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Structural phase transition and Goldstone-like mode in hexagonal BaMnO3
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Using first-principles-based Hamiltonian, we show novel structural behaviors of hexagonal manganite
BaMnO3 at moderate low temperatures (T s). The structural change of BaMnO3 occurring at ∼130 K is assigned
to an improper transition between the low-T ferroelectric phase with P63cm symmetry and a high-T nonpolar
phase with P63/mmc symmetry, induced by coupled softening of the K3 and �−

2 modes. Herein, the order
parameters show unconventional behaviors, with the mode amplitude being order-disorder like and the mode
phase being displacive. Optical Goldstone-like mode, implied by the Mexican-hat-like Born-Oppenheimer
potential energy surface, is manifested in our simulations via tuning quantum fluctuations and lattice strains.
As this mode can be enhanced by lowering the contribution of intersite interactions, we suggest an experimental
detecting scheme by inducing a light active �-point mode strongly coupled to it.

DOI: 10.1103/PhysRevB.103.024101

I. INTRODUCTION

Quantum effects of electrons usually play a central role on
inducing nontrivial states of matters, e.g., superconductors,
quantum criticality, and magnetism [1–3]. The much larger
masses of nuclei than electrons mean that in standard theory
they can be treated as classical particles. When the nuclear
quantum effects (NQEs) are important, one often resorts to
concepts like phonon to address the quantum nature of the
nuclei within the harmonic or quasiharmonic approximations.
Recently, advances in the technique of path integrals mean
that thorough quantum descriptions of condensed matters with
full anharmonicity are possible [4–7]. Along this route, NQEs
were systematically studied in light element systems, e.g.,
high-pressure hydrogen [8–10], liquid water [11], water-solid
surfaces [12,13], and hexagonal boron nitride [14]. Even
in systems with heavy elements, there could be prominent
NQEs, e.g., the quantum paraelectrics [6,15,16]. But com-
pared with the quantum states induced by electrons, quantum
states determined by NQEs are still rare.

The so-called hexagonal manganite RMnO3 (R = Dy-Lu,
In, Y, or Sc), due to the nontrivial ferroelectric (FE) domain
structures, are of broaden fundamental and technological in-
terest [17–21]. One important property of them is that their
FE polarization is not the primary order parameter which
dominates the paraelectric (PE) to FE phase transition, but
an improper parameter induced at low temperatures (T s) by
coupling to the primary one. As a result, a Mexican-hat-
like Born-Oppenheimer potential energy surface (BO-PES),
which has six valleys as sixfold degenerate ground states
exists and Goldstone-like mode was suggested [22]. The
Goldstone mode, arising when a continuous symmetry is
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broken, is a concept originally used in particle physics
[23,24]. It was characterized by frequency ωk → 0 in the
k → 0 limit. In condense matters, it has been proposed in
many isotropic systems, like Heisenberg ferromagnets [25],
liquid crystals [26], and incommensurate structures [27]. In
anisotropic crystal systems, it is hard for continuous sym-
metry to exist and the Goldstone mode is rarely reported
[28–31]. Recently, such a mode has been predicted in two
examples, ErMnO3 and InMnO3, based on analysis of their
Mexican-hat-like BO-PES [22]. Rigorous determination of
the nature of this mode, however, requires finite-T simulations
with anharmonicity and NQEs fully taken into account. But
such theoretical studies are rare.

In this article, we investigate the finite-T structural behav-
iors of such hexagonal manganite, using BaMnO3 (BMO) as
the targeting system. The structural changes happened during
the phase transition of this material is rather unclear [32–35],
and the barrier between the sixfold local minima of the
BO-PES is low, so that it is very likely for the NQEs to be im-
portant at low-T s. We use the first-principles-based classical
Monte Carlo (CMC) and path-integral Monte Carlo (PIMC)
simulations as the basic technique. Our simulations first as-
sign the phase transition occurring at ∼130 K to an improper
FE transition between the low-T FE phase with P63cm sym-
metry and a high-T nonpolar P63/mmc phase. Then we focus
on the local structural changes. The T -dependent distribution
of the amplitude order parameter show order-disorder-like
behavior during the transition, while the behavior of the phase
parameter is displacive. This is a rather unconventional feature
in the PE to FE phase transitions, only similar to the recently
reported results for YMnO3 in Ref. [36]. By introducing
NQEs, our PIMC simulations imply that a long-wavelength
optical Goldstone-like mode exists at low T s. However, the in-
tersite coupling term in the Hamiltonian traps the system into
one of the sixfold local minima of the BO-PES, preventing the
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FIG. 1. (a) Crystal structure of nonpolar P63/mmc BaMnO3. The
Ba, Mn, and O atoms are denoted by green, purple, and red balls,
respectively. This custom holds for all figures of this manuscript.
(b) The crystal lattice of polar P63cm phase of BaMnO3 (labeled
by blue dashed lines) is 3 times than P63/mmc phase (labeled by
red dashed lines). (c) Phonon spectrum of P63/mmc BaMnO3. Blue
circles denote K3 and �−

2 mode which dominate BaMnO3’s structural
phase transition. Inset panel shows the Mexican-hat-like BO-PES of
BaMnO3. The sixfold valleys on the BO-PES are induced by the
coupling between K3 and �−

2 modes. (d) The relationship between
P63/mmc, P63mc, and P63cm phases. The red dashed line denotes
the structural phase transition observed by experiments at around
130 K [34].

emergence of this Goldstone-like mode. To avoid this, one can
resort to light activation by employing the coupling between
this Goldstone-like mode and other light-active phonon modes
in experiments. These results settle the dispute of BMO’s
phase transition in the viewpoint of the first-principles-based
CMC/PIMC simulations. They also suggest that BMO is a
new example in which the quantum nature of nuclei induce
novel phenomena, even in the FE phase, which is seldom
reported.

This article is organized as follows. In Sec. II, we
present the methodology of constructing the effective lattice

FIG. 2. Visualization of phonon eigenvectors of P63/mmc-
BaMnO3 for (a) the nonpolar K3 mode and (b) the improper FE �−

2

mode.

Hamiltonian. The computational details for obtaining the
model coefficients and for performing the CMC/PIMC simu-
lations are also provided. In Sec. III, we discuss the results on
the T dependence of order parameters and the local structural
changes of BaMnO3 and show that the quantum fluctuations
of nuclei can induce the emergence of the Goldstone-like
mode. The conclusions are summarized in Sec. IV.

II. METHODS

A. Model Hamiltonian

Unlike ErMnO3 and InMnO3, whose structures contain
corner-sharing Mn-O trigonal bipyramids, BMO’s structure
is characterized by face-sharing Mn-O octahedra separated
by Ba ions [Fig. 1(a)]. At ∼130 K and ambient pressure,
BMO was believed to undergo a structural phase transition
induced by the softening of the noncentrosymmetric, non-
polar, Brillouin zone-boundary K3 mode [Fig. 1(b)]. This
structural instability of high-T nonpolar P63/mmc phase can
be perceived from its phonon spectrum [Fig. 1(c)]. The K3

mode is composed by Mn and O atoms’ vibrations along the
c axis [Fig. 2(a)], which can be described using an amplitude
parameter Q and a phase parameter �. Besides K3, the �−

2
mode at the Brillouin zone center should also be noted. This
FE �−

2 mode, denoted by P, is consisted by relative vibration
between the Mn-O octahedra and the Ba ions along the c axis
[Fig. 2(b)]. The K3 mode shows no evident dependence on
the phase parameter �, but the coupling between the K3 and
�−

2 modes raises sixfold degenerate valleys of the BO-PES at
� = 2nπ/6 with n = 0, 1, . . . , 5 [the inset of Fig. 1(c)]. As
a result, the low-T structure of BMO possesses the P63cm
symmetry.

To understand the structural changes of BMO during the
phase transition, we resort to first-principles-based CMC and
PIMC simulations. Compared with previous theoretical stud-
ies of this material based on the Landau theory, which are
static [33], our simulations allow the finite-T thermal effects
and NQEs to be addressed [4,5,8,11,12], with full anhar-
monicity taken into account. To approach the thermodynamic
limit, large supercells beyond the reach of pure first-principles
simulations were used [6,16]. This is achieved by resorting to
an accurate and computationally affordable effective model.
The low-energy characteristics of BMO, dominated by the K3

and �−
2 modes as discussed above, mean that a Landau-type

effective Hamiltonian,

H = Hlocal + Hinter

=
∑

i

[
a1Q2

i + b1Q4
i + gPiQ

3
i cos(3�i ) + g′P2

i Q2
i + a2P2

i

]

+
∑
λ=x,z

(
Jλ

Q

4

∑
i �= j

{
(Qi−Qj )

2+2Q2
i [1 − cos(�i − � j )]

}

+ Jλ
P

4

∑
i �= j

(Pi − Pj )
2

)
,

(1)
can be defined. The other phonon modes, which are not related
to the structural phase transition directly, are neglected. The
procedure outlined in a previous work by Skjærvø et al. on

024101-2



STRUCTURAL PHASE TRANSITION AND … PHYSICAL REVIEW B 103, 024101 (2021)

YMnO3 is adopted for the construction of this Hamiltonian
[36], using a free-energy expansion similar to the suggestions
of Varignon et al. [33]. The indices i, j denote lattice sites,
Q and � represent the amplitude and the phase of the K3

mode, and P means the amplitude of the �−
2 mode. The Hlocal

term is the on-site energy. The soft K3 mode is described by
a quartic function. The �−

2 mode is positive and real when
calculating phonon spectrum using experimental lattice con-
stants, but imaginary when using first-principles optimized
ones. Therefore, we tried simulations with the �−

2 mode being
treated as a quadratic function in the former case, and as
a quartic function (add a b2P4

i term) in the latter case. The
K3-�−

2 coupling terms reflect the improper FE nature, which
is characteristic of hexagonal manganites [36,37]. To obtain
the coefficients of the on-site part of our model Hamiltonian,
we fit it to the first-principles BO-PES along the K3 and �−

2
phonon eigenvectors. The Hinter term is the intersite part of our
model, which reflects the energy change when the configura-
tion of the order parameters (i.e., P, Q, and �) deviates from
the structural ground state. To obtain the stiffness parameters,
Jλ

P and Jλ
Q, we follow Refs. [36,37]. All these parameters are

provided in the Supplemental Material [38].

B. First-principles calculations

The DFT calculations were performed using the Vi-
enna Ab initio Simulation Package [39,40], with PBEsol+U
functional chosen for the description of the electronic
exchange-correlation interactions [41,42]. The plane-wave
cut-off energy is 500 eV. Concerning the Brillouin zone in-
tegration, we set the spacing between k points to 0.12 Å−1.
The on-site Coulomb interaction parameters are specified with
U = 4.52 eV, which is determined by linear response [43].
All first-principles calculations are spin-polarized with the so-
called A-type antiferromagnetic configuration in which spins
on the same layer parallel with the ab plane are parallel to
each other, and those along the c axis have opposite directions.
Structural relaxation is performed with a conjugated-gradient
algorithm, until the Hellmann-Feynman forces on each atom
are less than 0.1 meV Å−1. The phonon eigenenergies and
eigenvectors are given by PHONOPY [44], using a 3 × 3 × 2
supercell.

C. Monte Carlo simulations

When the model Hamiltonian is constructed, we perform
CMC and PIMC to simulate the finite-T properties. Com-
parisons between results obtained from these two series of
simulations allow the NQEs to be addressed in a very clean
manner [6].

In the path-integral representation of quantum mechan-
ics, a N-particles quantum mechanical partition function Z =
Tr[e−βĤ ] is mapped to a N × Ns-particles classical partition
function [45] of a polymer through

ZPI = lim
Ns→∞

[
N∏

i=1

(
miNs

2βπ h̄2

) dNs
2

] ∫
· · ·

∫ (
Ns∏
j=1

N∏
i=1

dxi
j

)

× e−β
∑Ns

j=1 [
∑N

i=1
1
2 miω

2
0 (xi

j−xi
j−1 )2+ 1

Ns
V (x1

j ,...,x
N
j )].

(2)

Here Ns is the number of slices for the sampling of the
imaginary time β = 1/(kBT ), N is the number of particles
in the realistic polyatomic system, mi is the mass of the ith
particle, d is the dimension of coordinate x, and ω0 equals√

Ns/(β h̄). The “classical polymer” is constructed using Ns

images of the realistic polyatomic system. The mapping en-
sures that conventional Monte Carlo or molecular dynamics
simulations can be performed for this artificial “classical poly-
mer,” so that NQEs can be addressed rigorously for finite-T
statistical properties [4–6,8,10,16]. Within each image, the
interatomic interaction in realistic system is adopted through
V (x1

j , . . . , xN
j ) in Eq. (2). In between the neighboring ( j-1)th

and jth images, the same atoms are connected by a spring
which causes a potential energy of 1

2 miω
2
0(xi

j − xi
j−1)2 in

Eq. (2). In the language of path integral, it actually corre-
sponds to the kinetic energy along the path of the imaginary
time.

The sampling of the “classical polymer” in Eq. (2) al-
together give rise to NQEs such as zero-point motion and
quantum tunneling. In our case, we treat the K3 and �−

2
modes on each site as two particles. The realistic inter-
atomic interaction V (x1

j , . . . , xN
j ) in Eq. (2) is described using

Eq. (1), which corresponds to specific spatial configurations
of the BMO supercell. The order parameters (xK3

i , yK3
i ) =

(Qi cos �i, Qi sin �i ) and x
�−

2
i = P are treated as the coordi-

nates xi of the two particles. Their effective masses are defined
as Meff = ∑

i miξ
2
i , where ξ denotes the vector describing the

collective motion along K3 or �−
2 mode, and mi means the

atomic mass of the corresponding vector components.
To ensure that the thermodynamic limit is reached, our sim-

ulations were performed on a 16 × 16 × 16 supercell, which
contains more than hundreds of thousands of atoms in real
material. This is sheer impractical for pure ab initio calcu-
lations. We performed O(106) Monte Carlo sweeps (MCS)
for thermalization and O(107) MCS for statistics. To study
the T dependence and the competition between the K3 and
�−

2 mode, we treat all the order parameters P, Q, and � as
independent variables in our CMC simulations. Moreover, to
perform PIMC simulations, we use T Ns = 1, 024 to keep a
small Trotter error. The bisection algorithm was adopted to
improve the sampling efficiency [46].

III. RESULTS

A. Structural phase transition

Recent theoretical and experimental studies believe that the
low-T structure of BMO is a FE P63cm phase. But there is no
consensus about its high-T structure above ∼130 K [32–35].
Two main candidates exist, i.e., a nonpolar P63/mmc phase
and a polar P63mc phase [Fig. 1(d)]. The P63/mmc phase
lies at the center of the Mexican hat, with the magnitudes
of both the K3 and the �−

2 modes being zero. In the first
scenario, the K3 mode freezes at decreasing T s from the
high-T P63/mmc phase. When a finite K3 mode appears, the
�−

2 become unstable and acquire nonzero amplitude due to
K3-�−

2 coupling. Then the low-T P63cm phase becomes FE.
Besides this, it could also happen that the K3 mode disappears
at ascending T s from the low-T P63cm phase, followed by
the disappearance of �−

2 . Then the structural phase transition
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FIG. 3. Temperature dependence of order parameters that domi-
nate the structural phase transition of BaMnO3. Blue squares denote
the the expectation value of �−

2 mode and red circles denote the
expectation value of K3 mode. (a) CMC results performed on BMO
with experimental lattice constants and (b) with first-principles op-
timized lattice constants. (c) PIMC results performed on BMO
with experimental lattice constants and (d) PIMC results with first-
principles optimized lattice constants.

at ∼130 K can happen between the low-T P63cm phase and
the intermediate-T P63mc phase [the left route in Fig. 1(d)].
Therefore, the puzzle of BMO’s structural phase transition at
∼130 K can be transformed to whether the �−

2 mode still
exists when the K3 mode disappears.

We first performed CMC simulations to study the T de-
pendence of the K3 and �−

2 modes. Since the eigenstate
energy of the �−

2 mode is sensitive to the lattice constants,
both the experimental and first-principles optimized lattice
constant-based simulations were carried out. In these sim-
ulations, all the order parameters, i.e., P, Q, and �, are
treated as independent variables. The results are shown in
Figs. 3(a) and 3(b). Blue squares denote the expectation value
〈P〉 of the �−

2 mode, and red circles denote the expectation
value 〈Q〉 =

√
〈Qi cos �i〉2 + 〈Qi sin �i〉2 of the K3 mode. We

choose the units as P0 and Q0, which are the solutions of
∂H/∂P = 0 and ∂H/∂Q = 0 in Eq. (1). With experimental
lattice constants, both 〈P〉 and 〈Q〉 have finite values when
T < 140 K, then vanish when T > 140 K. This is an obviously
evidence of a structural phase transition, and that the low-T
phase of BMO has P63cm symmetry with ferroelectricity.
The appearance of finite 〈Q〉 is at slightly higher T than
〈P〉. In other words, 〈P〉 cannot exist independently when
〈Q〉 disappears. In simulations with first-principles-based lat-
tice constants, this feature holds at a larger critical T , due
to the fact that the overestimated lattice constants obtained
by first-principles calculations make the barriers on BMO’s
BO-PES higher. Such an improper FE nature is also shown
in our first-principles calculations, which we provided in the
Supplemental Material [38]. The PIMC results are close to
the CMC ones, as shown in Figs. 3(c) and 3(d), indicating that
NQEs have a negligible influence on TC .

FIG. 4. Distributions of Q (a) and � in (b) at different tempera-
tures obtained by CMC simulations, and distributions of Q (c) and �

in (d) at different temperatures obtained by PIMC simulations.

To summarize, in the viewpoint of CMC/PIMC sim-
ulations combined with a first-principles-based effective
Hamiltonian, the structural phase transition of BMO is a tran-
sition from a high-T nonpolar P63/mmc phase to a low-T
polar P63cm phase. This transition, therefore, is an improper
FE transition, which means that the raise of the nonpolar
K3 mode is the prime reason of structural phase transition
and the ferroelectricity induced by �−

2 mode is a secondary
effect. This result is consistent with a previous first-principles-
based Landau theory study [33] and an early neutron powder
diffraction experiment [32] but different from the conclusion
drawn in some recent experimental studies [34,35]. We note,
however, that the P63/mmc structure and P63mc structure are
so close to each other that it is very difficult for them to be
distinguished clearly by experiments, due to the inevitable
experimental error, such as leakage current in the pyrocurrent
measurements [35]. Therefore, it is fair to say that theoretical
results of the high-T BMO structure are consistent. Debates
exist in their comparison with some experimental studies. Our
study gives a finite-T phase diagram of BMO using first-
principle-based CMC/PIMC simulations, with anharmonicity
and NQEs fully taken into account, which provides a reference
for further theoretical and experimental studies.

B. Local structure

With the nature of the phase transition clarified, we go
to the details of the structural changes happened during this
phase transition. This is done by analyzing the distributions of
the order parameters Q and �. The average structure of BMO
at T > TC is P63/mmc, so that the macroscopic expectation
value of the amplitude of the K3 mode, i.e., 〈Q〉, vanishes at
high T s. The distribution of Qi has a peak at finite value when
T < TC . This peak remains at T > TC , which is broadened due
to the influence of thermal fluctuations [shown in Fig. 4(a)].
The distribution of phase �i, on the other hand, shows a single
peak at low T , meaning that the system locates on one of
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the six valleys on the BO-PES. This distribution broadens
on heating and finally becomes flat between all �is when
T > TC [shown in Fig. 4(b)]. Therefore, the amplitude order
parameter Q of the K3 mode is order-disorder like, but the
phase � is displacive. This is unconventional for structural
phase transitions, similarly to the recently reported results
of YMnO3 in Ref. [36]. Although the average structure of
BMO has a P63/mmc symmetry at high T , the local structure
can locate at anywhere on the brim of the Mexican-hat-like
BO-PES. The distributions of Q and � obtained by PIMC
are shown in Figs. 4(c) and 4(d), respectively. There are no
qualitative changes, except for the fact that the distributions
are further broadened due to the inclusion of NQEs. This
feature is relevant to the Goldstone-like mode, as we will
discuss in detail in next section.

Such behavior is also possibly the reason why previous
experiments cannot rule out high-T polar phase directly [35].
Since the local structure can locate at anywhere on the brim
of the Mexican-hat-like BO-PES and part of these positions
are corresponding to polar phases, some signatures originating
from local polar structures might be caught. Higher precision
experiments are required to confirm the high-T structure of
BMO. Moreover, the method based on pair distribution func-
tion analysis of neutron total scattering experiment, which is
shown by previous work about YMnO3 [36], might be useful
to confirm such an unconventional behavior of BMO’s local
structure.

C. Goldstone-like mode

With growing thermal fluctuations, the system can get rid
of the constraints and escape from the valleys of the local
Mexican-hat-like BO-PES. As a result, the phase parameter
� can be an arbitrary value between 0 and 2π when T > TC ,
indicating the arising of a U(1) symmetry [see Fig. 5(a)].
The existence of the U(1) symmetry implies Goldstone-like
mode, wherein varying � globally costs no external energy.
To highlight the collective feature of the Goldstone mode,
we retain the Hamiltonian to k → 0, i.e., ruling out inter-
site interactions Hinter. The remaining part Hlocal presents a
Mexican-hat BO-PES with very low barriers between its six
discrete ground states on the brim. Naturally, a question con-
cerning how NQEs can impact on the Goldstone mode arises.
To answer this question, we perform CMC and PIMC sim-
ulations at 2 K to minimize the contribution from thermal
fluctuations. The PIMC results are shown in Figs. 5(b)–5(d)
with 0.35%, 0%, and −0.35% strain along c axis, respectively,
and the corresponding CMC results are given in their insets.
On decreasing the strain, the CMC results show a unified
picture of the sixfold degenerate discrete minima, while the
PIMC ones show a tendency to continuous degenerate ground
state. A ringlike histogram appears at −0.35%, meaning that
in this case the Goldstone-like mode is induced purely by
NQEs.

It should be noted that a flattening due to NQEs of such an
energy landscape was rarely reported. NQEs are convention-
ally known to play important roles only in systems consisting
of light elements [4,5,7–11,14] or in quantum paraelectric
systems [6,15,16]. BMO is an new example of heavy element
system, where the barriers between the local minima on the

FIG. 5. (a) Schematic of local values of the order parameter at
both sides of the structural phase transition. The system’s symmetry
is transform from a sixfold discreted symmetry to a U(1) symmetry
on increasing T s. [(b)–(d)] Histogram obtained by PIMC to reflect
the free-energy surface of BaMnO3 with 0.35%, 0%, −0.35% strain
along c axis. Inset panels in (b)–(d) are the corresponding CMC
results.

brim of BO-PES are low and the structures associated with
these local minima are close. These features result in invalid-
ity of the conventional harmonic or quasiharmonic treatments
for the quantum behaviors of the nuclei. Thus, path-integral
methods beyond the harmonic or quasiharmonic approxima-
tions are required [4–6,16]. Besides these, the FE nature of the
phase at 2 K when NQEs flatten the BO-PES is also nontrivial,
since in quantum paraelectric systems the NQEs change the
picture of the system in the PE phase. Experimental identifi-
cation of this feature using methods like isotope substitution
is highly desired.

In Fig. 4, we have shown that the system will be trapped
into one of the six valleys if the full Hamiltonian is used.
Intersite couplings prevent the local parameters on each sites
from changing independently, and the large number of parti-
cles in system makes the scenario when local parameters on
all sites change synchronically unlikely. Therefore, it is fair to
say that the contribution from Hinter results in the fundamen-
tal difference between the Goldstone-like mode as described
in Fig. 5 and the trapped structure as reflected by Fig. 4.
Practically, however, we note that the Goldstone-like mode
in Fig. 5 is obtained by ignoring Hinter. For a realistic system
where all interactions exist, one might be able to achieve it by
lowering the contribution from Hinter. For example, if a light
active �-point mode strongly coupled to the Goldstone-like
mode is induced, e.g., Higgs-like mode, one could detect the
Goldstone-like mode experimentally. In fact, a recent study
has suggested this mechanism for InMnO3, which has the
same symmetry as BMO in both sides of its structural phase
transition [47]. In the end, we note that the barrier between
valleys along the brim of the Mexican-hat BO-PES depends
on the lattice constant. Therefore, one may expect that the
NQEs induced Goldstone-like mode may be induced by solely
tuning the strain. But as we have shown, the strong coupling
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between neighboring unit cells in realistic system means that
this is unlikely. Inducing this mode by its coupling with some
optical excitations is a more practical scheme.

IV. CONCLUSION

In conclusion, we performed CMC/PIMC simulations
combined with a Landau-type effective Hamiltonian based on
first-principles calculations. Our results show that the struc-
tural phase transition of BMO at ∼130 K is an improper
transition from a nonpolar P63/mmc phase to a polar P63cm
phase. The local structure change of BMO during this tran-
sition is unconventional due to the fact that the amplitude
order parameter Q of the K3 mode is order-disorder like, but
the phase � is displacive. At low T s, NQEs can induce a
Goldstone-like mode with the help of strain, which could
be detected by light-matter interactions. Like the quantum
paraelectric phase, we believe that BMO is another example

in which quantum fluctuations of nuclei induce novel states in
condensed matters, even when it is ferroelectric. We hope this
discovery can stimulate more experimental and theoretical
studies on BMO, and on new states of matter originating from
the quantum nature of nuclei in a wider range of condensed
matter systems.
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