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Two-gap time reversal symmetry breaking superconductivity in noncentrosymmetric LaNiC2
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We report a μSR investigation of a noncentrosymmetric superconductor (LaNiC2) in single-crystal form.
Compared to previous μSR studies of noncentrosymmetric superconducting polycrystalline and powder samples,
the unambiguous orientation of single crystals enables a simultaneous determination of the absolute value of the
magnetic penetration depth and the vortex core size from measurements that probe the magnetic field distribution
in the vortex state. The magnetic field dependence of these quantities unambiguously demonstrates the presence
of two nodeless superconducting energy gaps. In addition, we detect weak internal magnetic fields in the su-
perconducting phase, confirming earlier μSR evidence for a time-reversal symmetry-breaking superconducting
state. Our results suggest that Cooper pairing in LaNiC2 is characterized by an interorbital equal-spin pairing
model introduced to unify the pairing states of LaNiC2 and the centrosymmetric superconductor LaNiGa2.
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I. INTRODUCTION

While the formation of Cooper pairs in a superconduc-
tor is generally protected by time-reversal and inversion
symmetries, superconductivity is also exhibited by certain
materials lacking a center of inversion in their crystal struc-
ture. These so-called noncentrosymmetric superconductors
(NCSCs) have garnered a great deal of attention in the past
decade. The lack of inversion symmetry enables an anti-
symmetric spin-orbit coupling (ASOC) of the single electron
states, which facilitates mixing of spin-singlet and spin-triplet
configurations in the superconducting (SC) pair wave func-
tion [1,2]. The degree of mixing is in part dependent on the
strength of the ASOC.

There is evidence from zero-field (ZF) μSR measure-
ments that the SC states of some NCSCs break time-reversal
symmetry (TRS) [3–12]. Such appears to be the case for
the noncentrosymmetric ternary carbide compound LaNiC2,
where measurements on a polycrystalline sample show a
weak increase in the ZF-μSR relaxation rate at the SC
transition temperature (Tc) indicative of the formation of
spontaneous magnetic fields [3]. The only TRS breaking
states permitted by the low point-group symmetry (C2v) of
the orthorhombic crystal structure of LaNiC2 are those with
nonunitary spin-triplet pairing [13,14]. These allowed pairing
states are incompatible with strong ASOC and apprecia-
ble singlet-triplet mixing, and have nodes in the associated
SC energy-gap function [13,14]. However, different exper-
iments have reached very different conclusions regarding
the energy-gap structure in LaNiC2. While initial specific-
heat measurements suggested an unconventional SC gap with

point nodes [15], a conventional isotropic BCS s-wave gap
is supported by subsequent specific-heat [16] and nuclear
quadrupole resonance [17] studies, as well as a strong sup-
pression of Tc by Ce substitution for La [18]. There is also
evidence for the existence of two nodeless SC gaps in LaNiC2

from specific-heat measurements and changes in the magnetic
penetration depth with temperature, �λ(T ), measured in the
Meissner state via a tunnel diode oscillator technique [19].
Still other measurements of �λ(T ) by the same method sup-
port the earlier claim of point nodes in the SC energy gap
[20,21].

To explain experiments on LaNiC2 and the centrosymmet-
ric superconductor LaNiGa2 that indicate TRS breaking and
fully gapped behavior, a nonunitary triplet SC pairing state
has been proposed in which pairing occurs between electrons
of the same spin, but on two different orbitals [22,23]. De-
pending on the character of the two orbitals involved in this
interorbital equal-spin pairing (ESP) state, two nodeless SC
energy gaps associated with the two different values of the
Cooper pair spin (Sz =+1 and −1) may exist. If the ESP oc-
curs between electrons on different orbitals of the Ni atom, a
gap with line nodes or a single anisotropic SC energy gap may
occur [24]. Only the latter requires the noncentrosymmetric
crystal structure of LaNiC2.

In this paper, we resolve the question of the SC gap struc-
ture in LaNiC2 via μSR measurements of single crystals in
the vortex state. Two-gap superconductivity is unambiguously
identified in the magnetic field dependence of the fitted val-
ues of the absolute value of the magnetic penetration depth
(λ) and the vortex core size. To date all evidence of TRS
breaking in NCSCs by ZF-μSR has come from experiments
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on powder or polycrystalline samples via the observation of
an increase in the relaxation rate at Tc, which is rather small
compared to that detected in single crystals of TRS breaking
centrosymmetric superconductors UPt3 [25], Sr2RuO4 [26],
and PrOs4Sb12 [27]. Here we also report evidence for TRS
breaking in LaNiC2 single crystals by the detection of weak
internal magnetic fields below Tc.

II. EXPERIMENTAL DETAILS

Single crystals of LaNiC2 were grown by the Czochralski
method, as described in Ref. [28]. Heat-capacity and mag-
netization measurements indicate that bulk superconductivity
occurs with a ZF value Tc ∼2.7 K and an upper critical
magnetic field H‖a

c2 ∼1.53 kOe (see Appendix C). A sec-
ondary phase of La2Ni5C3 identified by x-ray diffraction (see
Appendix A) is present in ≈5% of the sample volume, but
is nonsuperconducting down to at least 0.11 K (see Fig. 8,
Appendix B).

The μSR experiments were performed on the M15 sur-
face muon beamline at TRIUMF using a top loading dilution
refrigerator. A mosaic of seven a-axis aligned LaNiC2 sin-
gle crystals, each ≈0.5 mm thick and six having a mass
of ≈70 mg each, were mounted on a 12.5 × 22 × 0.25 mm
pure Ag plate and attached to an Ag sample holder. To-
gether, the LaNiC2 single crystals covered ≈70% of the Ag
plate [see Fig. 1(b) inset]. Measurements in the vortex state
were performed in a transverse-field (TF) geometry [29],
with the magnetic field applied parallel to the a axis of the
LaNiC2 single crystals and transverse to the initial muon-
spin polarization P(t =0). The field was first applied above
Tc before cooling into the vortex state. To reduce the con-
tribution to the TF-μSR signal from muons stopping in the
Ag backing plate, three thin wafers of intrinsic GaAs were
used to cover the exposed area around the LaNiC2 sample—
GaAs produces no detectable muon precession signal for the
field range considered in our paper. No GaAs was used for
the ZF measurements, as this would give rise to a relaxing
signal associated with muonium (Mu ≡μ+e−) formation.
Conversely, the very small Ag nuclear moments produce no
appreciable relaxation of the ZF-μSR signal. For the ZF-μSR
experiments, P(t =0) was parallel to the a axis and stray
external magnetic fields at the sample position were reduced
to �35 mG using field compensation coils and the precession
signal of Mu in intrinsic Si as a sensitive magnetometer [30].

III. RESULTS AND DISCUSSION

Figure 1(a) shows representative TF-μSR asymmetry
spectra A(t ) displayed in a rotating reference frame. The
significant damping of the signal below Tc is due to muons
randomly sampling the spatial distribution of magnetic field
associated with a vortex lattice (VL). Gaussian apodized
Fourier transforms (FTs) of the TF-μSR signals are shown
in Fig. 1(b) and Appendix E (Figs. 12 and 13). The FT is
representative of the magnetic field distribution n(B) sensed
by muons stopping inside and outside the sample, but is broad-
ened by the apodization used to smooth out the ringing and
noise artifacts caused by the finite time range and the reduced
number of muon decay events at long times [29]. The FT

FIG. 1. (a) TF-μSR asymmetry spectra recorded above and be-
low Tc for a magnetic field of H =718 Oe displayed in a 9.03-MHz
rotating reference frame. Note, the precession frequency is related to
the local field by ν = (γμ/2π )B, where γμ/2π =13.5539 MHz/kG
is the muon gyromagnetic ratio. Also shown are fits that use Eq. (1)
below Tc (see Appendix D). (b) Fourier transform of the TF-μSR
signal for T =0.05 K. The large peak at 9.73 MHz is due to muons
stopping outside the sample. Left inset: Photograph of the LaNiC2

single crystals and GaAs wafers attached to an Ag backing plate
on an Ag sample holder. Right inset: Fourier transform of TF-μSR
signal for T =5 K.

below Tc shows a large peak due to muons stopping in the Ag
backing plate or sample holder, superimposed on an asym-
metric line shape generated by muons sensing the nuclear
moments and VL in the LaNiC2 single crystals. Below Tc, the
VL contribution to A(t ) (see Appendix D) is well described by
the following analytical Ginzburg-Landau (GL) model for the
spatial variation of field generated by a hexagonal VL [31]:

B(r) = B0(1 − b4)
∑

G

e−iG·ruK1(u)

λ2
bcG2

, (1)

where b=B/Bc2 is the ratio of the local and upper critical
magnetic fields, B0 is the average internal magnetic field,
G are the VL reciprocal-lattice vectors, K1(u) is a modified
Bessel function, u2 =2ξ 2

bcG2(1 + b4)[1 − 2b(1 − b)2], and ξbc

and λbc are the coherence length and magnetic penetration
depth associated with supercurrents flowing in the bc plane.
The suitability of Eq. (1) has been widely demonstrated in pre-
vious μSR investigations of type-II superconductors, where
the vortex core size (r0) is defined as the radial distance from
the vortex center to the maximum in the absolute value of the
supercurrent density j(r)=|∇ × B(r)| [32,33]. Since changes
in the slope of the pair potential �(r) in the vortex core region
modify the cutoff factor uK1(u) in Eq. (1), changes in the
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FIG. 2. (a) Temperature dependence of λbc in LaNiC2 below T ∼
0.38Tc and for H =150 Oe. The dashed curve is a fit of the form
λbc(0)+aT 4 expected for point nodes along the a axis. The dotted
and solid curves are fits to the single-gap s-wave BCS expression
[34] with zero-temperature energy-gap values �bc(0)=1.76kBTc and
�bc(0)=1.16(3)kBTc, respectively. Inset: Low-temperature (0.41 K
�T �1 K) electronic contribution to the heat capacity plotted vs T 3.
(b) Magnetic field dependence of λbc in LaNiC2 for T =0.05 K. The
straight lines are linear fits for H �0.4 kOe and H �0.5 kOe. The
fit for H �0.4 kOe yields the ZF value λbc(0)=1548±24 Å. Inset:
Magnetic field dependence of λab in NbSe2 for T =0.02 K [35].

core size modify the fitted value of ξbc [33]. Consequently, the
“true” GL coherence length is the value of ξbc in the T →0
and H →0 limits.

Figure 2(a) shows the temperature dependence of λbc ob-
tained from fits of TF-μSR spectra recorded for H =150
Oe and T �1 K. The data are poorly described by the form
λbc(T )−λbc(0)∝T 4 expected for point nodes along the a
axis [21]. Moreover, an accompanying T 3 dependence of the
electronic specific heat could not be confirmed from measure-
ments above 0.41 K [Fig. 2(a) inset]. When fitting λbc(T ) to a
single-gap s-wave BCS model [34], with �bc as an adjustable
parameter, we infer a much smaller gap than the BCS value of
�bc(0)=1.76kBTc. The small SC gap value may correspond
to the minimum of a single anisotropic gap or the smallest
gap of a multigap state. These results highlight the challenges
when attempting to draw conclusions about the SC gap struc-
ture from fits of the temperature dependence of the magnetic
penetration depth or thermodynamic quantities.

By contrast, a clear indication of the gap structure in
LaNiC2 is provided by the low-T magnetic field dependence
of λbc, which is displayed in Fig. 2(b). The linear growth of λbc

FIG. 3. Magnetic field dependence of r0 and ξbc in LaNiC2 for
T =0.05 K. Inset: Magnetic field dependence of ξab in NbSe2 for
T =0.02 K [35].

with increasing H and the change in slope above H ∼0.4 kOe
resemble the behavior of λab(H ) in the two-gap s-wave su-
perconductor NbSe2 [35]. We note that λ exhibits no field
dependence in a single fully gapped s-wave superconductor
below H/Hc2 ∼0.5 [36,37] and displays a sublinear depen-
dence on field in a superconductor with gap nodes [38]. In
NbSe2, the initial steep linear-H increase of λab is attributed to
the delocalization of loosely bound quasiparticle (QP) vortex
core states associated with a small full energy gap on one
of the conduction-electron bands. The delocalization results
from an increased overlap of the bound QP states of neigh-
boring vortices, which occurs due to the increase in vortex
density at higher field. This modifies B(r) around the vortex
cores and the fitted value of λab (or λbc). The “true” mag-
netic penetration depth for LaNiC2 is the extrapolated value
λbc(T →0, H →0), determined to be 1548±24 Å from the
linear fit of the low-field data presented in Fig. 2(b).

The delocalization of QP core states in NbSe2 at low T
leads to a rapid decrease in r0 (and ξab) with increasing H ,
before saturating at higher fields where the vortex structure is
controlled by the larger full SC gap on a different conduction
band [35]. This is accompanied by a reduction in the slope of
the linear-H dependence of λab. The saturation of the core size
is due to the QP core states being more tightly bound to the
smaller vortices associated with the larger gap. As shown in
Fig. 3, the field dependence of the vortex core size in LaNiC2

at low T exhibits a behavior similar to that of NbSe2, which
is distinct from the behavior of the core size in a single-
gap s-wave superconductor [36]. As expected, the low-field
value of ξbc above the lower critical field (Hc1 ∼ 0.1 kOe) is
close to the calculated value ξbc = [�0/2πH‖a

c2 ]1/2 ≈ 464 Å.
We note that the weak field dependence of the core size at
moderate fields is consistent with recent calculations for a
two-band superconductor with large interband pairing [39].

To explore the existence of the two distinct SC gaps
in more detail, we have fit the temperature dependence of
the normalized low-field superfluid density, λ2

bc(0)/λ2
bc(T ),

to a two-band, weak-coupling BCS model described in
Appendix F. Techniques that measure the temperature
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FIG. 4. Temperature dependence of the normalized superfluid
density, λ2

bc(0)/λ2
bc(T ), in LaNiC2 for H = 150 Oe. Circles denote

μSR data points and error bars give the standard error at each tem-
perature. The dashed curve is the superfluid density from single-band
BCS theory. The upper solid curve is the total superfluid density in
the two-band model, with contributions from the individual bands
shown below it. Shaded areas denote the 1 σ uncertainty regions
associated with the model fit. Fit parameters are given in Table I of
Appendix F.

dependence of absolute superfluid density, such as μSR, di-
rectly probe the thermal excitation of quasiparticles across the
energy gaps, with the two-band fit revealing the underlying
energy gaps in a tightly constrained manner. As shown in
Fig. 4, the single-band BCS curve does not adequately capture
the measured superfluid density. The two-band model, how-
ever, provides a very good fit, and allows the contributions
from the individual bands to be resolved. The range of tem-
perature over which the thermally activated behavior of each
band appears to be temperature independent is indicative of
the energy gap in each band. From the detailed temperature
dependence of the energy gaps (see Fig. 14, Appendix F)
we infer zero-temperature gap ratios �i(0)/kBTc of 1.82 and
0.77, respectively, and a pairing strength in the subdominant
band that is over an order of magnitude weaker than in the
dominant band. We note that fits of the data in Fig. 15 to a two-
superconductor model confirm the absence of a second super-
conducting phase in our LaNiC2 sample (see Appendix F).

Figure 5 shows ZF-μSR asymmetry spectra for our
LaNiC2 single crystals. These spectra are reasonably de-
scribed by the same function applied in the earlier ZF-μSR
study of a polycrystalline sample [3]:

A(t )=A0GKT(σ, t ) exp(−
t )+Abg, (2)

which consists of a relaxing term caused by the sample
and a constant Abg due to muons stopping in the Ag back-
ing plate/sample holder. Here GKT(σ, t ) is a static Gaussian
Kubo-Toyabe function [40]. The ZF-μSR spectra were an-
alyzed assuming only the relaxation rate 
 changes with
temperature and with nearly equivalent values of A0 and
Abg determined from weak TF-μSR measurements in the
Meissner state. The fits yield σ =0.104±0.002 μs−1 and the
variation of 
 with temperature displayed in the inset of
Fig. 5. Also shown is the increase of the ZF-μSR relaxation
rate reported in Ref. [3], which corresponds to a characteristic

FIG. 5. Representative ZF-μSR asymmetry spectra. The solid
curves are fits to Eq. (2). Inset: Temperature dependence of the expo-
nential ZF relaxation rate 
. The open and solid squares correspond
to two independent measurements of the LaNiC2 single crystals.
The open diamonds are the exponential relaxation rate measured
previously in polycrystalline LaNiC2 [3]. The dashed horizontal line
denotes the average value of 
 above Tc, 〈
〉N, for each data set. The
data set from Ref. [3] and that denoted by the solid squares have been
shifted vertically upward so that 〈
〉N for all three data sets coincide.

field strength of 0.10 G. While the error bars and scatter of
our data are greater, an increase of 
 is observed at lower
temperature.

The occurrence of spontaneous fields in LaNiC2 is appar-
ently sample dependent. In addition to the previous results
for a polycrystalline sample [3], an extremely small c-axis
aligned spontaneous magnetization (≈10−5 G) far below the
sensitivity of ZF-μSR has been observed to appear in a single
crystal at Tc, but not in a second single crystal investigated
in the same study [41]. The situation of LaNiC2 somewhat
resembles the lower TRS breaking SC phase of UPt3, where
weak spontaneous internal fields appearing at Tc were first
detected by ZF-μSR [25], but not later in higher quality single
crystals [42,43]. In TRS breaking superconductors, intrinsic
spontaneous magnetism is generated near the surface and by
impurities and defects that disturb the SC order parameter
[44]. Our measurements and those of Ref. [3] are not sensitive
to spontaneous currents at the surface, as the mean stopping
depth of the muons in LaNiC2 (≈0.2 mm) far exceeds the
magnetic penetration depth. We attribute the onset of weak
internal fields at a lower temperature in our single crystals
to the width of the SC transition. While magnetization mea-
surements show a diamagnetic response beginning at 2.7 K,
the zero-field cooled curve does not saturate until ≈1.8 K
[see Fig. 10(a), Appendix C]. Given the small increase of
the ZF-μSR relaxation rate that is observed, it is likely that
our experiments are not sensitive to the intrinsic spontaneous
magnetism until sufficient spontaneous currents are formed
around the sample inhomogeneities. We note that spontaneous
internal fields are observed at a temperature substantially
lower than Tc in ZF-μSR studies of other TRS breaking su-
perconductors with broad SC transitions [9,45].
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IV. CONCLUSION

In summary, we have demonstrated the existence of two
full SC gaps in LaNiC2 via detection of the field dependence
of the magnetic field distribution at low temperatures in the
vortex state of single crystals. Combined with supporting
evidence for TRS breaking in the same sample, the nodeless
two-gap SC state in LaNiC2 is compatible with interorbital
equal-spin Cooper pairing [22–24].

ACKNOWLEDGMENTS

We thank Manfred Sigrist for insightful discussions and
the staff of TRIUMF’s Centre for Molecular and Materials
Science for technical support. J.E.S., S.R.D., D.M.B. and
E.M. acknowledge support from the Natural Sciences and
Engineering Research Council of Canada. This research is
also supported by the Japan Society for the Promotion of
Science KAKENHI under Grants No. JP15K05156 and No.
JP15KK0149.

APPENDIX A: POWDER X-RAY-DIFFRACTION
SPECTRUM OF LaNiC2

X-ray-diffraction (XRD) measurements were performed
on one of the single crystals of LaNiC2 ground to a fine pow-
der using a conventional x-ray diffractometer (RINT-2200,
Rigaku Co., Ltd) equipped with a Cu target source. In addition
to sharp Bragg peaks associated with LaNiC2, the XRD spec-
trum (Fig. 6) shows three low intensity peaks associated with
a La2Ni5C3 secondary phase occupying ≈5% of the sample.
The lattice parameters for LaNiC2 determined from the XRD
spectrum are a=3.9578 Å, b=4.5616 Å, and c=6.2001 Å,
which are in good agreement with literature values [15,19].

APPENDIX B: POWDER X-RAY-DIFFRACTION
SPECTRUM AND RESISTIVITY OF La2Ni5C3

Previous studies show that La2Ni5C3 is nonmagnetic and
does not exhibit superconductivity down to 1.8 K [46,47]. To

FIG. 6. Powder x-ray-diffraction (XRD) spectrum of LaNiC2.
The blue vertical lines indicate the calculated Bragg peak positions
for LaNiC2, which crystallizes in the orthorhombic Amm2 space
group. The three low intensity XRD Bragg peaks labeled with
the pound sign are associated with an ≈5% secondary phase of
La2Ni5C3, which crystallizes in the tetragonal P4/mbm space group.

FIG. 7. Powder x-ray-diffraction (XRD) spectrum of La2Ni5C3.
The blue vertical lines indicate the calculated Bragg peak positions
for La2Ni5C3, which crystallizes in the tetragonal P4/mbm space
group. The lattice parameters for La2Ni5C3 determined from the
XRD spectrum are a=b=8.3266 Å and c=4.0244 Å.

determine whether superconductivity exists at lower temper-
atures, we synthesized a polycrystalline sample of La2Ni5C3.
A powder XRD spectrum of the La2Ni5C3 sample is shown
in Fig. 7. As shown in Fig. 8, no superconducting transition
is observed in the temperature dependence of the resistivity
down to 0.11 K.

APPENDIX C: HEAT-CAPACITY AND MAGNETIZATION
MEASUREMENTS OF LaNiC2

Heat-capacity measurements were performed on a small
piece of one of the LaNiC2 single crystals down to 0.4 K using
a Quantum Design physical property measurement system.
The temperature dependence of the heat capacity C(T ) mea-
sured in zero and different applied magnetic fields is shown in
Fig. 9(a). The bulk superconducting transition temperature Tc

and the heat-capacity jump at Tc are determined in Fig. 9(b)
by a procedure described in Ref. [48], which yields Tc ∼2.7 K
and �C/Tc ∼9.66 mJ mol−1 K−2. These are consistent with
literature values [15,16,19]. The dotted curve through the

FIG. 8. Temperature dependence of the resistivity of polycrys-
talline La2Ni5C3 down to 0.11 K.
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FIG. 9. (a) Temperature dependence of the heat capacity for dif-
ferent values of magnetic field applied parallel to the a axis. (b) The
dotted lines duplicate a procedure described in Ref. [48] to estimate
Tc and the heat-capacity jump �C/Tc at Tc. Inset: Polynomial fit to
the normal-state heat-capacity data for zero field over the tempera-
ture range 3.1–10.2 K, as described in the main text. (c) Temperature
dependence of the upper critical field H ‖a

c2 (T ) estimated from the
heat-capacity data in (a). The solid red curve is a fit to the data, which
is described in the main text.

data above Tc in Fig. 9(b) comes from fitting the zero-field
heat capacity from 3.1 to 10.2 K to a polynomial function,
C(T )=γ T +βT 3+δT 5, as shown in the inset of Fig. 9(b).
The first term describes the electronic contribution to the heat
capacity and the last two terms describe the lattice contri-
bution. The fit yields γ ∼9.9 mJ mol−1 K−2 and β ∼0.066
mJ mol−1 K−4. A fit of the data from 6 to 20 K instead
yields γ ∼7.7 mJ mol−1 K−2 and β ∼0.142 mJ mol−1 K−4,
which are in good agreement with previously reported values
[15,16,19]. The heat-capacity jump �C/γ Tc ∼0.98 and 1.25
for γ ∼9.9 and 7.7 mJ mol−1 K−2, respectively.

Figure 9(c) shows the temperature dependence of the
upper critical field H‖a

c2 estimated from the heat-capacity
data in Fig. 9(a). The solid curve is a fit to the empirical

FIG. 10. (a) Temperature dependence of the dc magnetization
down to 1.8 K measured for a magnetic field of 20 Oe applied
perpendicular to the a axis under zero-field cooled (ZFC) and field
cooled (FC) conditions. (b) Magnetic hysteresis (M vs H ) loop at
1.8 K.

relation H‖a
c2 (T )=H‖a

c2 (0)[1 − (T/Tc)2]/[1 + (T/Tc)2], yield-
ing values H‖a

c2 (0)=1.53 kOe and Tc =2.7 K that are in good
agreement with a previous study of single crystal LaNiC2

[28].
Measurements of the dc magnetization of LaNiC2 were

performed using a Quantum Design magnetic property mea-
surement system. Zero-field cooled data show the onset of
bulk superconductivity at ≈2.7 K [Fig. 10(a)]. Figure 10(b)
shows a magnetization hysteresis loop for LaNiC2 at 1.8 K.
The magnetization versus magnetic field is characteristic of
a type-II superconductor. The small hysteresis suggests any
pinning of vortices by inhomogeneities in the sample is
weak.

APPENDIX D: ANALYSIS OF THE TF-μSR
ASYMMETRY SPECTRUM

In the TF-μSR configuration used for our experiments (see
Fig. 11), the magnetic field H was applied parallel to the
muon beam momentum pμ (z direction) along the a axis of the
LaNiC2 single crystals and the initial muon spin polarization
P(t =0) was rotated perpendicular to the applied field (in the
x direction). The TF-μSR asymmetry spectrum A(t )=a0Px(t )
is the sum of sample and background contributions

A(t ) = As(t ) + Abg(t ). (D1)

The first term originates from muons that stop in the LaNiC2

single crystals. The second term originates from muons that
stop outside the sample in the Ag backing plate or sample
holder. Muons stopping in the sample and those stopping
in the Ag backing plate/sample holder sense a distribution
of nuclear dipole fields that cause depolarization of the TF-
μSR signal. Above Tc, the TF-μSR asymmetry spectrum is
well described by the sum of two Gaussian damped cosine
functions:

A(t ) = As exp(σ 2
s t2) cos(2πνst + �)

+ Abg exp(σ 2
bgt2) cos(2πνbgt + �). (D2)

FIG. 11. Schematic of the geometry for the TF-μSR experi-
ments. The time evolution of the muon spin polarization Px (t ) is
monitored via detection of the muon decay positrons in a pair of
counters positioned on opposite sides of the sample.
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The precession frequencies νi (i= s, bg) are a measure of the
mean local field Bi sensed by the muon, where νi = (γμ/2π )Bi

and γμ/2π =13.5539 MHz/kG is the muon gyromagnetic
ratio. The parameter � is the initial phase of the muon spin po-
larization relative to the positron counter axis (y axis), which
depends on the degree of Larmor precession of the muon spin
in the applied field before reaching the sample.

Below Tc, the muons stopping in LaNiC2 also sense the
spatial variation in magnetic field caused by a vortex lattice
and the corresponding TF-μSR asymmetry spectra were fit to
the following two-component depolarization function:

A(t ) = As exp
(
σ 2

s t2
) ∫ ∞

0
n(B) cos(γμBt + �)dB

+ Abg exp
(
σ 2

bgt2
)

cos(2πνbgt + �), (D3)

where n(B′)=〈δ[B′ − B(r)]〉 is the probability of a muon
sensing a local magnetic field B in the z direction (parallel
to the a axis of the the LaNiC2 single crystals) at a posi-
tion r in the xy plane (bc plane). The spatial field profile
associated with the vortex lattice B(r) was assumed to be
described by Eq. (1). Below Tc, the depolarization function
exp(σ 2

s t2) accounts for the effects of both the nuclear dipole
fields and vortex lattice disorder on the internal magnetic field
distribution.

APPENDIX E: REPRESENTATIVE FOURIER
TRANSFORMS OF TF-μSR ASYMMETRY SPECTRA

Figures 12 and 13 show Fourier transforms of TF-μSR
asymmetry spectra.

FIG. 12. Fourier transforms of the TF-μSR asymmetry spectrum
in LaNiC2 single crystals for a magnetic field of H =150 Oe applied
parallel to the a axis. The horizontal axis is the difference between
the local field sensed by the muon and the external field. The peak at
B−Bext =0 is a background signal originating from muons stopping
outside the sample.

FIG. 13. Fourier transforms of the TF-μSR asymmetry spectrum
in LaNiC2 single crystals for T =0.05 K and different values of the
magnetic field applied parallel to the a axis.

APPENDIX F: TWO-BAND BCS THEORY

1. Gap equation

In the Matsubara formalism, the temperature-dependent
gap equation for a weak-coupling superconductor is [49]

�k = 2πT N0

ω0∑
ωn>0

〈
Vk,k′

�k′√
�2

k′ + h̄2ω2
n

〉
FS

(F1)

where ωn = 2πT (n + 1
2 ) are the fermionic Matsubara fre-

quencies, �k is the gap parameter at wave vector k, N0 is
the two-spin density of states, Vk,k′ is the pairing interaction,
〈...〉FS denotes an average over the Fermi surface, and ω0 is a
high-frequency cutoff.

The two-band superconductor describes situations in
which the gap variation over the Fermi surface is approx-
imately bimodal and can be approximated by two distinct
gap scales, �1 and �2, one for each band. As discussed in
Ref. [49], the Fermi-surface average is replaced by a sum
over bands, and the pairing interaction is parametrized by
a 2 × 2 symmetric matrix λμν , with the diagonal terms λ11

and λ22 describing intraband pairing, and the off-diagonal
terms λ12 = λ21 describing the interband interaction. The gap
equation then takes the simplified form

�ν =
∑

μ=1,2

nμλνμ2πT
ω0∑

ωn>0

�μ√
�2

μ + h̄2ω2
n

, (F2)

where the relative densities of states for each band,
nμ, obey n1 + n2 = 1. For a given choice of parameters
{n1, λ11, λ22, λ12}, Eq. (F2) is solved numerically, from which
we obtain the temperature dependence of the gap parameters
�1 and �2 (as shown, for example, in Fig. 14).
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FIG. 14. Temperature dependence of the energy gaps, �1 and
�2, in the two-band model. Shaded areas denote the 1 sigma un-
certainty regions associated with the model fit. The zero-temperature
gap ratios, �i(0)/kBTc, are 1.82 and 0.77, respectively.

2. Superfluid density

Superfluid density is a thermal equilibrium property of the
superconductor and is readily obtained within the Matsubara
formalism once the energy gaps are known. For band ν, the
normalized superfluid density is

ρν (T ) = λ2
ν (0)

λ2
ν (T )

=
∑
ωn>0

�2
ν(

�2
ν + h̄2ω2

n

)3/2 . (F3)

The total normalized superfluid density is a weighted sum of
the contributions from each band:

ρ(T ) = γ ρ1(T ) + (1 − γ )ρ2(t ), (F4)

where the weighting factor 0 < γ < 1 is determined by the
plasma frequency imbalance between the bands. Note that γ is
distinct from the density-of-states parameter n1, as it includes
Fermi velocity information:

γ = n1v
2
1

n1v
2
1 + n2v

2
2

, (F5)

where v1 and v2 are the rms Fermi velocities of the two bands.

3. Fitting procedure and results

A least-squares optimization is used to search for best-
fit parameters in the four-dimensional parameter space
{n1, λ11, λ22, λ12}. For each parameter choice, the band-
specific energy gaps and superfluid densities are determined at
each of the experimental temperatures via numerical solution
of Eqs. (F2) and (F3). As shown in Eq. (F4), the total super-
fluid density is a weighted combination of the band-specific
superfluid densities. While the weighting coefficient γ is for-
mally an additional fit parameter, a closed-form expression
exists for its optimal value, so that it need not be included in
the minimization search. γopt is found by minimizing the χ2

FIG. 15. Fits to the measured superfluid density for the two-
phase superconductor model. Tc1 is fixed at 2.7 K and Tc2 is varied,
taking on representative values of 1.5, 1.6, and 1.8 K in the three
plots.

merit function

χ2 =
∣∣∣∣ ρexpt − ρmodel

σ
∣∣∣∣
2

=
∣∣∣∣ ρexpt − ρ2 − γ�ρ

σ
∣∣∣∣
2

= γ 2|�ρ|2 − 2γ�ρ · (ρexpt − ρ2) + |ρexpt − ρ2|2
|σ |2

(F6)

where �ρ = ρ1 − ρ2. Here the vector quantities encode the
discrete temperature dependences of the various quantities,
including experimental and model superfluid densities, and
the measurement errors σ . Minimizing with respect to γ we
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TABLE I. Best-fit parameters and their uncertainties, for n1 =
0.8 and 0.9.

Fit parameter n1 = 0.9 Uncertainty n1 = 0.8 Uncertainty

λ11 0.77 ±0.012 0.71 ±0.036
λ22 0.26 ±0.013 0.56 ±0.023
λ12 0.23 ±0.018 0.22 ±0.006
γopt 0.747 ±0.029 0.746 ±0.021

obtain

γopt = �ρ · (ρexpt − ρ2)

|�ρ|2 . (F7)

In practice, the optimization depends only weakly on the
choice of density-of-states parameter n1. Motivated by band-
structure calculations [50,51] we estimate 0.8 � n1 � 0.9 to
be an appropriate physical choice, and present results in
Table I for n1 = 0.8 and 0.9. Figures 4 and 14 show the fits
and gaps for n1 = 0.8, which are practically indistinguishable
from those for n1 = 0.9. Note that while the λ22 parameter
appears to vary sharply between the two cases, it is the combi-
nation n2λ22 that determines the intraband pairing strength in
the second band, and this combination remains approximately
constant. From this we conclude that the intrinsic pairing
strength in the subdominant band is over an order of mag-
nitude weaker than in the dominant band, and that interband
pairing is important to the overall superconductivity.

4. Two-phase superconductor

For comparison, we consider the superfluid density of a
two-phase superconductor, which would apply if the ma-
terial contained a secondary chemical phase that was also
intrinsically superconducting. In this scenario, the two super-
conducting phases have different superconducting transition
temperatures, Tc1 and Tc2. Since there is no significant cou-
pling between the phases, the temperature-dependent gap for
each phase is the solution of a single-band BCS gap equation:

�ν = 2πT N0V0

ω0∑
ωn>0

�ν√
�2

ν + h̄2ω2
n

. (F8)

The corresponding superfluid density is still given by Eq. (F3),
and the effective superfluid density for the sample is still
the weighted sum given by Eq. (F4). Fits to the measured
absolute density are carried out by varying the γ parameter,
which controls the relative weighting of the two phases. Tc1

is fixed at 2.7 K and Tc2 takes on representative values of
1.5, 1.6, and 1.8 K. Results are shown in Fig. 15. In each
case, the best-fit superfluid densities in the two-phase scenario
provide a much worse description of the data than the two-
band model. Furthermore, the best fits require the secondary
phase to contribute 20–25% of the total superfluid density.
This is considerably greater than the 5% volume fraction of
the known La2Ni5C3 phase, which in any case is nonsuper-
conducting.
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