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Intervortex forces in competing-order superconductors
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The standard Ginzburg-Landau model of competing-order superconductors, applicable to various high Tc

cuprates, is studied. It is observed that this model possesses two distinct species of vortex, and consequently
has two distinct integer valued topological charges. A simple point particle model of long-range forces between
(anti)vortices of any species is developed and compared with numerical simulations of the full field theory,
excellent agreement being found. Some of the results are quite counterintuitive. For example, a parameter regime
exists where vortices of one species repel both vortices and antivortices of the other.
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I. INTRODUCTION

High Tc cuprate superconductors often exhibit a supercon-
ducting ground state that is in close proximity to other ordered
ground states. The standard approach models these two phases
separately with separate order parameters. However, it has
been shown that when in close proximity the superconducting
state competes with these other orders, for example antiferro-
magnetic order [1,2] or charge order [3,4]. In particular there
has been considerable recent interest in such models, driven
by experimental results, showing the importance of charge
order in underdoped cuprates [3,5–7].

If a magnetic field is applied to such a system, vor-
tices form, locally suppressing the superconducting state in
the core. This leads to competing correlations in the core,
studied both theoretically [1,8,9] and experimentally [2,10–
12] in cuprates. In addition it has also been shown that in
YBa2Cu3Oy, vortex cores overlap before Hc2 is reached, al-
lowing charge order across the system [4].

A common tool used to study competing phases, is ex-
tending the target space to include the competing order
parameters. The extended target space comes with additional
constraints, such that suppression of the dominant phase is
matched by excitation of the competing phase. Historically
this was introduced in cuprates to model the competition be-
tween the superconducting phase and antiferromagnetic phase
as an SO(5) model. The approach considered a coupled com-
plex valued order parameter � for the superconducting phase,
and a vector valued order parameter m = (m1, m2, m3) for the
antiferromagnetic phase, and phase competition introduced
through the constraint |�|2 + |m|2 = const [1]. Hence the
composite order parameter (�, m) takes values in a four-
dimensional sphere inside R5.

Recently it has been proposed that a similar approach using
an SO(3) model, where the target space is expanded to a
two-sphere S2 ⊂ R3, can be used to model the competition
between superconductivity and charge order [13]. Restricting
a half-filled attractive Hubbard model to nearest neighbor
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hopping leads to the superconducting and charge density wave
orders becoming degenerate in energy. This suggests an S2

order parameter [14–18], formed of a superconducting com-
ponent, written as the complex field �, and charge density
wave component, written as the real field ρ. These fields
are subject to the constraint |�|2 + ρ2 = c2, such that |ρ| is
maximal where |�| vanishes, and vice versa. Hence, we will
assume that the north pole (ρ = c) and south pole (ρ = −c) of
the S2 target space correspond to two different charge density
wave orders (with different dominating sublattices), while the
equator (ρ = 0) exhibits the U (1) superconducting phase.

Note that there have been studies of such competing phase
models in uncharged systems [19–22], but such systems do
not admit finite energy vortex solutions. As we are interested
in vortices in this paper we will deal entirely with the charged
model.

We also note that the effect of competing order is of
general interest in superconductivity. It is important to under-
stand such systems and their generalizations, with a focus on
their solitonic excitations, from multicomponent systems with
density-density couplings [23] (which also exhibits nontrivial
vortex interactions) to competition with spin density waves
[24,25].

This paper will focus on the continuous effective Ginzburg-
Landau (GL) formalism proposed in Refs. [13,26], which is
derived from the attractive SO(3) Hubbard model mentioned
above. It is similar to other phenomenologically proposed
models [27–29], introduced in an attempt to model the exper-
imental observation of competing phases in charged systems.
To derive a GL model one must take the Hubbard model
and assume that anisotropy near the charge ordered, super-
conducting transition is negligible. Taking this isotropic limit
and assuming a quadratic symmetry breaking term gives fields
subject to the free energy density,

E = χ

2

∣∣∣∣
(

∇ − 2ie

h̄
A

)
�

∣∣∣∣2

+ 1

8π
|∇ × A|2

+ χ

2
|∇ρ|2 − |�|2 − (1 − δ)ρ2, (1.1)

where A is the electromagnetic gauge potential coupled to
the charged field �, and χ and δ are positive constants, δ
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representing the strength of next-nearest neighbor hopping.
As with the Hubbard model, order competition is imposed
via the constraint |�|2 + ρ2 = c2. In mathematical terms, this
is an example of a gauged sigma model, objects of strong
intrinsic interest.

The purpose of this paper is to develop a theory of the long-
range interactions between vortices in this model within the
point vortex formalism. A key observation is that the model
supports two distinct species of vortex which we call North
vortices, with ρ = c in the vortex core, and South vortices,
with ρ = −c in the vortex core, and that each of these has
an antivortex counterpart (possessing a quantum of negative
magnetic flux).

While vortices have been previously studied [13,26,30],
there has been no detailed study of the different (anti)vortex
interactions in the model. One paper briefly considered the ef-
fect that introducing charge order has on the strength of purely
superconducting interactions in the Hubbard model [31]. In
that paper, vortex interactions were approximated to be that of
a strongly type-II single component model, with a numerically
motivated exponential correction term, dependent on the value
of δ. However, in this paper we demonstrate that to understand
the interactions, one cannot separate the superconducting and
charge order components and treat them separately. We will
also show that the interactions act as Bessel functions. Our
detailed study of the interactions in the model will lead to a
typology argument, similar to the standard single component
Ginzburg-Landau model, but with additional complications
due to the multiple species of vortex.

Since the model supports two different species of vor-
tex, it possesses two integer-valued topological charges:
The total number n of magnetic flux quanta, and the
half-degree d of the map R2 → S2 defined by (x1, x2) �→
(Re�(x1, x2), Im�(x1, x2), ρ(x1, x2))/c, or, equivalently the
net numbers of North vortices k+ and South antivortices k−.
This pair of integers cannot change under any smooth defor-
mation of the fields �,ρ, Ai preserving finite total energy.

We will see that the interaction between (anti)vortices of
all types depends crucially on the coupling parameter

μ = h̄δ

2
√

2πeχc
, (1.2)

which plays a role analogous to the Ginzburg-Landau param-
eter in conventional (single component) GL theory. If μ > 1,
vortices of any species repel one another, as do antivortices
of any species, while vortices always attract antivortices. If
μ < 1, the behavior is more surprising: Like vortices attract,
as do like antivortices, but unlike vortices repel, as do unlike
antivortices, and unlike vortex-antivortex pairs. The regime
of critical coupling μ = 1 is particularly subtle with vari-
ous combinations of vortices and antivortices experiencing
no static interactions at all. The situation is summarized in
Table I. This constitutes the equivalent of the familiar typol-
ogy argument for the standard single component GL model,
where the parameter μ is now the GL parameter, determining
the interaction type. Hence for μ > 1 we call this a type-II
superconductor, for μ < 1 a type-I superconductor, and μ = 1
a critically coupled superconductor.

The rest of this paper is structured as follows. In Sec. II
we choose length, energy, and charge units to reduce the

TABLE I. Summary of interactions between (anti)vortex pairs.
N denotes North vortex, S denotes South vortex, and an overbar
denotes the corresponding antivortex. The 0 entries in the μ = 1 table
indicate (anti)vortex pairs which experience no interaction: Their
total energy is independent of their separation.

μ < 1 μ = 1 μ > 1
N N̄ S S̄ N N̄ S S̄ N N̄ S S̄

N attract attract repel repel N 0 attract repel 0 N repel attract repel attract

N̄ attract repel repel N̄ 0 0 repel N̄ repel attract repel

S attract attract S 0 attract S repel attract

S̄ attract S̄ 0 S̄ repel

GL model to a standard gauged sigma model, review its
topological properties, and construct its (anti)vortices, paying
particular attention to their asymptotics at spatial infinity. In
Sec. III we develop a theory of long-range intervortex interac-
tions by modeling vortices as solutions of the linearization of
the sigma model about its vacuum, in the presence of appro-
priate point sources at the vortex center, chosen to replicate the
vortex’s large r behavior. This models vortices as composite
point particles carrying a scalar monopole charge, inducing a
real scalar field of mass μ (roughly, the field ρ) and a magnetic
dipole moment inducing a vector field of mass 1 (roughly, Ai).
The interaction energy between pairs of such point particles is
easily computed, producing the predictions of Table I, as well
as precise asymptotic formulas for the interaction energies
valid at large separation. In Sec. IV we verify these pre-
dictions by numerically computing the interaction energy of
(anti)vortex pairs via a gradient descent energy minimization
method. Finally, Sec . V presents some concluding remarks.

II. COMPETING-ORDER VORTICES

We first choose scales to minimize the number of parame-
ters in the free energy (1.1). Let

E = λEE new − c2, xi = λxxnew
i , Ai = λAAnew

i ,

(u1 + iu2, u3) = (�/c, ρ/c),

Diu = ∂u
∂xnew

i

− Anew
i e × u, (2.1)

where e = (0, 0, 1). Then, with the choices

λE = 4πχ2c4

(
2e

h̄

)2

, λ2
x = χc2

λE
, λA = h̄

2eλx
, (2.2)

we find that

E new = 1

2
Diu · Diu + 1

2
(Bnew)2 + μ2

2
(e · u)2 (2.3)

where Bnew = ∂ new
1 Anew

2 − ∂ new
2 Anew

1 and μ is defined in Eq. (1.2).
We henceforth discard the superscript “new.”

The total energy of a pair of fields (u, A) is the integral

E =
∫
R2

Edx1dx2. (2.4)

In order for this to be finite, u, at large r (where (x1, x2) =:
r(cos θ, sin θ )), must approach the equator u3 = 0 on S2.
It need not, however, be constant: It may wind around the
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equator

u ∼ (cos nθ, sin nθ, 0) (2.5)

some integer n times. Then finite energy also implies |Du| ∼ 0
as r → ∞, so A ∼ n

r (− sin θ, cos θ ), from which, by a stan-
dard application of Stokes’s theorem one finds that the total
magnetic flux of any finite energy configuration is quantized,∫

R2
Bdx1dx2 = 2πn. (2.6)

If n 	= 0, there must be points in the plane where u1 +
iu2 = 0. Note, however, that these come in two distinct
species since u3 may take the value +1 or −1 at each such
point. Consider a point x+ where u(x+) = (0, 0, 1). This point
itself may be assigned a sign σ (x+) according to whether the
field u(x) is locally an orientation preserving (σ = +1) or
orientation reversing (σ = −1) map close to x+. The sum of
these signs over all points where u = (0, 0, 1) is an integer-
valued topological invariant of the field u,

k+ =
∑

x∈u−1(e)

σ (x), (2.7)

which we may interpret as the net excess of North vortices
over North antivortices in the field configuration. We may
similarly assign a sign σ (x−) to each point x− in the plane
at which u(x−) = (0, 0,−1). Again, σ (x−) = +1 if u(x) is
locally orientation preserving and u(x−) = −1 if it is lo-
cally orientation reversing. One should note, however, that,
while (u1, u2) is a good oriented local coordinate system for
S2 in a neighborhood of (0, 0, 1), it is anti-oriented in a
neighborhood of (0, 0,−1), so each point with σ (x−) = +1
contributes negatively to the winding of the field u about the
equator in S2. Hence, the integer-valued topological invariant
associated with the South (anti)vortex positions

k− =
∑

x∈u−1(−e)

σ (x) (2.8)

represents the net excess of South antivortices over South
vortices in the field configuration. One sees that the winding
number at spatial infinity, which determines the total magnetic
flux, is determined by k+, k− as

n = k+ − k−. (2.9)

Furthermore, the total signed area in S2 covered by the map-
ping u(x) is 2π (k+ + k−), so we may identify k+ + k− has
the half-degree of the map u : R2 → S2. The four types of
(anti)vortex supported by this model are summarized pictori-
ally in Fig. 1. We reiterate that the difference between North
and South vortices is the dominant sublattice for the charge
density wave order in the core of the vortex.

To understand the (anti)vortices in more detail, we must
numerically solve the Euler-Lagrange equations for the func-
tional E ,

Pu(−DiDiu + μ2(e · u)e) = 0, (2.10)

−∂i∂iA j + ∂ j∂iAi − e · (u × Diu) = 0, (2.11)

FIG. 1. The field values attained by the four species of
(anti)vortex. The field u(x) wraps the circle at spatial infinity once
around the equator in the direction indicated, anticlockwise for
vortices, clockwise for antivortices (viewed from above the North
pole). The (anti)vortex interior then covers either the Northern or the
Southern hemisphere once. The topological charges k+, k− measure
the number of times the field assumes the pole values (0, 0, 1) and
(0, 0, −1) respectively, counted with orientation and multiplicity.
These poles indicate two different sublattices for the charge density
wave order in the core of the (anti)vortex.

where Pu denotes projection orthogonal to u, that is, Pu(v) :=
v − (u · v)u. These are consistent with the ansatz

uN = (sin f (r) cos θ, sin f (r) sin θ, cos f (r)), (2.12)

AN = a(r)

r
(− sin θ, cos θ ), (2.13)

where the profile functions f , a, satisfy the coupled ordinary
differential equation system

f ′′ + 1

r
f ′ − (1 − a)2

r2
sin f cos f + μ2 sin f cos f = 0,

(2.14)

a′′ − 1

r
a′ + sin2 f (1 − a) = 0, (2.15)

subject to the boundary conditions f (0) = a(0) = 0, f (∞) =
π/2, a(∞) = 1. Having found f and a, we may easily con-
struct the other three species of (anti)vortex,

uS = (sin f (r) cos θ, sin f (r) sin θ,− cos f (r)),

AS = a(r)

r
(− sin θ, cos θ ),

uN̄ = (sin f (r) cos θ,− sin f (r) sin θ, cos f (r)),

AN̄ = a(r)

r
(sin θ,− cos θ ),
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FIG. 2. The profiles functions f (r) (blue curves) and a(r) (red
curves) of a North vortex at couplings μ = 2 (top), μ = 1 (middle)
and μ = 0.5 (bottom).

uS̄ = (sin f (r) cos θ,− sin f (r) sin θ,− cos f (r)),

AS̄ = a(r)

r
(sin θ,− cos θ ). (2.16)

The system (2.14), (2.15) does not appear to be inte-
grable, so we resort to numerical integration to find f , a.
Regularity at the origin requires f (r) ∼ α1r and a(r) ∼ α2r2

for some constants α1, α2. For large r, f̂ (r) := f (r) − π/2
and â(r) := a(r) − 1, being small, should be asymptotic to
decaying solutions of the linearization of the system about
( f , a) = (π/2, 1),

f̂ ′′ + 1

r
f̂ ′ − μ2 f̂ = 0, (2.17)

â′′ − 1

r
â′ − â = 0. (2.18)

Hence, at large r,

f (r) ∼ π

2
+ q

2π
K0(μr), a(r) ∼ 1 + m

2π
rK1(r), (2.19)

where K0, K1 are modified Bessel’s functions of the second
kind, and q, m are unknown constants. The factors of 2π are
included for later convenience. Our numerical strategy is to
solve (2.14), (2.15) on [r0, R], with r0 > 0 small and R large
by shooting rightwards from r0, using (α1, α2) as shooting
parameters, leftwards from R using (q, m) as shooting param-
eters, and imposing that f , a and their derivatives match at
some interior point r1 of order 1. The results of this scheme
for various values of the coupling μ are depicted in Fig. 2.
Of particular interest are the values of the constants (q, m)
as functions of μ, depicted in Fig. 3. Note that q ≡ m when
μ = 1. This is not a coincidence: The system (2.14), (2.15)
reduces to a first order system at this critical value of the
coupling,

f ′ = 1 − a

r
sin f , a′ = r cos f , (2.20)

from which it follows immediately that q ≡ m. This is a symp-
tom of the self duality (or Bogomol’nyi Prasad Sommerfield
property) enjoyed by the model at μ = 1, whose full conse-
quences are both deep and far ranging [32,33]. In this paper
we will concentrate on the case μ 	= 1, however.

FIG. 3. The large r shooting parameters q, m of the North vortex
solution as functions of the coupling μ. These may be interpreted as
the scalar monopole charge (q) and magnetic dipole moment (m) of
the corresponding point vortex.

III. THE POINT VORTEX MODEL

It is convenient to think of (anti)vortices as static solu-
tions of the Lorentz invariant model on (2 + 1)-dimensional
Minkowski space whose static energy is E , that is, the model
with Lagrangian density

L = 1

2
Dμu · Dμu − 1

4
FμνFμν − μ2

2
(e · u)2, (3.1)

where Fμν = ∂μAν − ∂νAμ, spacetime indices μ, ν run over
0, 1, 2, and the Minkowski metric has signature + − −. We
have merely extended the indices to include time compo-
nents for all derivatives and the gauge field. We emphasize
that this is a mathematical device, introducing second-order
Lorentzian dynamics. This allows us to access some tech-
niques and results familiar in the study of topological solitons
in high energy physics. We certainly do not assert that the time
dynamics defined by this relativistic extension is relevant to
competing order superconductors.

The key observation is that static vortices, far from their
core, are indistinguishable from solutions of the linearization
of the model (3.1) about the vacuum [meaning Aμ = 0, u =
(1, 0, 0)] in the presence of appropriate point sources placed
at the vortex center. Since physics is model independent, the
forces between well-separated vortices should coincide with
those between the corresponding point sources interacting via
the fields they induce in the linear theory. These are easily
computed, yielding an asymptotic formula for the interaction
energy between well-separated vortices. This underlying idea
was introduced by Manton to study long-range forces between
magnetic monopoles [34], and subsequently applied to nu-
clear Skyrmions by Schroers [35]. It was adapted to vortices
in the conventional Ginzburg-Landau model in Ref. [36], then
multicomponent vortices in Refs. [37–39].

Our first task is to identify the point sources that replicate
the vortex asymptotics, and to do this we must first rewrite
it in the gauge in which, as r → ∞, u → (1, 0, 0) in every
direction, that is, the gauge where u2 = 0 and u1 � 0. This
is accomplished by applying the singular (at r = 0) gauge
transformation (u1 + iu2, u3) �→ (e−iθ (u1 + iu2), u3). The or-
der parameter takes the form u = (cos 
, 0, sin 
) in this

014514-4



INTERVORTEX FORCES IN COMPETING-ORDER … PHYSICAL REVIEW B 103, 014514 (2021)

gauge, the vacuum is 
 = 0 and the North vortex has


(r) = f (r) − π

2
∼ q

2π
K0(μr),

(A0, A1, A2) = a(r) − 1

r
(0,− sin θ, cos θ )

∼ m

2π
(0, ∂2,−∂1)K0(r). (3.2)

These are precisely [36] the fields induced in the linearized
model

Llin = 1

2
∂μ
∂μ
 − μ2

2

2 + ρ


− 1

4
FμνFμν + 1

2
AμAμ + jμAμ (3.3)

by the static sources

ρ = qδ(x), ( j0, j1, j2) = m(0, ∂2,−∂1)δ(x), (3.4)

so our linearized model of a North vortex is a composite point
source consisting of a scalar monopole of charge qN = q,
inducing a real scalar field 
 of mass μ, and a magnetic dipole
of moment mN = m inducing a Proca field Aμ of mass 1. The
corresponding sources for the other species of (anti)vortex
follow immediately by unwinding Eq. (2.16). All are scalar
monopole/magnetic dipole composites, with charges

(qN , mN ) = (q, m), (qS, mS ) = (−q, m),

(qN̄ , mN̄ ) = (q,−m), (qS̄, mS̄ ) = (−q,−m). (3.5)

The interaction Lagrangian for a pair of sources (ρ (1), j (1)
μ ),

(ρ (1), j (1)
μ ) is

Lint =
∫
R2

(
ρ (1)
(2) + j (1)

μ Aμ
(2)

)
dx1dx2, (3.6)

where (
(2), A(2)
μ ) are the fields induced by the second source.

We apply this in the case where the sources are static scalar
monopole/magnetic dipole composites of charges (q1, m1),
(q2, m2) located at y and z, respectively. The result is a
function of s := |y − z|, the vortex separation. It may be in-
terpreted as minus the interaction energy of the source pair, so

Eint (s) = −Lint = 1

2π
[m1m2K0(s) − q1q2K0(μs)]. (3.7)

If μ > 1, the first term, representing magnetic interactions,
dominates at large s, whereas if μ < 1, the second term, rep-
resenting scalar interactions dominates. By choosing (q1, m1),
(q2, m2) from the list (3.5), we obtain long-range interaction
energies between (anti)vortices of any species. The nature of
these interactions is summarized in Table I. The zero entries
for critical coupling, μ = 1, follow from the observation that
q = m here. Our calculation establishes that the leading order
interactions for NN , SS, NS̄ and SN̄ pairs vanish in this case.
In fact, the self-duality structure can be used to prove that
the interaction vanishes exactly for these pairs [32]: Static
solutions exist with the individual vortices placed at any points
in the plane when μ = 1.

Of course, these predicted interaction potentials are based
on a leap of faith; that physics is model independent. This
particular faith allows, indeed encourages, scepticism in its

acolytes. Luckily it also admits a definitive test: We can com-
pute the energy between vortices held at a fixed separation by
numerical simulation of the original nonlinear model. This is
the subject of the next section.

IV. NUMERICAL RESULTS

How can we compute the interaction energy ENN
int (s) be-

tween two North vortices held distance s apart? Note that no
such static solution exists (unless s = 0, or μ = 1), precisely
because vortices exert forces on one another. The answer is
that we solve a constrained minimization problem for the
energy functional E : We minimize among all fields having
k+ = 2 and k− = 0 subject to the constraint that u(s/2, 0) =
u(−s/2, 0) = e. In practice, we discretize space, replacing
spatial derivatives by difference operators on a regular n1 × n2

lattice of spacing h (we used n1 = n2 = 251 and h = 0.1).
This replaces the continuum energy functional E (u, A) by a
discrete approximant Edis : Cdis → R where Cdis = (S2)n1n2 ×
(R2)n1n2 is the discretized configuration space. We then con-
struct an appropriate initial guess ui, j , Ai, j with, around the
boundary of the lattice, ui, j · e = 0 and winding 2, and

u±i0,0 = e, (4.1)

where s = 2i0h. We then minimize Edis among all points in
Cdis satisfying the constraint (4.1) using arrested Newton flow
[40] for the function Edis, but never updating u±i0,0 (or u, A
on the boundary of the lattice). This automatically produces
a solution of the Euler-Lagrange equations for our energy
functional on R2\{(±s/2, 0)} satisfying the constraint (4.1) at
the missing points. An alternative to this procedure is to solve
the Euler-Lagrange equations on R2\{(±s/2, 0)} directly, an
approach exploited for the standard GL model in [41]. Having
computed the lowest energy among all (k+, k−) = (2, 0) field
configurations with u(±s/2, 0) = e, we then subtract twice
the energy of a single North vortex to obtain ENN

int (s).
Interaction energies for any other vortex combination can

be computed similarly by modifying the constraint (4.1) and
boundary behavior of the field configuration appropriately. By
symmetry, NN ≡ N̄N̄ ≡ SS ≡ S̄S̄, NN̄ ≡ SS̄, NS ≡ N̄ S̄ and
NS̄ ≡ N̄S, so only four of the ten distinct (anti)vortex pairs
need be considered, and we can, without loss of generality,
assume that the left vortex is N . The results are depicted in
Fig. 4. They match perfectly the predictions of our simple
point vortex model.

V. CONCLUDING REMARKS

In this paper we have developed a simple point vortex
model of long-range interactions between (anti)vortices in
the usual GL model of competing-order superconductors.
The model supports two distinct species of vortex, each
with a matching antivortex, and hence there are ten different
(anti)vortex pairs possible. Symmetries reduce this to four
energetically distinct pairs: NN , NN̄ , NS, and NS̄. The point
vortex model predicts asymptotic formulas for the interaction
energy of each of these pairs, as a function of separation, with
considerable success. This allows us to make typologylike
arguments similar to those in the standard single component
GL model. The qualitative nature of the interactions depends
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FIG. 4. Plot of the interaction energies for different vortex pairs and separations Eint = E − 2E 1. The dashed lines are the point vortex
approximations given by (3.7). Note that the interactions agree with table I.

on a single parameter μ, the equivalent of the GL parameter in
the standard model. If μ < 1 (equivalent of type I) the interac-
tions display some counterintuitive features. For example, the
interaction between vortices of one species and antivortices of
the other is repulsive.

It would be interesting to study vortex lattices in this model
in an applied magnetic field. Although, for μ > 1, pure N (or
pure S) arrays are energetically favoured over NS mixtures,
if the state emerges from disorder, presumably some species
mixing is inevitable. Some work on vortex lattices has already
been done [26,31], however, there is further understanding
to be gleaned here, as even understanding the “type” of the
superconductor is subtle. In addition, for μ < 1, while it may
be preferable for superconducting domains to form rather than
vortices, as in a single band superconductor, these domains
can now be N or S domains, which will repel each other,
leading to metastable states.

Another possibility is the studying of vortex/antivortex
bound states when applying a magnetic field. While there is
previous work on vortices in superconductors [13,26,30,31],
the importance of antivortices has been completely ignored in
the literature until now.

It would also be interesting to consider specific materials
such a s YBCO. Note that while it it is challenging to actually
determine the parameter μ of a given material, it has been
suggested that YBCO [20] exhibits vortices and is type II

[26]. In this model this likely means that μ 
 1 so we have
vortex/vortex repulsion for all species.

Finally it would be particularly interesting to consider in
detail the effect of adding a small term linear in ρ to the origi-
nal Ginzburg-Landau theory, breaking the energy degeneracy
of the two CDW ground states, the upshot of which is that
(after rescaling) the energy density becomes

E = 1

2
Diu · Diu + 1

2
B2 + μ2

2
(τ − e · u)2, (5.1)

where τ is an extra small parameter. This term breaks the
symmetry between N and S vortices: If τ > 0 then S vortices
are slightly more energetically costly than N vortices (and
vice versa if τ < 0). Remarkably, when μ = 1, the model
still enjoys a self-duality structure, and N vortices exert no
net force on S antivortices. The basic point-vortex model of
intervortex forces is similar to the one developed here, in that a
point vortex still consists of a scalar monopole of some charge
q and a magnetic dipole of some moment m, but these sources
induce fields of mass

√
1 − τ 2μ and

√
1 − τ 2, and there is no

symmetry relating qN with qS or mN with mS . Introducing a
linear term has the effect of increasing the range of intervortex
forces, therefore, as well as breaking the degeneracy of N and
S vortices.
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G. A. Farias, and F. M. Peeters, Conditions for nonmonotonic
vortex interaction in two-band superconductors, Phys. Rev. B
83, 214523 (2011).

[40] M. Speight and T. Winyard, Skyrmions and spin waves in frus-
trated ferromagnets at low applied magnetic field, Phys. Rev. B
101, 134420 (2020).

[41] A. Chaves, F. M. Peeters, G. A. Farias, and M. V. Milošević,
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