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Multiterminal Josephson junctions constitute engineered topological systems in arbitrary synthetic dimensions
defined by the superconducting phases. Microwave spectroscopy enables the measurement of the quantum
geometric tensor, a fundamental quantity describing both the quantum geometry and the topology of the
emergent Andreev bound states in a unified manner. In this work we propose an experimentally feasible and
scalable multiterminal setup of N quantum dots connected to N + 1 superconducting leads which allows us to
deterministically study nontrivial topology in terms of the Chern number of the noninteracting ground state.
An important result is that the nontrivial topology in a linear chain appears beyond a threshold value of
the nonlocal proximity-induced pairing potential which represents the novel theoretical key ingredient of our
proposal. Moreover, we generalize the microwave spectroscopy scheme to the multiband case and show that the
elements of the quantum geometric tensor of the noninteracting ground state can be experimentally accessed
from the measurable oscillator strengths at low temperature.
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I. INTRODUCTION

The concept of topology plays an important role in modern
branches of theoretical physics by explaining the quantized
nature of certain physical phenomena. The pursuit to find
novel types of topologically nontrivial systems providing
quantized observables classified by integers has created a
new research field called topological band theory [1]. Since
then, a huge variety of topological quantum matter has been
predicted and discovered such as topological insulators [2,3],
topological semimetals [4], topological superconductors [5],
as well as non-Hermitian (e.g., open/dissipative) topological
systems [6]. Out of these, the superconducting systems are
also promising platforms for topologically protected quantum
computation that relies on non-Abelian exchange statistics,
i.e., braiding, of Majorana zero modes appearing at the
Fermi energy [7–9] and their appearance was recently ver-
ified experimentally [10]. Furthermore, qubits based on the
Andreev bound states (ABS) appearing inside a Joseph-
son junction have also been proposed [11,12]. These bound
states can be experimentally accessed and coherently manipu-
lated by microwave [13–16], tunneling [17], and supercurrent
spectroscopy [18] if the junction is embedded in an rf super-
conducting quantum interference device (SQUID).

More recently, multiterminal Josephson junctions (MJJs)
consisting of many superconducting terminals have been the-
oretically investigated and shown to exhibit topologically
nontrivial physics [19–35]. In such multiterminal systems,
topology emerges in the synthetic space of superconducting
phases and the integer-valued Chern number can mani-
fest itself in a quantized transconductance between two

terminals [22–28,32,34]. The advantage of these systems is
that, in principle, an arbitrary number of synthetic dimen-
sions can be implemented by simply increasing the number of
superconducting leads and that building blocks can be conven-
tional materials, although also topological superconductors
hosting Majorana zero modes have been studied in this con-
text [27,32–34]. Moreover, it has been recently suggested to
use microwave spectroscopy to measure the more fundamen-
tal quantum geometric tensor of ABS, which provides both
the information about the geometry of the state manifold
and the topological information contained in the Berry cur-
vature [30]. While the Chern number follows directly from
the local Berry curvature by a simple integration, the local
metric tensor carries important information on, for instance,
energy fluctuations and the noise spectral function [36,37], as
well as quantum phase transitions [38], wave packet dynam-
ics [39,40], the superfluid weight [41–43], energy corrections
of excitons [44], the orbital magnetic susceptibility [45–47],
and magnetic exchange constants [48]. Finally, it is also pos-
sible to strongly drive topologically trivial Josephson systems
to eventually generate nontrivial (Floquet) topology [49,50].

So far, many experiments to measure quantum geometry
(i.e., the Berry curvature and/or the quantum metric) and
the related topology have already been successfully carried
out in, e.g., ultracold fermionic atoms [51,52], supercon-
ducting qubits and qutrits [53,54], superconducting transmon
qubits [55], superconducting quantum circuits [56], qubits
in NV centers in diamond [57], high-finesse planar micro-
cavities [58], and coupled fiber loops [59], the last two
representing examples of the emerging field of topological
photonics [60].
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FIG. 1. Model of the superconductor–quantum dot chain. The chain consists of N quantum dots (each with on-site energy ε j , j = 1, . . . , N)
which are connected to N + 1 s-wave superconducting leads (each with a pairing phase ϕk , k = 0, . . . , N). The couplings between the quantum
dots are wl,l+1 (l = 1, . . . , N − 1), while the couplings between the quantum dots and the superconducting leads are t j, j−1 and t j j .

Additional interesting directions are topological fermion-
parity [61] and Cooper-pair pumps [62–66], as well as
Josephson tunnel circuits [67–69], in which Weyl singularities
in parameter space are responsible for a quantized adia-
batic transfer of single charges (charge 1e) and Cooper pairs
(charge 2e).

Although recently a diffusive three-terminal MJJ in a
double-SQUID configuration has been both experimentally
and theoretically investigated on its topological real-space
properties [70] followed by a detailed theoretical study [71],
it is still challenging to create MJJs [17,72]. Furthermore,
despite the fact that first experiments towards ballistic MJJs
have been performed [73–75], the more general theoreti-
cal proposals of MJJs discussed above are expected to be
quite challenging to realize since the necessary space for
experimental control gates decreases as the number of super-
conducting terminals increases. Such circular arrangements of
the terminals will eventually have an adverse effect on the
scalability of these systems.

In this work we propose a linear design of an MJJ as
an alternative and scalable device to enable the deterministic
study quantum geometry and topology in topological Joseph-
son matter. This setup consists of a chain of quantum dots
which are coupled to superconducting leads, as presented in
Fig. 1. We think that this system is easier to realize and manip-
ulate in experiments since there is enough space from below
for additional necessary control gates and it could be im-
plemented with already available ingredients such as carbon
nanotubes or semiconducting nanowires contacted by super-
conductors [17,76–80]. Moreover, we expect that it will be
straightforward to extend the length of the chain and, hence,
increase the number of dots and leads at will. We will show
that such a system allows for the emergence of topologically
nontrivial ABS and, therefore, represents an ideal platform
to experimentally study quantum geometry and topology in
a deterministic way, in contrast to prior proposals based on
statistical methods [22,24,26]. We will also show how to apply
microwave spectroscopy in such multiband systems to mea-
sure the quantum geometry of the noninteracting ground state
(GS) as a whole, which is important for (quantized) quantum
transport phenomena due to the collection of occupied single-
particle states.

The rest of the paper is organized as follows: In Sec. II
we introduce and investigate the effective low-energy Hamil-
tonian of a linear chain of N dots coupled to N + 1
superconductors. We also define the topological invariant of
the noninteracting GS, i.e., the Chern number, and analyze the
effects of the various parameters of this model on the topologi-
cal phases of this system. In Sec. III we discuss the application

of microwave spectroscopy in such systems. Importantly, we
find that, although the quantum geometry of the individual
ABS is inaccessible at zero temperature, the topology and
the quantum geometry of the noninteracting GS formed by
many occupied fermionic states can be accessed even in the
multiband case. We discuss our findings and conclude our
work in Sec. IV. Further details of derivations can be found
in Appendixes A, B, and C.

II. EFFECTIVE LOW-ENERGY MODEL AND TOPOLOGY

As described above, we start by considering a linear chain
of N + 1 BCS superconducting leads connected to N quan-
tum dots as shown in Fig. 1. Each of the quantum dots is
spin degenerate with an on-site energy ε j ( j = 1, . . . , N ) and
each s-wave superconductor has a pairing potential �k with
a pairing phase ϕk (k = 0, . . . , N ). The dot j is coupled to
two neighboring superconducting leads j − 1 and j via the
hoppings t j, j−1 and t j j , respectively. To be more general, we
include the effect of a direct tunneling between the dots with-
out passing through the superconductors, which is described
by a direct coupling wl,l+1 (l = 1, . . . , N − 1) between the
dots l and l + 1. By integrating out the subsystem of the
superconducting leads and by considering the limit of large
superconducting gaps �k → ∞, we obtain an effective low-
energy Hamiltonian describing the quantum dots proximity
coupled to the superconductors. The derivation of the effective
Hamiltonian of our model is presented in Appendix A.

The resulting Hamiltonian has the form Heff = d†Ĥ (N )
eff d,

where the 2N × 2N block-tridiagonal matrix Hamiltonian is
given by

Ĥ (N )
eff =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ĥ1 V̂12 0 · · · 0 0
V̂12 Ĥ2 V̂23 · · · 0 0
0 V̂23 Ĥ3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · ĤN−1 V̂N−1,N

0 0 0 · · · V̂N−1,N ĤN

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1)

which is written in the basis defined by the 2N-dimensional
Nambu spinor d† = (d†

1↑, d1↓, d†
2↑, d2↓, . . . , d†

N↑, dN↓), with

d (†)
jσ being the annihilation (creation) operator of an electron

with spin σ ∈ {↑,↓} on the jth dot. The 2 × 2 Nambu blocks
are given by

Ĥj =
(

ε j z j

z∗
j −ε j

)
, V̂l,l+1 =

(
wl,l+1 zl,l+1

z∗
l,l+1 −wl,l+1

)
, (2)
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FIG. 2. (a) ABS energies εA,−3, . . . , εA,3 (from bottom to top) for N = 3 dots. Energy bands with the same color represent PH-symmetric
ABS with energies εA,± j . Parameters: ε1 = −ε2 = ε3 = −�L/2, ϕ0 = 0, ϕ3 = π , w = 0.2 �L, �NL = 0.8 �L. (b) Locations of the four Weyl
points ϕW ∈ T 3 for which εA,±1(ϕW ) = 0 for the same parameters as in (a). The color indicates the topological charge of the Weyl points. The
two blue Weyl points in the ϕ3 = π plane are visible as zero-energy band crossings in (a). (c) Topological phase diagrams of the ground-state
Chern number C (GS)

12 for N = 3 dots for different values of the direct tunneling w between the dots (columns) as a function of the phase ϕ3.
The upper row shows the phase diagram as a function of the nonlocal coupling �NL for fixed ε2 = �L/2, while the lower row shows it as a
function of the central dot level ε2 for fixed �NL = 0.8 �L. All other parameters are the same as in (a). The dashed line with blue and red dots
in the phase diagrams for w = 0.2 �L mark the locations of the planes with fixed ϕ3 in which the Weyl points of the same color appear in (b).

where the effective local and nonlocal proximity-induced pair-
ing potentials on the dots are defined as

z j = �
( j−1)
j eiϕ j−1 + �

( j)
j eiϕ j , (3a)

zl,l+1 = �
(l )
l,l+1eiϕl , (3b)

with �
(k)
j = πN0t2

jk and �
(l )
l,l+1 = πN0 pltll tl+1,l , respectively,

where N0 is the normal density of states at the Fermi energy.
In passing by, we modified the nonlocal pairings by dimen-
sionless factors pl ∈ [0, 1] motivated by experiments in which

typically �
(l )
l,l+1 <

√
�

(l )
l �

(l )
l+1 [78,79]. This modification allows

us to treat the nonlocal couplings as independent parameters
from the local ones. In general, the parameters pl modifying
the nonlocal couplings �

(l )
l,l+1 depend on the geometrical de-

tails of the contacts as well as the coherence length of the
Cooper pairs [81,82].

Finally, as in a system of N + 1 superconducting leads only
N superconducting phases are independent, gauge invariance
allows us to set one of the superconducting phases to zero.
We will consider ϕ0 = 0 in the following as a reference and
the remaining N superconducting phases ϕ = (ϕ1, . . . , ϕN ) ∈
[0, 2π )N define an N-dimensional periodic compact space TN

(N torus) in analogy to the quasimomenta in a periodic crystal
with a first Brillouin zone.

For N quantum dots coupled to N + 1 superconducting
leads in the low-energy limit, there are 2N ABS. Defining
the sets of labels D± = {±1, . . . ,±N} for occupied (D−) and
empty (D+) states at zero temperature, the 2N ABS |ψn〉
(n ∈ D− ∪ D+) satisfy Ĥ (N )

eff |ψn〉 = εA,n|ψn〉, where εA,n is the
energy of the nth ABS. In the following we will consider
the ABS being ordered as εA,−N � · · · � εA,−1 � 0 � εA,1 �
· · · � εA,N without loss of generality.

The 2N ABS come in N particle-hole (PH) symmetric pairs
and fulfill |ψ− j〉 = P(N )|ψ j〉 ( j ∈ D+), where P(N ) = i(1(N ) ⊗
τ2)K is the operator of PH symmetry, K is complex conjuga-
tion, 1(N ) is the N × N identity matrix, and τ2 is the second
Pauli matrix in Nambu space. Furthermore, the energies of a
PH-symmetric pair are related by εA,− j = −εA, j since P(N )

satisfies the anticommutation relation {Ĥ (N )
eff , P(N )} = 0.

Due to the large number of parameters, we choose equal
local couplings �

(k)
j = �L, equal nonlocal couplings �

(l )
l,l+1 =

�NL, and equal interdot couplings wl,l+1 = w for simplicity.
As an example, we show the ABS for N = 3 dots in Fig. 2(a),
which also shows that this system allows for the appearance
of Weyl singularities, i.e., points of degeneracy ϕW ∈ T 3 at
which two energy bands cross [Fig. 2(b)]. In this case we
have set the energies of the quantum dots equal in magnitude
with an alternating sign. However, Weyl singularities will also
appear in more general situations. As we will see below, Weyl
points for which εA,±1(ϕW) = 0 are responsible for topologi-
cal phase transitions between regions of different values of the
Chern number of the GS of the system.

The superconducting phases ϕ define N synthetic U (1)
gauge fields for which we define gauge connection 1-forms
A(n) = ∑N

α=1 a(n)
α dϕα for each of the ABS |ψn〉, where a(n)

α =
i〈ψn|∂αψn〉 is the (Abelian) Berry connection [83] and ∂α ≡
∂/∂ϕα . The gauge-invariant curvature 2-form F (n) of the
nth single-particle state is defined as the exterior derivative
of A(n), i.e., F (n) = dA(n) = (1/2)

∑N
α,β=1 f (n)

αβ dϕα ∧ dϕβ ,

where f (n)
αβ = ∂αa(n)

β − ∂βa(n)
α is the (Abelian) Berry curva-

ture [84]. Finally, the first Chern numbers of an ABS |ψn〉 are
calculated as

c(n)
αβ = 1

2π

∫ 2π

0

∫ 2π

0
f (n)
αβ dϕα dϕβ, (4)
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which are defined by an integration in the (ϕα, ϕβ ) subplane
of the N-torus TN . Note that, due to PH symmetry, we have
a(− j)

α = −a( j)
α and, consequently, f (− j)

αβ = − f ( j)
αβ and c(− j)

αβ =
−c( j)

αβ . We use the numerical algorithm developed by Fukui,
Hatsugai, and Suzuki in Ref. [85] for a stable and gauge-
independent calculation of the Chern numbers.

While the topological properties of an ABS |ψn〉 in terms of
the Chern numbers c(n)

αβ is encoded in its local Berry curvature

f (n)
αβ , the full quantum geometry of each of these ABS is

described by the local quantum geometric tensor (QGT) [86]

q(n)
αβ = 〈∂αψn|(1 − |ψn〉〈ψn|)|∂βψn〉. (5)

In particular, we obtain the (Fubini-Study) metric tensor
g(n)

αβ = Re(q(n)
αβ ) from the real part of the QGT that provides

a measure of distance ds2 = ∑N
α,β=1 g(n)

αβdϕαdϕβ on the nth
ABS manifold of physical states, while the Berry curvature
f (n)
αβ = −2 Im(q(n)

αβ ) is obtained from the imaginary part of the
QGT that describes the geometric phase of a physical quantum
state.

The noninteracting GS of the system is defined by the col-
lection of all occupied single-particle states below the Fermi
energy, i.e., the N ABS with energies εA, j � 0 for j ∈ D−.
As shown in Appendix B, the metric tensor and the Berry
curvature of the noninteracting GS can be constructed from
the single-particle contributions as

G(GS)
αβ =

∑
j∈D−

g( j)
αβ −

∑
j,k∈D−

j �=k

〈∂αψ j |ψk〉〈ψk|∂βψ j〉, (6a)

F (GS)
αβ =

∑
j∈D−

f ( j)
αβ . (6b)

While the result for the Berry curvature F (GS)
αβ is already well

known, the counterintuitive result for the metric tensor G(GS)
αβ

shows that it is not a simple sum over the metric tensors of the
individual single-particle states.

As a direct consequence of Eqs. (4) and (6b), the Chern
number of the noninteracting GS is simply given by the sum of
all individual Chern numbers of the occupied single-particle
states, i.e.,

C(GS)
αβ =

∑
j∈D−

c( j)
αβ. (7)

Note that C(GS)
αβ only changes if there is a zero-energy cross-

ing between the two PH-symmetric ABS |ψ−1〉 and |ψ1〉.
Although there are of course Weyl points for which other
energy bands cross changing the individual Chern numbers
from, e.g., 0 to ±1, the sum of them entering C(GS)

αβ in Eq. (7)
will still be unchanged.

In order to obtain topologically nontrivial states in terms of
C(GS)

αβ , the minimal number of quantum dots in this system is
N = 3 such that there are three tunable phase differences, as
has already been discussed in Refs. [21–24,28,30]. To analyze
and discuss the stability of the topological phases for this case,
we show topological phase diagrams in Fig. 2(c) in terms
of the GS Chern number C(GS)

12 . We see that there are large
and stable regions for which nontrivial regions of C(GS)

12 �= 0
appear. This stability is due to the separation of Weyl points

ϕW of different topological charge [Fig. 2(b)]. These Weyl
points move continuously in T 3 while the parameters of the
system are changed, making these regions robust against small
fluctuations. As long as two Weyl points of different topologi-
cal charge do not meet and annihilate, topological regions will
be present.

As shown in Fig. 2(c), the first important result is that the
nontrivial topology in a linear chain appears only in the pres-
ence of a nonlocal pairing potential which represents the novel
theoretical key ingredient of our proposal. A nonzero Chern
number appears only beyond a certain threshold value of the
nonlocal pairing coupling �NL. Interestingly, we see that it
is not necessary that the quantum dots are directly coupled
(w = 0) for the Chern number to be nontrivial. For a small
coupling w = 0.2 �L we still find topologically nontrivial re-
gions. Remarkably, a larger interdot coupling of w = 2 �L

can also enhance the size of topological regions in parameter
space, although the two regions of finite Chern number are
interchanged. However, if the interdot coupling becomes too
strong (w � �L, not shown), topological regions completely
disappear since the effect of the superconductors will be neg-
ligible. In addition, we see that the nonlocal couplings �NL

can be considerably smaller than the local couplings �L and
that there is a lot of freedom in experimental tunability of,
e.g., the central dot level ε2. In particular, the lower right plot
in Fig. 2(c) shows that it is not required for the energy levels
ε j of the quantum dots to have the same magnitude with al-
ternating sign in order to obtain nontrivial topological phases.
For w = 2 �L and �NL = 0.8 �L, ε2 can be detuned even up
to ε2 ≈ −13 �L with topological regions still being present.

III. QUANTUM GEOMETRY AND MICROWAVE
SPECTROSCOPY

In the following we aim at applying the method of mi-
crowave spectroscopy described in Ref. [30] in the presence of
more than one nondegenerate pair of ABS. The single-particle
QGT in Eq. (5) of each ABS |ψn〉 can be decomposed into the
sum

q(n)
αβ =

N∑
m=−N
m �=0,n

q(nm)
αβ (8)

of nonadiabatic transition elements q(nm)
αβ =

〈∂αψn|ψm〉〈ψm|∂βψn〉.
In general, Eq. (8) implies a priori that we need to measure

all possible nonadiabatic transitions between a certain state
|ψn〉 and all the other states |ψm〉 (n �= m) by microwave
spectroscopy to construct the QGT of this particular single-
particle state |ψn〉, as sketched in Fig. 3. We will first describe
the general procedure and later discuss possible experimental
difficulties.

On the one hand, in order to measure the diagonal elements
q(nm)

αα of the QGT, we need to apply a small perturbation
(A/h̄ω � 1) to one phase ϕα → ϕα + 2A cos(ωt )/h̄ω, result-
ing in the transition (photon absorption) with a rate Rn→m,αα =
rn→m,αα δ(εm − εn − h̄ω) with the oscillator strength [30,87]

rn→m,αα = 2π

h̄
A2 q(nm)

αα (9)
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FIG. 3. Different contributions of the elements q(1m)
αβ from other

ABS with energies εA,m (m �= 0, 1) to the QGT q(1)
αβ of the ABS with

energy εA,1 according to Eq. (8).

according to Fermi’s golden rule. On the other hand, we
assume to simultaneously apply two small perturbations,
ϕα → ϕα + 2A cos(ωt )/h̄ω to one phase and ϕβ → ϕβ +
2A cos(ωt − γ )/h̄ω to another phase (α �= β ) with a fixed
phase difference γ between the two modulations, to measure
the off-diagonal elements q(nm)

αβ of the QGT. The resulting

transition rates are R(γ )
n→m,αβ = r (γ )

n→m,αβ δ(εm − εn − h̄ω) with
the oscillator strength [30,87]

r (γ )
n→m,αβ = 2πA2

h̄

{
q(nm)

αα + q(nm)
ββ + eiγ q(nm)

αβ + e−iγ q(nm)
βα

}
,

(10)
which now depends on the relative phase difference γ be-
tween the two drives. Details of the derivation of Eqs. (9)
and (10) are presented in Appendix C. By comparing Eqs. (9)
and (10) with the definition of the QGT in Eq. (8), we obtain
the relations

g(n)
αα = h̄

2πA2

N∑
m=−N
m �=0,n

rn→m,αα, (11a)

g(n)
αβ = h̄

8πA2

N∑
m=−N
m �=0,n

[
r (0)

n→m,αβ − r (π )
n→m,αβ

]
, (11b)

f (n)
αβ = h̄

4πA2

N∑
m=−N
m �=0,n

[
r (π/2)

n→m,αβ − r (−π/2)
n→m,αβ

]
. (11c)

This allows us to measure the metric tensor by linear mi-
crowave spectroscopy, i.e., modulating one phase or two
phases with γ = 0, π , while the Berry curvature follows from
circular microwave spectroscopy, i.e., modulating two phases
with γ = ±π/2.

Although this seems to be straightforward to implement,
the experimental difficulty at very low temperature is to mea-

FIG. 4. Ground-state metric tensor G(GS)
12 and Berry curvature

F (GS)
12 for N = 3 dots at ϕ3 = 0.4 π in the topological phase with

C (GS)
12 = −1 [cf. Fig. 2(c)]. The elements of the QGT are strongly

peaked for values of ϕ close to a Weyl point. The coordinates of
the Weyl point indicated in this plot are ϕW = (ϕW,1, ϕW,2, ϕW,3) ≈
(1.603, 0.781, 0.384)π [cf. lower red dot in Fig. 2(b)]. The visible
range of values of the elements of the QGT has been limited from
−5 to +5 to make the overall structure for small values visible. In
fact, the values of the elements of the QGT at the point (ϕW,1, ϕW,2)
are exceeding ±800. Parameters: �NL = 0.8 �L, w = 0.2 �L, ε1 =
−ε2 = ε3 = −�L/2, ϕ0 = 0.

sure the transitions between two occupied or two empty states,
respectively. To overcome this obstacle, one could either per-
form the experiment at sufficiently high temperatures, for
which previously filled (empty) states get partially depop-
ulated (populated), or one could use pulses to empty/fill a
certain state before measuring the transition.

Fortunately, for low-temperature quantum transport, the
experimentally relevant quantity is the QGT of the GS
Q(GS)

αβ = G(GS)
αβ − iF (GS)

αβ /2 which, in the noninteracting case,
can be constructed from the elements in Eq. (11) by means
of Eq. (6). The resulting Berry curvature and metric tensor
of the GS, F (GS)

αβ and G(GS)
αβ , respectively, are still accessible

via microwave spectroscopy even at zero temperature and the
result simply reads (see Appendix C for details)

G(GS)
αα = h̄

2πA2

∑
j∈D−

∑
k∈D+

r j→k,αα, (12a)

G(GS)
αβ = h̄

8πA2

∑
j∈D−

∑
k∈D+

(
r (0)

j→k,αβ
− r (π )

j→k,αβ

)
, (12b)

F (GS)
αβ = h̄

4πA2

∑
j∈D−

∑
k∈D+

(
r (π/2)

j→k,αβ
− r (−π/2)

j→k,αβ

)
, (12c)

which shows that, indeed, only transitions from occupied
(D−) to empty states (D+) are needed. Both the GS Berry
curvature and the GS metric tensor can therefore be simply
obtained from all the experimentally accessible transitions
by using microwave spectroscopy. In Fig. 4 we show, as an
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example of Eq. (12), the metric tensor and the Berry curva-
ture of the GS for N = 3 dots in the topological region for
ϕ3 = 0.4 π in which we find a Chern number C(GS)

12 = −1 [cf.
Fig. 2(c)]. A local measurement of the elements of the QGT by
microwave spectroscopy will not only reveal the topological
phase in terms of the Chern number by integrating the Berry
curvature, it is also possible to locate Weyl points in phase
space TN for which zero-energy states are expected. In fact,
Fig. 4 shows that there are regions where the elements of the
QGT are significantly different from zero, signaling the loca-
tion of a Weyl point located at ϕW/π ≈ (1.603, 0.781, 0.384),
with the ϕ1 and ϕ2 coordinates indicated in the plots. A hint to
another Weyl point is visible as a blurred point at (ϕ1, ϕ2) ≈
(0.9, 1.5)π which is actually in a different ϕ3 = const. plane
[cf. Fig. 2(b)] and all of the Weyl points can be located by
many measurements for different fixed ϕ3. While possible
zero-energy states might be useful on its own, let us recall
here that the Chern number will be responsible for a quantized
transconductance across two terminals [22].

IV. DISCUSSION AND CONCLUSION

In this work we have proposed an experimentally feasible
system consisting of a linear chain of N quantum dots con-
nected to N + 1 s-wave superconducting leads, as shown in
Fig. 1, to study quantum geometry in topological Josephson
matter. This linear setup does not require a direct connection
between the different superconducting terminals, as opposed
to the system considered in Ref. [30], which might take
a lot of engineering effort to realize in practice. Further-
more, such quantum-dot models allow for the deterministic
study of the local quantum geometry in topological Joseph-
son matter in contrast to prior proposals based on statistical
methods [22,24,26].

We have derived an effective low-energy Hamiltonian of
the chain, presented in Eq. (1), which reveals large topological
regions in terms of the integer-valued Chern number and,
therefore, leaves large experimental freedom for the concrete
values of the various system parameters to study quantum
geometry and topology in the synthetic space of N inde-
pendent superconducting phases (cf. Fig. 2). In particular, as
discussed in Fig. 2(c), it is also not necessary for the dots
to be directly coupled (w = 0) and it turns out that a larger
value of the direct coupling can even lead to an enhancement
of the robustness of the topological phase (w = 2 �L). We
furthermore believe that this or similar engineered systems
also provide useful and easily scalable condensed-matter re-
alizations to study higher-dimensional topological invariants
such as, e.g., higher-dimensional Chern numbers [88–99] or
the so-called Dixmier-Douady invariants [100–104], since the
synthetic dimension N of the space of superconducting phases
TN scales with the number of superconducting leads which
can be, in principle, arbitrary.

Moreover, we have worked out the insightful connection
between the QGT of single-particle ABS and the QGT of the
corresponding noninteracting GS. At this point we want to
stress that this connection is relevant to any physical system
hosting multiple energy bands. As only the geometrical prop-
erty of the GS is of particular importance for low-temperature
experiments, we have shown that, although the QGT of an

individual ABS cannot be accessed without further prepara-
tion, the QGT of the GS as a whole as presented in Eq. (12)
is still accessible by microwave spectroscopy from the os-
cillator strengths of multiple absorption lines. In this regard
we have generalized the previously discussed application of
microwave spectroscopy to measure the QGT of topological
Josephson matter in Ref. [30] to the case of the presence
of multiple ABS. We emphasize that this method provides
an alternative way to measure the GS topology beyond the
already mentioned transconductance measurements originally
proposed in Ref. [22]. Furthermore, microwave spectroscopy
provides a tool to gain access to the local QGT and makes it
possible to localize the position of zero-energy states through
the measurement of Weyl points in phase space (cf. Fig. 4).

Since it is based on quantum dots, our system provides an
ideal starting point to study the effect of Coulomb interactions
on the geometry and topology of the GS. Furthermore, it may
be relevant for concrete experiments to study the effect of a
finite superconducting gap, which can be of the order of the
tunneling [78,79], and the influence of the continuum [28,105]
on the quantum geometry of the GS, which is not captured in
our low-energy theory at infinite gap. Finally, the general role
of a finite temperature and dissipation on both quantum geom-
etry and topology remains an open question, both theoretically
and experimentally [106–109], and it will be interesting to
apply these concepts to the proposed system in the future.
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APPENDIX A: EFFECTIVE HAMILTONIAN FOR N DOTS

Here we derive the effective Hamiltonian of N dots con-
nected to N + 1 superconducting terminals as sketched in
Fig. 1. Due to the inclusion of superconductivity, we start by
defining a set of Pauli matrices (τ1, τ2, τ3) in Nambu space.
The starting Hamiltonian reads

H = HD + HS + HDS. (A1)

The N dots and their couplings are described by HD =
d†ĤDd , where the 2N × 2N matrix Hamiltonian is given by

ĤD =

⎛
⎜⎜⎜⎜⎜⎜⎝

ε1 w12 0 · · · 0 0
w12 ε2 w23 · · · 0 0
0 w23 ε3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · εN−1 wN−1,N

0 0 0 · · · wN−1,N εN

⎞
⎟⎟⎟⎟⎟⎟⎠

⊗ τ3,

(A2)

with ε j being the on-site energy of dot j, w j, j+1 be-
ing the hopping energy between dots j and j + 1, and
d† = (d†

1↑, d1↓, d†
2↑, d2↓, . . . , d†

N↑, dN↓) is the Nambu spinor
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consisting of electronic annihilation (creation) operators d (†)
jσ

of spin σ =↑,↓ on dot j.
The Hamiltonian describing the N + 1 BCS su-

perconducting leads reads HS = ∑
k c†

kĤS,kck, with
c†

k = (c†
0k↑, c0(−k)↓, c†

1k↑, c1(−k)↓, . . . , c†
Nk↑, cN (−k)↓) con-

taining electronic annihilation (creation) operators c(†)
jkσ

of quasimomentum k and spin σ in lead j, and the
2(N + 1) × 2(N + 1) block-diagonal matrix Hamiltonian

ĤS,k = diag(ĤS,0k, ĤS,1k, . . . , ĤS,Nk). (A3)

Here ĤS, jk = ξ jkτ3 + � jeiϕ jτ3τ1, where � j and ϕ j are the
superconducting pairing potential and phase, respectively, and
ξ jk is the normal state dispersion in each lead.

Finally, the coupling between the dots and neighboring
superconducting leads is given by

HDS =
∑

k

(d†V̂DSck + H.c.), (A4)

with the 2N × 2(N + 1) matrix coupling

V̂DS =

⎛
⎜⎜⎜⎜⎝

t10 t11 0 0 · · · 0 0
0 t21 t22 0 · · · 0 0
0 0 t32 t33 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · tN,N−1 tNN

⎞
⎟⎟⎟⎟⎠⊗ τ3

(A5)

and the hopping energy t jk between dot j and lead k.
We use the Green’s function (GF) technique to derive an

effective Hamiltonian of the subsystem of the dots. From
ĝS, jk = (ε − ĤS, jk )−1, we find the 2 × 2 GF of the jth
lead as

ĝS, jk = ε + ξ jkτ3 + � jeiϕ jτ3τ1

ε2 − ξ 2
jk − �2

j

. (A6)

Since the dots and hoppings do not depend on quasimomen-
tum k, we sum over all quasimomenta and define ĝS, j =∑

k ĝS, jk. Turning the summation into an energy integration
in the wide-band limit via

∑
k → N0

∫
dξ jk, with N0 being the

normal state density of states at the Fermi energy, we obtain

ĝS, j = −πN0
ε + � jeiϕ jτ3τ1√

�2
j − ε2

� j→∞−→ −πN0eiϕ jτ3τ1, (A7)

where we assume that the pairing potentials are larger than all
relevant energy scales. Finally, the bare 2(N + 1) × 2(N + 1)
matrix GF of the subsystem of the superconducting leads is
given by the block-diagonal matrix

ĝS = diag(ĝS,0, . . . , ĝS,N ), (A8)

written in the basis c† = (c†
0, . . . , c†

N ) = ∑
k c†

k.
Formally, the bare 2N × 2N matrix GF of the dots with

their couplings is given by ĝD = (ε − ĤD)−1. The explicit
form of ĝD is not needed for the following derivation.

We define an effective matrix Hamiltonian Ĥ (N )
eff from the

dressed GF of the 2N × 2N dot subsystem, i.e., ĜD = (ε −
Ĥ (N )

eff )−1, which is the solution of the Dyson equation ĜD =
ĝD + ĝD�̂DĜD, with the self-energy �̂D = V̂DS ĝS V̂ †

DS. Using
the formal definition of ĝD, we obtain the solution Ĥ (N )

eff =

ĤD + �̂D which describes the dots proximity coupled to the
superconductors. Finally, the effective low-energy Hamilto-
nian is

Heff = d†Ĥ (N )
eff d = HD + HLP + HNLP, (A9)

with the local and nonlocal pairings (LP and NLP) originating
from the self-energy �̂D given by

HLP =
N∑

j=1

d†
j

(
�

( j−1)
j eiϕ j−1τ3 + �

( j)
j eiϕ jτ3

)
τ1d j , (A10a)

HNLP =
N−1∑
j=1

�
( j)
j, j+1 (d†

j e
iϕ jτ3τ1d j+1 + d†

j+1eiϕ jτ3τ1d j ),

(A10b)

with �
(k)
j = πN0t2

jk , �
(k)
j, j+1 = πN0t jkt j+1,k , and the local

Nambu spinors d†
j = (d†

j↑, d j↓). Equation (A9), together with
Eq. (A10), represents the effective Hamiltonian presented in
Eq. (1) in Sec. II of the main text.

APPENDIX B: QUANTUM GEOMETRY OF GENERAL
FERMIONIC n-PARTICLE STATES

For n ∈ N, let |ψ j〉, j ∈ {1, . . . , n}, be single-particle states
with their individual single-particle quantum geometric ten-
sors (QGTs)

q( j)
αβ = 〈∂αψ j |(1 − |ψ j〉〈ψ j |)|∂βψ j〉, (B1)

their Berry curvatures f ( j)
αβ = −2 Im(q( j)

αβ ), and their (Fubini-

Study) metric tensors g( j)
αβ = Re(q( j)

αβ ). The different single-
particle states shall be orthonormalized, i.e., 〈ψ j |ψk〉 = δ jk .
Furthermore, let

|�n〉 = 1√
n!

∑
P

(−1)p(P ) P[|ψ1〉 ⊗ · · · ⊗ |ψn〉] (B2)

be the corresponding general antisymmetric noninteracting
n-particle fermionic state, in which we sum over all n! dif-
ferent permutations with the permutation operator P and the
number of transpositions p(P ) of a particular permutation.
How are the single-particle QGTs related to the corresponding
noninteracting n-particle QGT

Q(n)
αβ = 〈∂α�n|(1 − |�n〉〈�n|)|∂β�n〉 (B3)

and, in particular, what are the corresponding relations to
the Berry curvature F (n)

αβ = −2 Im(Q(n)
αβ ) and the metric tensor

G(n)
αβ = Re(Q(n)

αβ ) of the n-particle state |�n〉?
After a lengthy but straightforward calculation, the final

result reads

G(n)
αβ =

n∑
j=1

g( j)
αβ −

n∑
j,k=1
j �=k

〈∂αψ j |ψk〉〈ψk|∂βψ j〉, (B4a)

F (n)
αβ =

n∑
j=1

f ( j)
αβ , (B4b)

which is also presented in Eq. (6) in Sec. II of the main text
for the GS of the system that contains N occupied single-
particle ABS. While the result for the metric tensor reveals a
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nontrivial and less intuitive relation, the result for the Berry
curvature can be understood more intuitively and matches
the expected result. On an intuitive level, suppose that the
single-particle states acquire the Berry phases φ j accord-
ing to |ψ j〉 �→ eiφ j |ψ j〉 after a cyclic evolution in parameter
space [83]. Then, the evolution of the corresponding n-particle
state results in

|�n〉 �→ ei�n |�n〉 (B5)

according to the definition in Eq. (B2), where the Berry phase
�n = ∑n

j=1 φ j is the sum of the individual Berry phases φ j .
This directly translates to the Berry curvature by means of
Stokes’ integral theorem.

As a direct consequence of Eq. (B4b), the Chern number
of the GS is simply given by the sum of all individual Chern
numbers of the N occupied single-particle states as expected,
i.e.,

C(GS)
αβ =

−1∑
j=−N

c( j)
αβ, (B6)

which is also the result presented in Eq. (7) in Sec. II of the
main text.

APPENDIX C: MICROWAVE SPECTROSCOPY OF THE
QUANTUM GEOMETRY OF THE GROUND STATE

For the diagonal elements, q(n)
αα = g(n)

αα , we need to apply a
perturbation to one phase ϕα → ϕα + 2A cos(ωt )/h̄ω, result-
ing the transition rate Rn→m,αα = rn→m,αα δ(εm − εn − h̄ω)
with the oscillator strength [30,87]

rn→m,αα = 2πA2
∣∣〈ψm|(∂αĤ (N )

eff

)|ψn〉
∣∣2

h̄(εm − εn)2
(C1)

according to Fermi’s golden rule. In order to measure
the off-diagonal elements of the QGT q(n)

αβ for α �= β, we

need to simultaneously apply the perturbations ϕα → ϕα +
2A cos(ωt )/h̄ω and ϕβ → ϕβ + 2A cos(ωt − γ )/h̄ω with a
phase difference γ , resulting in the transition rates R(γ )

n→m,αβ =
r (γ )

n→m,αβ δ(εm − εn − h̄ω) with the oscillator strength [30,87]

r (γ )
n→m,αβ = 2πA2

∣∣〈ψm|(∂αĤ (N )
eff + eiγ ∂βĤ (N )

eff

)|ψn〉
∣∣2

h̄(εm − εn)2
(C2)

according to Fermi’s golden rule. Note that r (γ )
n→m,αβ =

r (−γ )
m→n,αβ by definition. Using the identities

〈∂αψn|ψm〉 = −〈ψn|∂αψm〉, (C3a)

〈ψn|
(
∂αĤ (N )

eff

)|ψm〉 = (εn − εm)〈∂αψn|ψm〉, (C3b)

for n �= m, we obtain

rn→m,αα = 2πA2

h̄
q(nm)

αα , (C4a)

r (γ )
n→m,αβ = 2πA2

h̄

{
q(nm)

αα + q(nm)
ββ + eiγ q(nm)

αβ + e−iγ q(nm)
βα

}
,

(C4b)
which are exactly Eqs. (9) and (10) as presented in Sec. III
of the main text. Finally, for α �= β, this yields the useful
identities

Re
(
q(nm)

αβ

) = h̄

8πA2

(
r (0)

n→m,αβ − r (π )
n→m,αβ

)
, (C5a)

Im
(
q(nm)

αβ

) = − h̄

8πA2

(
r (π/2)

n→m,αβ − r (−π/2)
n→m,αβ

)
. (C5b)

At zero temperature, the GS is given by an (antisymmetric)
combination of all N occupied single-particle states up to the
Fermi energy, as generally defined in Eq. (B2). We now use
the general result in Eq. (B4) to relate the measured oscillator
strengths from microwave spectroscopy to the Berry curvature
F (GS)

αβ and the metric tensor G(GS)
αβ of the ground state.

For the Berry curvature we obtain

F (GS)
αβ

(B4b)=
−1∑

j=−N

f ( j)
αβ

(8)= −2
−1∑

j=−N

N∑
k=−N
k �=0, j

Im
(
q( jk)

αβ

) (C5b)= h̄

4πA2

−1∑
j=−N

N∑
k=−N
k �=0, j

(
r (π/2)

j→k,αβ
− r (−π/2)

j→k,αβ

)

= h̄

4πA2

⎡
⎢⎢⎢⎢⎢⎢⎣

−1∑
j,k=−N

k �= j

(
r (π/2)

j→k,αβ
− r (−π/2)

j→k,αβ

)
︸ ︷︷ ︸

= 0, Eq. (C2)

+
−1∑

j=−N

N∑
k=1

(
r (π/2)

j→k,αβ
− r (−π/2)

j→k,αβ

)
⎤
⎥⎥⎥⎥⎥⎥⎦

= h̄

4πA2

−1∑
j=−N

N∑
k=1

(
r (π/2)

j→k,αβ
− r (−π/2)

j→k,αβ

)
, (C6)

which is the one presented in Eq. (12c) in Sec. III of the main text. For the metric tensor we obtain

G(GS)
αβ

(B4a)=
−1∑

j=−N

g( j)
αβ −

−1∑
j,k=−N

j �=k

〈∂αψ j |ψk〉〈ψk|∂βψ j〉 (8)=
−1∑

j=−N

N∑
k=−N
k �=0, j

Re(q( jk)
αβ ) −

−1∑
j,k=−N

k �= j

q( jk)
αβ

=
−1∑

j=−N

N∑
k=−N
k �=0, j

Re(q( jk)
αβ ) − 1

2

−1∑
j,k=−N

k �= j

(
q( jk)

αβ + q(k j)
αβ

)
︸ ︷︷ ︸

2 Re(q( jk)
αβ )

=
−1∑

j=−N

N∑
k=1

Re
(
q( jk)

αβ

)
. (C7)
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In both cases we see that we only need to measure transitions between occupied and empty states. Finally, we get for the diagonal
and off-diagonal elements

G(GS)
αα

(C4a)= h̄

2πA2

−1∑
j=−N

N∑
k=1

r j→k,αα, (C8a)

G(GS)
αβ

(C5a)= h̄

8πA2

−1∑
j=−N

N∑
k=1

(
r (0)

j→k,αβ
− r (π )

j→k,αβ

)
, (C8b)

which are the relations presented in Eqs. (12a) and (12b), respectively, in Sec. III of the main text.
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