is summarized in Fig. 2. It shows the
growth of half-chain entanglement entropy S of the lattice,
starting from a domain-wall-like initial state where half of the
system is full, and the rest is empty. The comparison has been
made between lattices with TI, quasiperiodic Fibonacci, and a
random disordered potential, respectively.

The left frame [Fig. 2(a)] shows that whereas the growth of
half-chain entanglement is extremely slow for the TI case, and
a remarkable enhancement in the growth occurs when the TI is
broken by introduction of disorder via the Fibonacci and ran-
dom potentials, respectively. The middle frame shows similar
enhancement of growth dynamics for the mutual information
M(t ) due to disorder.

The middle frame compares between growth of mutual
information for two adjacent subsystems α-spanning sites i =
L/2 + 1 to i = L/2 + 40 and β-spanning sites i = L/2 + 41
to i = L/2 + 80 in a TI lattice, a Fibonacci lattice, and a
random lattice, respectively. For both cases of disorder, the
growth of mutual information is much higher compared to the
TI case.

In contrast, the right frame [Fig. 2(c)] shows the particle
density in the initially empty subsystem grows much faster in
the TI case compared to the two disordered cases as expected.
The inset of Fig. 2(c) shows the spatial distribution of the
particle at t = 500. Until this time, the spreading in the TI case
is appreciably larger compared to the disordered cases. The
inset of Fig. 2(a) shows the growth of entanglement entropy
in the random and Fibonacci potential cases, respectively. It
clearly shows two qualitatively different behaviors for two
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FIG. 3. The figure illustrates the mechanism of increase in entan-
glement entropy S of the subsystem of size M = L/2 for a system
of length L = 256. Averaging has been performed over 80 disor-
der realizations. In the TI case, the slow (logarithmic) growth is
boosted by a steep jump periodically in time with roughly a time
period ∼256. This is approximately the time taken by a particle to
exit the subsystem and reenter it after getting reflected from the
(open) boundary of the system as particle propagation is ballistic
in TI systems [1,49]. This illustrates that the faster growth of S on
top of the logarithmic one is due to reentrance of the particles to
the subsystem after getting backscattered (in the TI case from the
boundary). For the disordered (quasiperiodic/random) cases, there
are random scatterers throughout the entire lattice, and, hence, the
enhancement of S is extensive, and the steps are smeared out. This
results in a superlogarithmic (linear) growth of S.

different timescales for the random disordered case. When
the propagating wave front is within the maximum Thouless
localization length [46] (∼250 for the system considered),
the entropy increases linearly, but once the wave front goes
beyond that, further particle movement gets exponentially
suppressed, and the growth of EE gets suppressed logarithmi-
cally before reaching a steady value. The linear increase can
also be gleaned from Fig. 3. For a quasiperiodic Fibonacci
system since there is no localization in the wave function, the
linear regime continues for a much longer time before reach-
ing the steady-state value based on system size. The linear
regime is presented in the inset. This is in contrast to the be-
havior expected in the interacting integrable and nonintegrable
systems where one expects a power-law tβ, β < 1 rise in
entanglement entropy for short timescales for the propagating
domain wall before a linear regime arrives at large timescales
and finally saturates [17,47,48].

B. The mechanism

Entanglement between a system and its environment is
generated not only when a particle enters into the environment
from the system, but also when a particle returns/bounces
back from the environment to the system. The mechanism
manifests itself most clearly in spreading of particles on a
finite TI system with reflecting boundaries. Let us consider
a TI lattice, a part of which (consecutive lattice sites) entirely
filled (system) with particles and the rest completely empty
(environment). Now for a quench with such domain-wall-like
initial states as is already known, the entanglement between
the system and the environment (measured by the entangle-
ment entropy S of any of them) grows logarithmically with
time. However, if the system is finite, then the particles after
exiting the system traverse the environment, get reflected from
the lattice boundary, and reenter the system. This produces

initial jumps in S at regular time intervals proportional to the
average time taken by the particle to leave the system and
reenter. Figure 3 precisely shows this. Here we consider a
setup where the initial state is a half-filled domain-wall state.
We refer to the initially filled half of the lattice of size L as
the system and the initially empty half as the environment.
The first hike in S is close to t = 0 due to the entry of the
particles to the environment right at the onset of the dynamics.
The next step/jump (the first visible one in Fig. 3) appears
around t ∼ L = 256, which is roughly the time elapsed be-
tween the exiting of a particle from the system and reentering
it after getting reflected from the lattice boundary once after
traversing the environment. The subsequent early jumps ap-
pear around t = nL where n is an integer. But with the melting
of the domain wall, the interval between the jump changes,
and since the system is finite, the steps flatten out eventually
approaching the saturation.

When TI is broken extensively by disorder, then parti-
cles scatter back incoherently to the system from all parts
of the environment, and that results in a steady increase in
S—the steps due to contribution from different scatters su-
perimposes, resulting in a smooth power-law (approximately
linear as discussed in the previous section) growth of S as
shown in Fig. 3. It is worth noting that the breaking of TI
does not produce a net enhancement in the EE in cases of
the local or global quenches in system with relatively sparse
and uniform particle distribution [50–53]. Although there is
a contribution of backscattering due to the breaking of TI
leading to an enhancement in the EE also in those cases, it
does not supersede the cut in the EE growth produced by
the effect of localization there. This is because in those cases
the growth of EE relies mainly on the transport of extensive
number of particles/quasiparticles from all over the system,
and localization limits that in a severe manner. This extensive
cut cannot be compensated by the enhancement due to the
backscattering, which is proportional to the area of the domain
boundary in the localized case (only comes from the states
within a localization length around the domain boundary).

C. The relevant length and timescales

Clearly, the intriguing feature here is the dynamics of
entanglement within a length scale (subsystem size) compa-
rable to the localization length. Needless to say, far beyond
the localization length, there will be practically no spreading
of particles due to localization in the disordered cases, and,
hence, the entanglement growth will saturate to a value which
is proportional to the localization length. Figure 6 shows the
different saturation values corresponding to different localiza-
tion length. For a low to intermediate disorder strength where
the localization length is large but smaller compared to the
length of the system, we see a power-law fit Ssat ∼ 1

δμ1.82 ,
which clearly indicates the rapid rise in saturation entangle-
ment entropy with larger localization lengths. In contrast, in
the TI case, the particles will eventually spread everywhere,
hence, despite the logarithmically slow growth of entangle-
ment in this case, the half-chain entanglement for the TI
case will overtake the values for the disordered cases after a
sufficiently long time. However, this timescale in which the
TI value will match the saturation value of the disordered case
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FIG. 4. Spatiotemporal scale of the enhancement phenomenon. Left panel: Half-chain entanglement entropy [S(t )] as a function of
subsystem size (M) (scaled by the maximum Thouless localization length of the system λl ) and time (t) for a disordered system of size
L = 2048 and μ = δμ = 0.1. Averaging has been performed over 80 disorder realizations. Right: Same as the left panel but for a translationally
invariant system.

can be enormously large especially for a weakly disordered
system since the growth is logarithmically slow in the TI case.

The relevant timescales and length scales can be studied by
taking the subsystem to be of length M and putting one end of
it at the domain-wall boundary and studying the growth of the
entanglement entropy S of the subsystem as function of the
evolution time t and subsystem size M as shown in Fig. 4.
The left panel of Fig. 4 shows the value of subsystem entan-
glement entropy S as a function of the evolution time t and the
subsystem size M (scaled by the Thouless localization length
λl ). The right frame shows the TI case.

From the left frame we see for a given M the entanglement
S saturates rapidly with time. The saturation time naturally in-
creases with M (roughly linearly). As M continues to increase,
the saturation time eventually becomes independent of M, i.e.,
saturates as a function of M, close to M ∼ λl . This is because
it is actually the underlying localization length that dictates
the final extent of spreading. To visualize this clearly, we fix
t to a sufficiently large value (so that saturation is reached
for all M’s), and M is increased. Then the value to which S
saturates increases with M meaning the saturation value of
S scales with M (volume law). However, as M crosses the
localization length λl (M/λl ≈ 1), then the saturation value of
S (as a function of M) stops increasing any further and settles
to a maximum value. This is because the spreading of the
particles beyond the localization length is negligible, hence,
increasing the subsystem beyond that does not contribute to
further enhancement of the saturation value of S. The right
panel shows the TI case. Here there is, of course, no typical
length scale beyond which the saturation time for a fixed M
is independent of M—it is always proportional to M (albeit
logarithmically [50,54–60]) as can be seen clearly from right
panel of Fig. 4. The linear contour for saturation of S is
formed diagonally. This is expected since in a TI system the
entanglement grows until the particles spread over the whole
of M (there is no smaller cutoff, e.g., due to the localization).
The enhancement of the spreading of S in the disordered case
compared to the TI case is limited to within the length scale
of order λl . Beyond that scale, the growth in the TI case
continues, whereas the disordered case comes to a saturation.

D. Tuning the disorder strength

The enhancement is most prominent for an intermediate
disorder strength. The disorder has two competing effects—on
one hand, it enhances the backscattering rate which aids the
growth of S, on the other hand, it strengthens localization
which arrests the spreading of the particles and suppresses
the growth. This results in a nonmonotonic behavior of S(t∗)
measured after a given evolution time t∗ as a function of
the strength δμ of the disordered part of the potential in the
respective Hamiltonians for the Fibonacci and random cases.
Initially, S∗ increases with δμ compared to the value of S∗
for the TI case due to enhanced backscatterings and reaches
a peak. Then, with a further increase in δμ it reduces sharply
and falls below the TI value. This is demonstrated in Fig. 5.
Here we consider an initial domain-wall state of width L/2
for a lattice of system-size L = 2048 and a subsystem AB of
length M = L/2 − 20 with its end A at i = L/2 + 21, i.e., 21
lattice sites away from the domain-wall boundary (see Fig. 1).
The entanglement entropy S of AB is measured. (See also
Appendix C). The competing effect of the disorder strength
is reflected in the nonmonotonic behavior of S(t = 500) as
a function of δμ. Dynamics for different values of δμ are
also shown in Figs. 5(b) and 5(c). Whereas for δμ = 0.1, the
disorder clearly results in a pronounced enhancement com-
pared to the TI case (although the random disorder shows a
faster saturation at late times), and for δμ = 5.0, the growth is
suppressed below that in the TI case even at small timescales.
This competing effect is also visible in Fig. 2(b) where the
mutual information between the two subsystems in the ran-
dom disordered case shows a lower value than the Fibonacci
potential due to the onset of localization. At extremely late
times, however, when the entropy saturates, the strength of
localization is the only factor determining the saturation value
of entropy, as evident from Fig. 6.

E. Randomness in the initial state

We have also studied the effect of randomness put solely in
the initial state keeping the TI of the lattice intact. To this end
we construct the r.d.w. as follows. Let r be a pseudorandom
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FIG. 5. The figure demonstrates the competing effects produced
by the disorder on enhancement of the entanglement growth of a
subsystem of one-dimensional lattices (see the text for the details
of the geometry), compared to the TI case of same geometry. Frame
(a) shows the consequent nonmonotonic behavior of the entangle-
ment S(t = t∗) as a function of the disorder strength μ for a system
size L = 2048. Here we have taken t∗ = 500. The horizontal dashed-
dot (blue) line marks the value of S(t = 500) for the TI case. Frames
(b) and (c) show the dynamics of S for μ = δμ = 0.1 and μ = δμ =
5.0, respectively. We have taken L = 377 for the Fibonacci lattice
and L = 256 for the random case.

number between 0 and 1, then the initial state is chosen such
that 〈c†

i c j〉 = δi j for i < L/2, r > P , and 0 otherwise. P , thus,
defines the probability a site is occupied in the left half of
the system. The right half is kept completely empty. We only
use one representative initial state for each probability value
to show the scenario, and for the disordered Hamiltonian we
average over 80 disorder realizations. Our result shows that
the logarithmically slow growth of entanglement in the TI
case with a single domain-wall (d.w.) initial state [1–3,36] is
a fine-tuned result. We find, the small randomness present in
a r.d.w. initial state is enough to make the growth behavior
switch from logarithmic to a linear time dependence in a TI
lattice (see Fig. 7).

The figure also shows, a further enhancement of entangle-
ment growth (over the TI case with the r.d.w.) can be achieved
in a quantitative level if disorder is added to the lattice. This
increase, however, is visible for P > Pc, dependent of the

FIG. 6. Plot of δμ vs Ssat which denotes the saturation value
of the half-chain entanglement entropy after time t ∼ 1010 for L =
4096. The x axis is also labeled by the maximum Thouless localiza-
tion length λl corresponding to δμ. The red line denotes the fit to
1.16–1.82 ln(2 δμ).

type of disorder as is evident from the inset of the plot. This
is expected as both being similar effects, the effect due to dis-
order in initial state must be low for the effect due to disorder
in the potential to be seen. In this sense, the phenomenon of
enhancement of entanglement due to breaking of lattice TI is
not fine-tuned to a particular initial state and is quite robust
to the random variation over the r.d.w. initial states we have
considered.

IV. THE PERIODIC POTENTIAL CASE

In this section we will skim over the scenario where we
break the translational invariance of the system by introduc-
ing a spatially periodic potential. Clearly such a system still
possesses a translational symmetry of the Zn class and, thus,
is different from the systems in the previous section which had
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FIG. 7. The figure compares growth of entanglement S with time
for the r.d.w. initial state (for P = 0.6) on a TI lattice with those
for the d.w. state in a TI lattice, r.d.w. states on a Fibonacci lattice,
and a random lattice, respectively. The result shows that the small
randomness even just in the initial state (the r.d.w. case) is sufficient
to switch the logarithmic entanglement growth observed in the TI
lattice case with the d.w. initial state to a linear growth (see growth
until t ∼ 200) generic to the TI broken lattice cases (also shown for
comparison). Results are for (L = 256, δμ = 0.2). The inset shows
behavior of S at t = 500 for L = 1024 as a function of P (see the
text for details) for a r.d.w state.

024202-6



DISORDER-INDUCED ENHANCEMENT OF ENTANGLEMENT … PHYSICAL REVIEW B 103, 024202 (2021)

(a)
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FIG. 8. Plot of a comparison of half-chain entanglement entropy
growth of a system of length L = 256 for the TI system and peri-
odic systems of both kinds with periodicity p = 2, 8 and q = 4, 8
for (a) μ = δμ = 0.1 and (b) μ = δμ = 5, showing the increase
in entanglement entropy with higher periodicity for both p and q
types of periodicity for lower strength of potentials and showing
the difference between them for a large potential strength. Note that
p = 2 and q = 2 defines the same potential.

no such symmetry. Figure 8 shows results for the dynamics of
the system when a periodic potential is applied for the same
parameter values as Figs. 5(b) and 5(c). Here we clearly see
that for low δμ, the entanglement entropy value increases with
increasing periodicity p and q. This is a counterintuitive result
in the first glance since one would expect a higher number
of scattering centers present for lower values of p and q.
However, due to the periodicity of the lattice the scattered
wave fronts interfere coherently unlike in the previous section
which results in a counterintuitive scenario. For a concrete
understanding, one requires a thorough analytical analysis
of this phenomenon, which is involved and left for a future
work. In this present paper, we focus on the various interesting
features which occur in this setup.

As can be seen from Fig. 8(b) for large values of δμ en-
tanglement entropy for the q-type periodic potential is heavily
suppressed and q = 8 shows lower entanglement than q = 4
contrary to the case with p and the results of Fig. 8(a). This
is simply due to the fact that the q-type potential suppresses
particle tunneling more than the p-type potential due to its
nature of being a series of square barrier potentials than the
δ function one (shown in the inset of Fig. 9). Additionally,
the suppression is larger for larger q because the width of the
barrier increases with increasing q. Since, at high potential
strength particle diffusion plays the most important role in
determining entanglement entropy, this factor heavily reduces
entanglement growth, and we get the current result.

In the rest of this section we would take μ = δμ = 0.1
unless otherwise specified. Figure 9 shows the fit of S(t ) for
t < L for periodic potentials of different kinds and period-
icities for a low potential strength μ = δμ = 0.1. It is seen
that the growth in SvN follows a + b ln(t ) behavior if t ∼ L is
sufficiently large for periodic potential systems. This is rem-
iniscent of a similar behavior seen in conformally invariant
TI systems under local/geometric quench [1,50]. However,
since once we break TI the system is gapped and no longer
expected to be conformally invariant, so we do not, in general,
expect this to hold. It can be seen after oscillatory behavior at
initial times the fit is quite good. The plot of fit coefficient b
vs p is provided in Fig. 11(a) as well. It is a straight line with
a slope close to 0.167. For TI systems, it is known that the
entanglement growth for inhomogeneous quenches [1] can be
fit at time t < L for large L to c/6 ln t where c the central

FIG. 9. (a) Plot showing the logarithmic fit of half-chain entan-
glement S(t ) for p(q) = 2 for a system size of L = 4096, the red
line is given by the equation S(t ) = 0.5 + 0.333 ln(t ). (b) Similar
plot but for q = 4, and the red line is given by the equation S(t ) =
0.01 + 0.67 ln(t ). (c) Same as (a) with p = 10. The red line indicates
the fit S(t ) = −1.6047 + 1.66 ln t . (d) Same as (c) but with q = 10,
and the red line denotes a fit S(t ) = −1.98 + 1.67 ln t . The inset
in each figure shows the periodicity of the on-site potential used to
simulate each plot.

charge is of value 1 for open boundary conditions, which is
the configuration we study. For periodic potentials labeled by
periodicity p(q) the c = p(q) is evident from Fig. 9. As can
be seen from the insets of Figs. 9(a) and 9(b), the potential
type p(q) makes the lattice possess Zp(Zq) symmetry. It seems
c = n where Zn is the symmetry of the lattice.

We end this section by showing the limit in which our
results correspond to the result of linear growth of EE from
a defect site under inhomogeneous quench seen in Ref. [15]
and bring in a new perspective. In our case, when p � L/2,
we retrieve their results since then our system is identical to
theirs except for the position of defect. An example of this
can be seen in Fig. 10(b). In this plot the scattering center
is positioned at i = 3000 in a lattice of size L = 4096. Thus,
it is seen until the wave front reaches the scattering center,
entanglement follows the 1/6 ln t behavior for TI systems
and then we see a linear rise for times longer than it. But
in other cases discussed, contrary to their setup, we have

FIG. 10. (a) Plot showing the linear fit regime of half-chain en-
tanglement S(t ) for p = 32 for a system size of L = 4096, and the
red line is given by the equation S(t ) = 0.272 + 0.0917t . (b) Plot
showing the scenario for p = 1500 showing the two different fit
regimes. The red line shows the fit to 0.467 + 0.167 ln(t ), and the
green dashed line shows the fit to −66 + 0.051t .
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FIG. 11. (a) Plot of b, the coefficient of ln(t ) in the fit of S vs
p, the period of the potential, the red line is given by the equation
b = 0.004 + 0.167p. (b) Plot of δ = |S − Sfit|/S vs np = t/p show-
ing when the values start deviating from linear fit. See the text for
details.

multiple scattering centers, hence, the wave front undergoes
multiple reflections, and the incident and reflected wave fronts
interfere in a nontrivial manner to yield ln(t ) rise in entan-
glement. Figure 11(b) gives an approximate timescale when
our results show strong deviations from the linear increase in
EE expected from a single defect. In this figure we plot the
deviation relative deviation of entanglement entropy(S) with
the linear fit at initial times (t � 2p), labeled Sfit and plot
it against time (t) scaled by the periodicity(p) of the lattice
considered. The rescaled time gives us an approximate idea of
how many scattering sites the particle has crossed assuming
ballistic propagation of particles. (A reasonable assumption
for δμ = μ = 0.1 for the periodic potential. See the Suppl-
mental Material [54]). It shows the linear rise is completely
lost due to the interference of wave functions after the wave
front crosses six to eight scattering sites. Figure 10(a) gives
the dynamics for a p = 32 potential which shows how the
fit changes from linear to logarithmic. Thus, one can put a
bound of validity of the logarithmic fit in the last paragraph
weakly at p(q) < L/16 from Fig. 11(b) as at periods lower
than L/16 for the p-type potential, the wave front can cross
more than eight scattering centers and shows the nonlinear rise
in entanglement. Figure 12 shows how the eigenvalues ζl of
the correlation matrix of the subsystem under consideration
behave as the wave front travels through the lattice. It can
be seen that if the timescales are small, and the wave front
has not crossed more than one scattering center the newer
nonzero eigenvalues entering into the correlation matrix are
<1. The analysis of Ref. [15] points out that in such a case
there will be a linear rise in entanglement due to a continued
influx of ζl �= 0, 1 generated by the propagating wave front.
But once t > 2p this analysis is no longer valid as the wave
front travels through more scattering centers, the scattered and
incident wave fronts undergo interference, and there can be
new ζl which are 0 or 1, thus, preventing the linear rise in
entanglement entropy. A comparison of Figs. 12(b) and 12(d)
reveals exactly this difference. This happens due to the co-
herent interference of scattered wave fronts which was absent
in the setup considered by Ref. [15], however, a thorough
understanding via analytical calculations is left for a future
work. It is interesting to note that for disordered systems
as Fig. 12(e) and 12(f) shows, the interference lacking the
coherence of periodic systems, this effect is suppressed and,
hence, the rise in entanglement entropy becomes faster and
closer to single defect systems.

FIG. 12. (a) Plot of ζl , the eigenvalues of Ci j , correlation matrix
of the subsystem M = L/2 = 128. Only the first 20 values are plot-
ted. (a) In this system μ = δμ = 0.25 and p = L/2, i.e., only one
scattering center is present at the subsystem environment interface.
The eigenvalues are plotted at t = 10. (b) Same system as (a) except
t = 60. (c) Here the eigenvalue at t = 10 is plotted for a system
with p = 16 showing no quantitative difference with (a). (d) Same
as (c) but at t = 60. Here we see a completely different result from
(b) showing how an increasing number of eigenvalues are of value
1 and, thus, do not participate in entangling the subsystem and
environment, thus, suppressing linear growth of entanglement for the
single scattering center case. (e) Same parameters as (b) and (d) but
in a system with random potential. (f) Same as (e) with the system
having the Fibonacci potential and size L = 377. Note how in the last
two cases the eigenvalue structure contains less eigenvalues closer to
1 than plot (d).

V. DISCUSSION

In this paper we have shown that the breaking of trans-
lation invariance in a one-dimensional free fermion system
can result in an enhanced entanglement growth/information
leakage compared to the translationally invariant case follow-
ing an inhomogeneous quench. In disordered systems, this
enhancement is observed in a subsystem of the size of the
localization length. We identified backscattering of particles
to the subsystem from its surrounding as the main mechanism
behind the enhancement.

We also briefly touched upon the special case of breaking
of TI by periodic potentials. There the coherent interference
of the backscattered wave fronts produces certain peculiar-
ities. For example, a larger spatial period p implies lesser
number of backscatterers per unit length (locally closer to
the TI case) but actually produces stronger enhancement in
entanglement growth. We found for low periods there exists
a c/6 ln t scaling of entanglement entropy very similar to the
translationally invariant problem with c = n where Zn is the
lattice symmetry. This is a rather interesting result in the sense
these systems do not possess any conformal symmetry, and
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we have similar behavior obtained as conformally invariant
systems. We also recovered the linear rise regime at large
periods and numerically analyzed when each regime sets in.
We gave a weak bound on the value of period when one can
expect to see the ln t scaling behavior. Then we discussed how
the eigenvalues of the correlation matrix of the system change
for lower periods compared to larger periods which changes
the linear behavior to logarithmic. Interestingly, the pattern of
new eigenvalues for the disordered lattice case follows the sin-
gle scattering center scenario when one is within localization
length. This points to a requirement of thorough analytical
analysis of such systems as coherent scattering changes the
physics completely. In principle, if one could analytically find
closed form expression of the correlation functions in a pe-
riodic lattice from the single-particle eigenfunctions one can
hope to analyze them to figure out this phenomenon. Since the
one-particle eigenfunctions will pick up the symmetry of the
lattice, there might be a possibility of extracting the coefficient
of ln t finding how they combine to give the result. This is left
for a future work.

The main result, namely, the enhancement of entanglement
growth due to introduction of disorder betrays the nontriv-
ial character of disordered quantum matter within the scale
of localization length. This, to our knowledge, is a largely
unexplored area. For weak disorder, this length scale can be
considerable, and the understanding the physics might play a
key role in designing quantum devices. An interesting open
direction is to study the fate of this enhancement in the pres-
ence of weak interactions and external drive.
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APPENDIX A: CALCULATION OF 〈c†
m(t )cn(t )〉

Since this is a free fermion model, we can exploit the fact
that all the information about the system is contained in the
one-particle sector of the Hamiltonian. We can, thus, reduce
the 2N × 2N problem to the N × N problem in theory, but
in practice, if we were to work in the Schrödinger picture
we would have to still deal with

(N
m

)
eigenfunctions for a

m-particle sector in a N-site model which are constructed as
Slater determinants of the one-particle sector. But we are not
interested in wave functions here, and, hence, we can switch
to the Heisenberg picture, deal with N × N matrices, and find
the required result. The entire procedure for this is as follows:

H = Cc = c†R†RCR†Rc = b†Bb,

where c (c†) denotes a column (row) vector consisting of one-
particle fermionic annihilation (creation) operators on each
site. C denotes the matrix elements of the Hamiltonian in the
one-particle occupation basis. B = RCR† and b† = c†R† or
b†

i = c†
j R

†
ji = R∗

i jc
†
j and bk = Rk jc j, B denotes the diagonal-

ized matrix, and b denotes the diagonal basis. In this basis we
know the Hamiltonian is H = −∑

k Ekb†
kbk (Ek = Bkk ) and,

hence,

bk (t ) = bk (0)eitEk , b†
k (t ) = b†

k (0)e−itEk . (A1)

Using these expressions we can write the time-dependent
correlation matrix. Also we recall that c = R−1b = R†b or
ci = R†

i jb j = b jR∗
ji. Using this and remembering that for the

systems considered in this paper the R matrices are all real,

〈c†
m(t )cn(t )〉 =

∑
k,l

RkmRln〈b†
k (t )bl (t )〉

=
∑
k,l

RkmRlne−iEl t eiEkt 〈b†
k (0)bl (0)〉

=
∑

k,l,i, j

RkmRlnRkiRl je
i(Ekt−El t )〈c†

i (0)c j (0)〉.

(A2)

Using the known initial conditions 〈c†
i (0)c j (0)〉 we can calcu-

late the evolution of the correlators to any instant of time.

APPENDIX B: THOULESS LOCALIZATION LENGTH

In this Appendix we give a brief idea about the calculation
of Thouless localization length as defined by Ref. [46]. It gives
the localization length of the single-particle eigenfunctions
of a noninteracting Anderson localized system. For a system
with a Hamiltonian as given by Eq. (1), the eigenstate equation
is of the form

μia
α
i − J

2

(
aα

i+1 + aα
i−1

) = Eαaα
i , (B1)

where i runs from 1 to L and Eα is an eigenvalue of the system
labeled by α, and aα

i are the amplitudes of eigenstates. The
Green’s function of such a system can be written as

(E − μi )Gi j (E ) + J

2
[Gi+1, j (E ) + Gi−1, j (E )] = δi j, (B2)

where Gi j = (EI − H−1), H being the Hamiltonian of the
system. From this one can find G1N as

G1N =
(

J

2

)N−1
/

N∏
α=1

(E − Eα ). (B3)

Identifying G1N has a pole of residue aβ

1 aβ
N , and we can rewrite

the equation as

n
∣∣aβ

1 aβ
N

∣∣ = (N − 1) ln

∣∣∣∣J

2

∣∣∣∣ −
∑
α �=β

ln |Eβ − Eα|. (B4)

The key thing to note is now, for a localized eigenstate
exponentially decays from its peak. Hence, if the peak is
at site x one would expect a1 = exp[−iκ (1 − x)] and aN =
exp[−iκ (x − N )], where λ = 1/κ is the localization length.
Hence, in the limit of large L, one can define

λ = −
[

(N − 1) ln

∣∣∣∣J

2

∣∣∣∣ −
∑
α �=β

ln |Eβ − Eα|
]−1

. (B5)

Clearly for different Eβ’s λ would be different. In our paper
we consider λl = λmax, i.e., the largest Thouless localization
length in the problem to provide an idea of the length scales.
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FIG. 13. Left: Plot showing Von Neumann entropy vs strength of
inhomogeneity denoted by δμ at t = 500 for different representative
cases. The subsystem is of length M = L/2, and the position of A is
at i = L/2 + 1. The rest of the parameters are same as Fig 5(a).

APPENDIX C: A PECULIARITY OF THE
ENTANGLEMENT AT HIGH δμ

In Fig. 5(a) we showed the behavior EE with increasing
δμ for different potentials when the subsystem AB is chosen
from i = L/2 + 21 to i = L. As expected, for most of the
cases the entanglement drops off as a power law with δμ. It
is also important to note different potentials follow a different
power law which occurs due to the nature of scattering events
encountered. It is to be expected correlated and uncorrelated
scatterings result in different behaviors. Even in correlated

scattering the scattering from a periodic potential is different
from a quasiperiodic one. The understanding of the various
power laws observed is left for a future work.

Figure 13 shows the half-chain entanglement, and in this
case A is taken at site i = L/2 + 1. Here as expected, when
we are in the low disorder limit, the entanglement increases
with disorder until a maximum after which it starts decreasing
for all the cases of inhomogeneity. The random case shows the
steepest ascent and descent compared to the other two cases.
However at very high disorder entanglement still stays at a
finite value. This peculiarity is due to the fact that for certain
disorder realizations (which are significant in number) a very
small particle density can be present in the x > 0 sector. This
effectively ensures a finite number of wave fronts reaching the
subsystem and carrying information even with a low particle
density. This raises the entropy to a significant nonzero value
even if the value is smaller compared to all other potentials.
This event which causes such an anomaly in EE becomes
exponentially smaller in number the further we move from
i = L/2, hence, our choice of subsystem in the main text was
such that these events do not interfere with our general anal-
ysis. However, in cases where we have considered a periodic
potential or a Fibonacci potential, correlated scattering events
show no such peculiarity.

[1] V. Alba and F. Heidrich-Meisner, Phys. Rev. B 90, 075144
(2014).

[2] J. Mossel, G. Palacios, and J.-S. Caux, J. Stat. Mech.: Theory
Exp. (2010) L09001.

[3] T. Antal, Z. Rácz, A. Rákos, and G. M. Schütz, Phys. Rev. E 59,
4912 (1999).

[4] T. Antal, P. L. Krapivsky, and A. Rákos, Phys. Rev. E 78,
061115 (2008).

[5] V. Eisler and Z. Rácz, Phys. Rev. Lett. 110, 060602 (2013).
[6] J. Lancaster and A. Mitra, Phys. Rev. E 81, 061134 (2010).
[7] T. Sabetta and G. Misguich, Phys. Rev. B 88, 245114 (2013).
[8] M. Kormos, SciPost Phys. 3, 020 (2017).
[9] M. Kormos, C. P. Moca, and G. Zaránd, Phys. Rev. E 98,

032105 (2018).
[10] K. Klobas, M. Medenjak, and T. Prosen, J. Stat. Mech.: Theory

Exp. (2018) 123202.
[11] J. Viti, J.-M. Stéphan, J. Dubail, and M. Haque, Europhys. Lett.

115, 40011 (2016).
[12] I. Klich and L. Levitov, Phys. Rev. Lett. 102, 100502 (2009).
[13] H. F. Song, S. Rachel, C. Flindt, I. Klich, N. Laflorencie, and K.

Le Hur, Phys. Rev. B 85, 035409 (2012).
[14] K. Bidzhiev and G. Misguich, Phys. Rev. B 96, 195117

(2017).
[15] V. Eisler and I. Peschel, Europhys. Lett. 99, 20001 (2012).
[16] E. Tonni, J. Rodríguez-Laguna, and G. Sierra, J. Stat. Mech.:

Theory Exp. (2018) 043105.
[17] T. Rakovszky, C. W. von Keyserlingk, and F. Pollmann, Phys.

Rev. B 100, 125139 (2019).
[18] G. Refael and J. E. Moore, Phys. Rev. Lett. 93, 260602

(2004).
[19] G. Refael and J. E. Moore, J. Phys. A: Math. Theor. 42, 504010

(2009).

[20] N. Laflorencie, Phys. Rev. B 72, 140408(R) (2005).
[21] M. Fagotti, P. Calabrese, and J. E. Moore, Phys. Rev. B 83,

045110 (2011).
[22] J. Dubail, J.-M. Stéphan, and P. Calabrese, SciPost Phys. 3, 019

(2017).
[23] P. Ruggiero, V. Alba, and P. Calabrese, Phys. Rev. B 94, 035152

(2016).
[24] V. Eisler and D. Bauernfeind, Phys. Rev. B 96, 174301

(2017).
[25] H. Ueda and T. Nishino, J. Phys. Soc. Jpn. 78, 014001

(2009).
[26] G. Vitagliano, A. Riera, and J. I. Latorre, New J. Phys. 12,

113049 (2010).
[27] G. Ramírez, J. Rodríguez-Laguna, and G. Sierra, J. Stat. Mech.:

Theory Exp. (2014) P10004.
[28] G. Ramírez, J. Rodríguez-Laguna, and G. Sierra, J. Stat. Mech.:

Theory Exp. (2015) P06002.
[29] J. Rodríguez-Laguna, S. N. Santalla, G. Ramírez, and G. Sierra,

New J. Phys. 18, 073025 (2016).
[30] J. Rodríguez-Laguna, J. Dubail, G. Ramírez, P. Calabrese, and

G. Sierra, J. Phys. A: Math. Theor. 50, 164001 (2017).
[31] V. Eisler, F. Iglói, and I. Peschel, J. Stat. Mech.: Theory Exp.

(2009) P02011.
[32] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[33] D. Basko, I. Aleiner, and B. Altshuler, Ann. Phys. (NY) 321,

1126 (2006).
[34] J. H. Bardarson, F. Pollmann, and J. E. Moore, Phys. Rev. Lett.

109, 017202 (2012).
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