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Nonmagnetic impurity effect in vortex states of chiral superconductors
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Nonmagnetic impurity scattering effects in the vortex states are studied in the Born and the unitary limits for
chiral superconductors by Eilenberger theory. We compare the spatial structure of the pair potential and local
electronic structure in chiral p-wave superconductors with those in two types of chiral d-wave superconductors;
d1± ≡ dxz ± idyz and d2± ≡ dx2−y2 ± idxy pairing. Similar behaviors of the pair potentials are seen in p±- and
d1±-wave superconductors. In chiral d-wave superconductors, due to lack of Majorana properties relating to the
s-wave Cooper pair amplitude, zero-energy vortex bound states are easily destroyed by the impurity scattering,
compared to the Born limit in the chiral p−-wave superconductors. This decay is also seen in the unitary limit
in the chiral p−-wave superconductors. These differences are also discussed in the relation to s-wave Cooper
pair amplitude and the local scattering rate. The impurity effects are also compared with those in s-wave
superconductors.
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I. INTRODUCTION

In unconventional superconductors, anisotropic pairing
such as p-, d-, and f -wave symmetries are realized. Among
them, chiral p-wave and d-wave superconductors have exotic
properties, because the time-reversal symmetry is broken due
to finite angular momentum Lz of Cooper pair. Chiral p-wave
superconductivity is established as a pairing state of the A
phase in superfluid 3He [1]. In solid states, one of candidates
for the chiral superconductor is Sr2RuO4 [2,3]. There, the
time reversal symmetry breaking was suggested by experi-
ments of μSR [4] and magneto-optic Kerr effect [5]. While
the pairing symmetry has been considered as a spin-triplet
chiral p-wave pairing [2,3,6,7], a recent NMR experiment
observing Knight shift suggests that the spin-singlet pairing
is realized in Sr2RuO4 [8,9]. Thus, in addition to the chi-
ral p-wave superconductor of p± ≡ px ± ipy with Lz = ±1,
we have to examine possibilities of chiral d-wave supercon-
ductors, such as d1± ≡ dxz ± idyz with Lz = ±1 and d2± ≡
dx2−y2 ± idxy with Lz = ±2. As other candidate materials, chi-
ral p or f -wave superconductivities are suggested in heavy
fermion superconductors UPt3 [10–12] and UTe2 [13]. Chiral
d-wave pairing is discussed in studies of superconductivity in
URu2Si2 [14] and SrPtAs [15,16].

In type-II superconductors, by penetration of magnetic
fields as quantized flux lines, vortex states appear under ap-
plied fields between upper and lower critical fields. Complex
value of the superconducting pair potential has the phase
winding 2π around a vortex, and the amplitude of the pair
potential vanishes at the vortex center. At the vortex core,
there exist low energy bound states called Caroli-de Gennes
Matricon states [17–19]. The local electronic structure in the
vortex bound state is experimentally observed by the scanning
tunneling microscope (STM) experiments [20–24]. From the

local density of states (LDOS) around a vortex, we can obtain
important features of the anisotropic superconductivity. In the
direction where the LDOS extends far from the vortex center,
pairing function has a node or gap-minimum on the Fermi sur-
face [25–30]. Reflecting the anisotropic gap, the star-shaped
vortex core images are observed by STM experiments in
NbSe2 [21,29,30] and YNi2B2C [31–33].

Chirality of the superconductivity is also reflected in prop-
erties of vortex states. These properties were mainly studied
in chiral p-wave superconductors. As for the pair potential,
the opposite chiral component of the pair potential is in-
duced around a vortex. The spatial structures of the induced
components reflect the chirality, depending on whether the
chirality is parallel (Lz = +1) or antiparallel (Lz = −1) to the
vorticity (w = +1) [34–36]. Contributions of chirality also
appear in behaviors of the LDOS in the vortex states [37–39].
In chiral p-wave superconductors, zero-energy bound states
around a vortex have properties of Majorana states [40–42],
accompanied with an odd-frequency Cooper-pair amplitude
[43,44]. Related to these properties, only in the antiparal-
lel case of Lz = −1, local NMR relaxation rate T −1

1 shows
anomalous suppression at the vortex core region [45–49], and
the zero-energy LDOS around a vortex are protected from
the nonmagnetic impurity scattering effect in the Born limit
[50,51]. Using the local T −1

1 or impurity effect on the vortex
bound state, we can distinguish the chirality of p-wave su-
perconductor, i.e., p+-wave with Lz = +1 or p−-wave with
Lz = −1.

The purpose of this work is to clarify characters of two
chiral d-wave superconductors, d1± and d2±, in comparison
with the chiral p±-wave superconductors, calculating spatial
structure of the pair potential and the local electronic states in
the vortex states. As for the pair potential, we study the con-
tribution of the opposite chiral component induced around a
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vortex. In the study of local electronic states, we also consider
s-wave Cooper pair amplitude and the local scattering rate to
understand the impurity effects on the LDOS. Our numerical
calculations in the vortex lattice state are based on the Eilen-
berger theory [25,28,52–55], which is derived from Gor’kov
theory in the superconducting state under the assumption
�0/EF � 1 for the superconducting gap �0 and Fermi en-
ergy EF. This condition is satisfied in many superconductors.
The Eilenberger theory is suitable to treat inhomogeneous
superconducting states, such as surface, interface, and vor-
tex states. There, pair potential of superconductivity shows
spatial variation in the length scale of the coherence length,
which is longer than the atomic scale. By the calculations of
self-consistent Eilenberger theory in the vortex lattice, we can
obtain quantitative estimation in the whole range of temper-
ature T and magnetic field B in the vortex states. There, we
can appropriately evaluate the vortex core structure and the
contributions from neighbor vortices.

To include contributions of nonmagnetic impurity scat-
tering effects, we consider self-energy from the impurity
scatterings. In addition to the Born limit [52,53], we study the
unitary limit of the impurity scattering effects by the t-matrix
approximation [56–63]. Therefore, our study covers the dif-
ference between the Born and unitary limits in the impurity
scattering effects on the vortex states in chiral superconduc-
tors.

This paper is organized as follows. After this introduction,
we explain our model and formulation in Sec. II. In Sec. III,
we shortly see the impurity scattering effects in the uniform
states in chiral superconductors. In Sec. IV, we study impu-
rity scattering effects in the vortex states, calculating spatial
structures of the pair potential, LDOS, s-wave Cooper pair
amplitude, and local scattering rate. The last section is devoted
to summary. In Appendix, impurity scattering effects on the
vortex states are studied in an isotropic s-wave superconductor
for a comparison with chiral superconductors.

II. FORMULATION BY SELF-CONSISTENT
QUASICLASSICAL THEORY

For simplicity, we consider a two-dimensional cylindrical
Fermi surface with a Fermi velocity vF = vF0(cos θ, sin θ, 0)
at a Fermi wave number k = (kF cos θ, kF sin θ, kz ). The pair
potential is given by

�(r, k) = �1(r)ϕp,m(k) + �2(r)ϕp,−m(k) (1)

with the pairing function

ϕp,±1(k) = (kx ± iky)/kF = e±iθ (2)

for chiral p±-wave superconductors with m = ±1. For chiral
d-wave superconductors,

�(r, k) = �1(r)ϕd,m(k) + �2(r)ϕd,−m(k) (3)

with

ϕd,±1(k) = (kx ± iky)
√

2 sin kz/kF = e±iθ
√

2 sin kz, (4)

ϕd,±2(k) = (k2
x − k2

y ± i2kxky)/k2
F = e±i2θ . (5)

In this paper, the case of m = ±1 (m = ±2) is denoted as
d1±-wave (d2±-wave) superconductors. r is the center-of-mass

coordinate of the pair. �1(r) is the main comportment of the
pair potential. While �2(r) = 0 in a uniform state, in the
vortex state �2(r) is induced by the spatial variation of the
main component �1(r) [34,35]. Magnetic fields B are applied
along the z direction, and the vector potential is given by
A(r) = 1

2 B × r + a(r) in the symmetric gauge. The unit cell
of the vortex lattice is set to be square lattice, which is realised
in Sr2RuO4 [64–66]. |�(r)| and a(r) have periodicity of the
vortex lattice. The structures of the pair potential and local
electronic state in the vortex core are not significantly changed
in the triangular vortex lattice case.

We calculate the spatial structure of vortices in the
vortex lattice state by self-consistent Eilenberger theory
[25,28,52,53], including self-energy from nonmagnetic s-
wave impurity scatterings [54–63]. This method appropriately
captures contributions of vortex core and inter-vortex interac-
tion. In previous studies [55,58–60], the impurity scattering
effects on the vortex states in the Born and the unitary limits
were studied in nonchiral superconductors, such as s-, d-, and
px-wave pairing. We extend the studies to the vortex states
in chiral p and d-wave superconductors. In chiral p-wave
superconductors, we compare the results in the unitary limit
with those in the Born limit, which were reported in a previous
study for a single vortex [51].

In Eilenberger theory, to obtain quasiclassical Green’s
functions

f (iωn, k, r) = 2a

1 + ab
, f †(iωn, k, r) = 2b

1 + ab
,

g(iωn, k, r) = 1 − ab

1 + ab
, (6)

we calculate a(iωn, k, r) and b(iωn, k, r) by numerical inte-
gration of Riccati equations [26,67,68]

v · ∇a = � + F − (
�∗ + F †

)
a2

− (ωn + G + iv · A)a,

−v · ∇b = �∗ + F † − (� + F )b2

− (ωn + G + iv · A)b (7)

along the trajectory parallel to the vector v = vF/vF0. In our
calculations, length, temperature, and magnetic field are, re-
spectively, measured in unit of ξ0, Tc, and B0. Here, ξ0 =
h̄vF0/2πkBTc and B0 = φ0/2πξ 2

0 with the flux quantum φ0.
Tc is superconducting transition temperature in the clean limit
at B = 0. The energy E , pair potential � and Matsubara
frequency ωn are in unit of πkBTc. Within the t-matrix approx-
imation [54–58,61–63], self-energies G(iωn, r), F (iωn, r),
and F †(iωn, r) in Eq. (7) are given by

G = 1

τ
〈g〉k, F = 1

τ
〈 f 〉k, F † = 1

τ
〈 f †〉k, (8)

with local scattering rate 1/τ (r) in superconductors,

1

τ
= 1/τ0

cos2 δ0 + (〈g〉2
k + 〈 f 〉k〈 f †〉k) sin2 δ0

, (9)

and δ0 = tan−1(πN0u0) with impurity strength u0. 〈· · · 〉k in-
dicates the Fermi surface average. N0 is the density of states
(DOS) at the Fermi energy in the normal state. In the Born
limit of weak impurity scattering potential, δ0 → 0. In the
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unitary limit of strong scattering potential, δ0 → π/2. The
scattering time τ0 in the normal state is given by

1

τ0
= nsN0u2

0

1 + π2N2
0 u2

0

, (10)

where ns is the number density of impurities. τ0 is in
unit of h̄/2πkBTc [55]. The mean-free-path l is given by
l/ξ0 = vF0τ0/(h̄vF0/2πkBTc) = τ0/(h̄/2πkBTc) = τ0 in our
unit. Within the t-matrix approximation of the impurity
scatterings, we can study continuous crossover from clean
superconductors to dirty ones, including suppression of
anisotropic superconductivity by nonmagnetic impurity scat-
terings. We note that the t-matrix approximation [54–63]
following Abrikosov-Gor’kov theory [69] considers the sit-
uation where the average on the random position of the
independent impurity centers is possible even when we study
phenomena in the scale of the superconducting coherence
length, and regards �(r) as very nearly independent of im-
purity configuration [69–72]. This may cause discussions on
the application of this formalism to the clean case where l is
larger than the vortex core radius in the order of ξ0, while it
depends on parameter choices of ns, N0, and u0 in Eq. (10).

As self-consistent conditions, the pair potentials �1(r) =
�l,m(r) and �2(r) = �l,−m(r) in Eqs. (1) or (3) are calculated
by the gap equation

�l,m(r) = g0N0T
∑

0<ωn�ωcut

〈ϕ∗
l,m( f + f †∗

)〉k (11)

for l = p, d , and m = ±1, ±2, with (g0N0)−1 = ln T +
2T

∑
0<ωn�ωcut

ω−1
n . We use ωcut = 20kBTc. The vector po-

tential for the internal magnetic field is self-consistently
determined by

∇ × (∇ × A) = −2T

κ2

∑

0<ωn

〈v Im{g}〉k. (12)

We set the Ginzburg-Landau parameter κ to be large as κ =
30 assuming typical type-II superconductors.

First, we self-consistently solve Eqs. (6)–(12) at T = 0.5Tc

for some 1/τ0 in the Born and the unitary limits [59,60].
Next, in the calculations of local electronic states, using �(r)
and A(r) obtained in the above calculation of ωn, we self-
consistently solve Eqs. (6)–(9) with iωn → E + iη to obtain
quasiclassical Green’s functions and the selfenergies as a
function of real energy E . η is an infinitesimal constant. The
LDOS N (E , r) and the s-wave Cooper pair amplitude fs(E , r)
are, respectively, obtained by

N (E , r)/N0 = 〈Re{g(iωn → E + iη, k, r)}〉k, (13)

fs(E , r) = 〈 f (iωn → E + iη, k, r)〉k. (14)

III. IMPURITY EFFECTS IN UNIFORM STATES

Before studying the vortex states, we evaluate suppression
of superconductivity by the nonmagnetic impurity scattering
in uniform states at a zero magnetic field without vortices.
In the uniform state, �1 is a constant and �2 = 0. Figure 1
shows 1/τ0 dependence of uniform |�1| at T/Tc = 0.5 for
each pairing symmetry.

FIG. 1. Amplitude of the pair potential �1 as a function of 1/τ0

in uniform states at a zero field in chiral p±, d1±, and d2±-wave
superconductors. Solid (dashed) lines are for the Born (unitary) limit.
|�1|s of p± and d2±-wave superconductors are on the same line.
T/Tc = 0.5.

In Fig. 1, we see that chiral d-wave superconductors are
easily suppressed by the nonmagnetic impurity scattering
effects, as in the chiral p-wave superconductors. The d2±-
wave superconductors have the same 1/τ0 dependence of |�1|
as that in the chiral p±-wave superconductors. These pair-
ings have isotropic gap amplitude as |ϕd,±2| = |ϕp,±1| = 1.
Compared to these pairing symmetries, the d1±-wave super-
conductors have smaller |�1| due to the horizontal line node
of |ϕd,±1| = √

2| sin kz|. In each pairing symmetry, |�1| in the
unitary limit is smaller than that in the Born limit at finite 1/τ0,
since effective 1/τ in Eq. (9) is enhanced in the unitary limit
as discussed later.

IV. IMPURITY EFFECTS IN VORTEX STATES

A. Spatial structure of pair potential

First we study the spatial structure of the pair poten-
tial in chiral superconductors in the presence of impurity
scattering effects at T/Tc = 0.5 and B/B0 = 0.01. Figure 2
presents vortex states in chiral p+ and p−-wave superconduc-
tors comparatively. Figure 3 is for chiral d1+ and d1−-wave
superconductors. Comparing the pair potentials in Figs. 2(a)
and 2(b) for p±-wave and Figs. 3(a) and 3(b) for d1±-wave,
the spatial structure of the pair potential is almost identical
in p± and d1±-wave superconductors, while the amplitude is
slightly smaller in d1±-wave.

We study the detailed spatial structure of the pair potentials
in these figures. Main component |�1(r)| in Fig. 2(a) shows
conventional vortex structure, where |�1(r)| is suppressed at
the vortex core near r = 0, and recovered towards uniform
value far from the vortex. With increasing 1/τ0, the amplitude
of the pair potential is decreased, reflecting the suppression
of the superconductivity by the impurity scattering effects as
explained in Fig. 1. The vortex core radius becomes longer
for larger 1/τ0. There, |�1(r)| is smaller in the unitary limit
than in the Born limit. These behaviors are almost the same
between the p+ and p−-wave superconductors, as is seen in
Fig. 2(a).

The induced opposite chiral component |�2(r)| is pre-
sented in Fig. 2(b). There are larger differences in the
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FIG. 2. Vortex states in chiral p+-wave (left) and p−-wave (right) superconductors for 1/τ0 = 0, 0.05, 0.10, and 0.15 in the Born and the
unitary limits. T/Tc = 0.5. B/B0 = 0.01. (a) Main component |�1(r)| of the pair potential, (b) induced opposite chiral component |�2(r)|,
(c) zero energy LDOS N (E = 0, r)/N0, and (d) s-wave Cooper pair amplitude | fs(E = 0, r)|, as a function of radius r along x axis of next
nearest neighbor (NNN) vortex direction. The units of length r are ξ0. Solid (dashed) lines are for the Born (unitary) limit. In (c) and the right
panel of (d), the vertical axis is a logarithmic scale. In (b), we also show density plot of |�2(r)| within a unit cell of the vortex lattice in (x, y)
plane for 1/τ0 = 0.15 in the Born limit. There, the vortex is located at the center of the unit cell and cuts of the r dependence in (a)–(d) are
along the x axis from the vortex center.

magnitude and the structure of |�2(r)| between p+ and p−-
wave superconductors, as reported in previous studies in the
clean limit [34,35]. The amplitude |�2(r)| is much smaller
in the p+-wave superconductors. In the clean limit, the max-
imum is |�2(r)| ∼ 0.15 (0.034) in the p−-wave (p+-wave)
superconductor. In the presence of impurity effects, with
increasing 1/τ0, |�2(r)| becomes smaller, corresponding to

the decrease of the main component |�1(r)| in Fig. 2(a).
The peak position is shifted to larger r, reflecting increase
of the vortex core radius. These impurity effects on |�2(r)|
are similar between the Born and the unitary limits, while
|�2(r)| is slightly smaller in the unitary limit. The differ-
ences between both limits are smaller in |�2(r)| than that of
|�1(r)|.
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FIG. 3. The same as Figs. 2(a)–2(c), but for d1+-wave (left panels) and d1−-wave (right panels) superconductors. The s-wave Cooper pair
amplitude is zero in d1±-wave superconductors.

Comparing Figs. 2(a), 2(b) and 3(a), 3(b) we see that a
d1+ (d1−) wave superconductor has similar spatial structure of
the pair potential to that in the p+ (p−) wave superconductor,
as both pairing symmetry has the angular momentum Lz = 1
(−1).

The spatial structure of �2(r) is related to the relation
that m + w keeps constant around a vortex [48,51], as pre-
sented in Table I. There, w is a winding number around a
vortex for �l,m(k) and the Cooper pair component fl,m(E =
0, r), defined as fl,m(E , r) = 〈ϕ∗

l,m f (iωn → E + iη, k, r)〉k,
with chirality m. In each superconductor, the main component
�1(r) has a winding w = +1 at the vortex center. In p−
and d1−-wave superconductors, since �2(r) with m = 1 has
winding w = −1 around a vortex center, |�2(r)| is linearly re-
covered from the vortex center [34,35], as seen in right panels
of Figs. 2(b) and 3(b). To compensate the winding −1 at the
vortex center, additional winding +2 appears at each corner
(i.e., midpoint r = 17.7ξ0 between NNN vortices) of unit cell
of the vortex lattice so that total winding keeps +1 within a

TABLE I. Winding number w around a vortex center in Cooper
pair components fl,m(E = 0, r) and �l,m(r) with chirality m when
main components of superconductivity are, respectively, d2±, d1±,
p±, and s-wave pairing symmetries. w = +1 by solid font is for the
main component with vortex winding +1. w with underline indicates
the winding number in the induced opposite chiral component of the
pair potential. In rows for each pairing symmetry, m + w keeps a
constant value.

Main Chirality of Cooper pair amplitude

super- m = 2 m = 1 m = 0 m = −1 m = −2
conductivity (d2+) (d1+, p+) (s) (d1−, p−) (d2−)

d2+ w = + 1 +2 +3 +4 +5
d1+, p+ w = 0 +1 +2 +3 +4
s w = −1 0 +1 +2 +3
d1−, p− w = −2 −1 0 +1 +2
d2− w = −3 −2 −1 0 +1
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FIG. 4. The same as Fig. 2, but for d2+-wave (left) and d2−-wave (right) superconductors.

unit cell [35]. In the p+ and d1+-wave superconductors, �2(r)
with m = −1 has winding w = +3 around a vortex center,
where |�2(r)| ∝ r3 for smaller 1/τ0 [34,35]. When the super-
conductivity is suppressed by the impurity scattering effects
for larger 1/τ0, the winding +3 at r = 0 splits to four winding
+1 at finite r and winding −1 at r = 0. This split occurs also
in the high field case in the clean limit [35]. Therefore, for
larger 1/τ0 in left panels of Figs. 2(b) and 3(b), |�2(r)| has
zero at the winding +1 points at finite r along x and y axes.
As presented in lower panels of Fig. 2(b), |�2(r)| has fourfold
symmetric spatial distribution around a vortex, while |�1(r)|
shows almost circular symmetric vortex core shape.

Next, we study the pair potential in d2+ and d2−-wave su-
perconductors shown in Fig. 4. The main component |�1(r)|
shows conventional behaviors of impurity effects similar to
those in p± and d1±-wave superconductors. However, the
induced opposite chiral component �2(r) shows different spa-
tial structure. In the d2+-wave superconductor, as shown in
Table I, �2(r) has winding +5 around the vortex center. In
the density plot of |�2(r)| for 1/τ0 = 0.05 in the left panel
of Fig. 4(b), the winding +5 at the vortex center splits to
five singular points of winding +1 at r = 0 and at finite r
on x and y axes. To compensate the winding +5 around the
vortex center, additional eight singular points of winding −1
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are located on the boundary lines of a unit cell. Due to the
existence of many singular winding points, amplitude |�2(r)|
is very small, since it can not enoughly recover from the
singular points. With increasing 1/τ0, |�2(r)| becomes further
smaller, and singular points with winding +1 at finite r shift
to larger r near the vortex center, as shown in left panels of
Fig. 4(b).

On the other hand, from the relation in Table I, �2(r)
in the d2−-wave superconductor has winding −3 around the
vortex center. Thus |�2(r)| ∝ r3 for smaller 1/τ0. As seen
in the density plot in right panel of Fig. 4(b), to compensate
winding −3 around the vortex center, additional eight singular
points with winding +1 appear on the boundary lines of the
unit cell. Therefore |�2(r)| is smaller than those of p+ and
d1+-wave superconductors. With increasing 1/τ0, |�2(r)| be-
comes further smaller as is seen in the right panel of Fig. 4(b).
There, at larger 1/τ0, |�2(r)| has zero also at finite r, as the
winding −3 at the vortex center splits to a winding +1 at
r = 0 and four singular points of winding −1 at finite r. Also
in d2±-wave superconductors, the difference between the Born
and the unitary limits is very small in |�2(r)|, compared with
|�1(r)|.

It is known that some of exotic properties in chiral super-
conductors come from the spatial structure of the opposite
chiral component �2(r) [34–36,65,66]. They contribute to
the free energy difference between the cases when the chi-
rality is parallel (Lz > 0) or antiparallel (Lz < 0) to the vortex
winding, so that one of the chiral directions becomes stable
in the vortex states under magnetic fields. The chiral direc-
tion dependence of �2(r) induces the chirality dependence
of the spatial structure of the supercurrents, internal fields,
and the LDOS. The vortex lattice becomes square lattice by
the contribution of �2(r). About these phenomena, we can
expect similar behaviors in chiral d1±-wave superconductors
to those in chiral p±-wave superconductors, respectively, be-
cause �2(r) shows similar structure in Figs. 2(b) and 3(b).
However, in chiral d2±-wave superconductors, since �2(r) in
Fig. 4(b) has different spatial structure and small amplitude,
the chirality dependent behaviors by �2(r) may be different
and weak, compared with chiral p±-wave superconductors.
The differences between d2+ and d2−-wave superconductors
are small, and the detection may be more difficult.

B. Local electronic states at the vortex core

In zero-energy LDOS N (E = 0, r) in Figs. 2(c), 3(c), and
4(c), we see a sharp peak at the vortex center r = 0, as the
bound state is localized in the vortex core. In the clean limit,
N (E = 0, r) is well confined around a vortex core in p±-
and d2±-wave superconductors with full gap. Compared with
them, N (E = 0, r) extends broader from the vortex core in
d1±-wave superconductors due to the horizontal line node.
With increasing impurity scattering rate 1/τ0, the peak height
becomes lower and the width broader.

Outside of vortex, N (E = 0, r) is reduced to the DOS in
the uniform state of bulk. In the Born limit, it does not appear
at small 1/τ0, and slowly increases at larger 1/τ0. On the other
hand, in the unitary limit, the zero energy DOS easily appears
by small 1/τ0 even outside of vortex. There, bulk impurity

scattering states and the vortex bound states are mixed in
N (E = 0, r) in the vortex core.

To see the impurity scattering effects on the peak height
N (E = 0, r = 0) at the vortex center in Fig. 2(c) in chi-
ral p±-wave superconductors, we plot 1/τ0 dependence of
N (E = 0, r = 0) in Fig. 5(a). As was reported in Ref. [51]
for a single vortex, in the Born limit the peak height in the
p−-wave superconductor slowly decreases as a function of
1/τ0, but it rapidly decreases in the p+-wave superconductor.
On the other hand, in the unitary limit our results show the
similar rapid decrease of the peak height both in the p+-wave
and p−-wave superconductors. Therefore the anomalous 1/τ0

dependence of N (E = 0, r = 0) in the Born limit vanishes in
the unitary limit.

In chiral d1±-wave superconductors in Fig. 5(b) corre-
sponding to Fig. 3(c), the peak height in the d1−-wave
superconductor rapidly decreases even in the Born limit. The
peak heights in d1+-wave and d1−-wave superconductors sim-
ilarly decrease as a function of 1/τ0 both in the Born and the
unitary limits. We note that the peak height is larger in the
d1+-wave superconductors for cleaner case of small 1/τ0. This
behavior is similar to that in the p±-wave superconductor.
There, compared to the p−-wave superconductor, the peak is
higher in the p+-wave superconductor at 1/τ0 = 0 in Fig. 5(a).

Also in chiral d2±-wave superconductors in Fig. 5(c) cor-
responding to Fig. 4(c), the peak heights in d2+ and d2−-wave
superconductors show similar rapid decreases as a function of
1/τ0 both in the Born and the unitary limits. The differences
between d2+ and d2−-wave superconductors and between the
Born and the unitary limits are very small, compared to the
d1±-wave superconductors.

C. s-wave Cooper pair amplitude

As is seen in the previous subsection, the zero-energy vor-
tex bound states are strong against the nonmagnetic impurity
scattering only in the p−-wave superconductor in the Born
limit. The reason for this property was explained in relation to
the odd frequency s-wave Cooper pair amplitude in Ref. [51].
There the s-wave Cooper pair amplitude, appearing at the
vortex core, is strong to the nonmagnetic impurity scattering
due to the Anderson theorem [69,73].

In chiral p-wave superconductors, zero energy bound state
at the vortex has a property of Majorana state [40–42]. Related
to the Majorana property, zero-energy state has the relation
[44,49].

N (E = 0, r)/N0 = | fs(E = 0, r)|. (15)

Therefore, in our study about the impurity scattering effects,
we estimate the zero-energy s-wave Cooper pair amplitude
| fs(E = 0, r)| in comparison with N (E = 0, r)/N0. In p±-
wave superconductors, the s-wave Cooper pair amplitude is
in the odd-frequency symmetry [43,44].

Spatial structures of | fs(E = 0, r)| in p±-, d1±- and
d2±-wave superconductors are, respectively, presented in
Figs. 2(d), 3(d), and 4(d). As shown in a right panel of
Fig. 2(d), | fs(E = 0, r)| has a sharp peak at the vortex center
in a chiral p−-wave superconductor. With increasing 1/τ0,
the peak height and the width becomes lower and broader,
respectively. Comparing it with the right panel of Fig. 2(c),
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FIG. 5. Peak height of zero-energy LDOS N (E = 0, r = 0)/N0 at the vortex center as a function of 1/τ0 in (a) p±-wave, (b) d1±-wave,
and (c) d2±-wave superconductors. (d) The difference of zero-energy LDOS and the odd frequency s-wave Cooper pair amplitude at the vortex
center in the p−-wave superconductor. We plot 1 − | fs(E = 0, r = 0)|N0/N (E = 0, r = 0). In (a)–(c), solid and dashed lines are, respectively,
for the Born and the unitary limits.

we see that | fs(E = 0, r)| shows similar behaviors to N (E =
0, r)/N0 around a vortex. We plot them in Fig. 6 to confirm
that the relation in Eq. (15) is well satisfied even for finite
1/τ0 at the vortex core region in the Born limit. The relation
breaks outside of vortex core. Far from the vortex, | fs(E =
0, r)| → 0, while N (E = 0, r)/N0 is reduced to a small finite
value.

On the other hand, in the unitary limit, we see the devi-
ation from the relation of Eq. (15) even in the vortex core
region for larger 1/τ0. Outside of vortex core N (E = 0, r)/N0

and | fs(E = 0, r)| are larger compared with the Born limit,
and their contrast between the vortex core and the outside
is smeared. This enhancement of N (E = 0, r)/N0 outside of
the vortex comes from the zero-energy impurity scattering
states of bulk, which appear even in uniform states in the
unitary limit. Since the excess bulk components penetrate
inside of vortex core, N (E = 0, r)/N0 is slightly larger than
| fs(E = 0, r)| at the vortex core.

To estimate the relation of Eq. (15) at the vortex
center, we plot deviation (N (E = 0, r = 0)/N0 − | fs(E =
0, r = 0)|)/(N (E = 0, r = 0)/N0) = 1 − | fs(E = 0, r =
0)|N0/N (E = 0, r = 0) as a function of 1/τ0 in Fig. 5(d).
There, we see the deviation increases as a function of 1/τ0 in
the unitary limit. In the Born limit, we see that the deviation is
almost zero at 1/τ0 < 0.1, satisfying Eq. (15). This difference
between the Born and the unitary limits may be related to
the fact that the zero-energy vortex core state in the p−-wave
superconductor is strong to the impurity scattering only in the
Born limit in Fig. 5(a), following the scenario suggested in
Ref. [51].

In Table I, the column of m = 0 indicates the winding
number of the s-wave Cooper pair component fs(E = 0, r)
around a vortex center. Only in the p−-wave superconduc-
tor, | fs(E = 0, r)| is finite at the vortex center, since the
winding number w = 0. As for other chiral superconductors,
winding numbers abound a vortex are +3, +2, and −1 in

FIG. 6. Comparison of N (E = 0, r)/N0 (solid lines) and | fs(E = 0, r)| (dashed lines) as a function of radius r along the NNN vortex
direction for 1/τ0 = 0, 0.05, 0.10, and 0.15 in (a) the Born and (b) unitary limits in a chiral p−-wave superconductor.
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FIG. 7. Local scattering rate τ0/τ (r) from Eq. (9) for E = 0 in the unitary limit as a function of radius r in (a) p±-wave, (b) d1±-wave, and
(c) d2±-wave superconductors. 1/τ0 = 0.05, 0.10, and 0.15. Left (right) panels are, respectively, for p+, d1+, and d2+ (p−, d1−, and d2−). In the
Born limit τ0/τ (r) = 1.

d2+, p+, and d2−-wave superconductors, respectively. There-
fore, in these superconductors, s-wave Cooper pair amplitude
vanishes at the vortex center, as shown in Figs. 2(d) and
4(d). In d1±-wave superconductors, since f (E = 0, k, r) is an
odd function under the transformation kz → −kz, the s-wave
Cooper pair component 〈 f (E = 0, k, r)〉k = 0 after the Fermi
surface average. Therefore, in chiral superconductors other
than the p−-wave, the relation of Eq. (15) is not satisfied,
since fs(E = 0, r) vanishes at the vortex center. This may be
a reason for that the zero-energy vortex bound state is not
strong against the impurity scattering in Fig. 5, following the
scenario suggested in Ref. [51].

In the clean limit of p+- and d2±-wave superconductors,
| fs(E = 0, r)| increases with approaching vortex from the out-
side, and after a peak it rapidly decreases to zero at r → 0.
With increasing the scattering rate 1/τ0, the peak position
shifts to farther from the vortex center, and the peak height
becomes lower. In these superconductors, | fs(E = 0, r)| be-
comes smaller in the unitary limit, compared with the Born
limit.

D. Local scattering rate in the unitary limit

While scattering rate 1/τ (r) in Eq. (9) is a con-
stant as τ0/τ (r) = 1 in the Born limit, τ0/τ (r) = (〈g〉2

k +
〈 f 〉k〈 f †〉k)−1 in the unitary limit has spatial variation due to
the r dependence of 〈g〉k and 〈 f 〉k. To discuss the differences
between the Born and the unitary limits, we present the spatial

structure of the local scattering rate τ0/τ (r) of the unitary limit
for E = 0 in Fig. 7.

In all chiral superconductors in Fig. 7, outside of the
vortex core, 1/τ (r) is enhanced than 1/τ0, being effec-
tively dirtier in the unitary limit than in the Born limit.
This is because 〈g〉2

k + 〈 f 〉k〈 f †〉k < 1, reflecting 〈 f 〉k =
〈 f †〉k = 0 in the uniform state where f ∝ ϕl,m(k) and f † ∝
ϕ∗

l,m(k). Therefore τ0/τ (r) = 〈g〉−2
k = (N (E = 0, r)/N0)−2 >

1, since N (E = 0, r) < N0 in uniform superconducting states.
With increasing 1/τ0 toward dirtier superconductors, since
N (E = 0, r)/N0 of the uniform states becomes larger due
to the impurity state in the unitary limit, τ0/τ (r) de-
creases and reduces to 1. Compared with the d1±-wave
superconductors with a horizontal line node, τ0/τ (r) is
larger in p± and d2±-wave superconductors with full
gap.

Next, we study τ0/τ (r) in the vortex core region. In chiral
superconductors other than p−-wave superconductor, τ0/τ (r)
is suppressed in the unitary limit as 1/τ (r) < 1/τ0, as is seen
in Fig. 7. There, p+, d1± and d2±-wave superconductors show
similar 1/τ0-dependence. Around the vortex, 〈g〉k = N (E =
0, r)/N0 becomes larger, while |〈 f 〉k| = | fs(E = 0, r)| is not
so large and reduces to zero at r → 0 as is seen in Figs. 2 and
4. 〈 f 〉k = 0 in d1±-wave superconductors. Therefore, since
dominant contributions of 〈g〉k increases at r → 0, τ0/τ (r) ∼
〈g〉−2

k = (N (E = 0, r)/N0)−2 becomes smaller at the vortex
core. Since the effectively cleaner vortex core compensates
the dirtier outside region, the peak height of N (E = 0, r)
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in the unitary limit may keep almost the same height as in
the Born limit in Fig. 5. With increasing 1/τ0 toward dirtier
superconductors, 〈g〉−2

k approaches the normal state value 1,
τ0/τ (r) approaches 1 both inside and outside of the vortex
core, indicating that the difference between the Born and the
unitary limits becomes smaller.

On the other hand, in the p−-wave superconductor,
τ0/τ (r) → 1 when r → 0 approaching the vortex center.
At the vortex core, we find that the odd-frequency
s-wave Coooper pair component has the relation
〈 f 〉k〈 f †〉k = −| fs(E = 0, k)|2 in p±-wave superconductors,
whereas 〈 f 〉k〈 f †〉k = | fs(E = 0, k)|2 in d2±-wave ones. In the
p−-wave superconductor, 〈 f 〉k = 〈 f †〉k = i| fs(E = 0, r)| and
τ0/τ (r) = (〈g〉2

k + 〈 f 〉k〈 f †〉k)−1 = ((N (E = 0, r)/N0)2 −
| fs(E = 0, k)|2)−1 ∼ 1 at the vortex center. There, large
intensity of N (E = 0, r)/N0 is almost compensated by the
increase of | fs(E = 0, k)|, seen in Fig. 6. Similar behavior
appears also in the negative coherence effect due to the
odd-frequency s-wave Coooper pair component in the local
NMR relaxation rate T −1

1 at the vortex core [48,49]. As
is shown in Fig. 5(d), there is small deviation between
N (E = 0, r)/N0 and | fs(E = 0, k)| in the unitary limit, so
that (N (E = 0, r)/N0)2 − | fs(E = 0, k)|2 ∼ 1. The result that
τ0/τ (r) in the unitary limit does not become smaller than that
of the Born limit even in the vortex core may be related to the
fact that zero-energy LDOS of the vortex bound state is not ro-
bust against the nonmagnetic impurity scattering in the unitary
limit, while it is robust in the Born limit, as is seen in Fig. 5(a).

To clarify the unconventional behaviors of nonmagnetic
impurity scattering effects in the chiral superconductors, we
compare results for the chiral superconductors in this section
with those for isotropic s-wave superconductors in Appendix.

V. SUMMARY

Based on the self-consistent Eilenberger theory in the vor-
tex lattice, we studied nonmagnetic impurity scattering effects
in the vortex states of chiral superconductors, and clarified its
dependence on the scattering rates 1/τ0 with a comparison of
the Born and unitary limits. To find characters of two chiral d-
wave superconductors, d1± = dxz ± idyz and d2± = dx2−y2 ±
idxy, in comparison with chiral p±-wave superconductors, we
calculated the spatial structure of the pair potential and local
electronic state in the presence of impurity scattering.

As for the main component �1(r) and the induced opposite
chiral component �2(r), reflecting properties of time reversal
symmetry breaking, we found that d1±-wave superconductors
have similar spatial structure and the 1/τ0 dependence to
those in p±-wave superconductors, since both have the same
chirality Lz = ±1. Thus we expect that chirality dependent
behaviors induced by �2(r) are similar in p± and d1±-wave
superconductors. However, in d2±-wave superconductors with
Lz = ±2, since �2(r) shows different spatial behaviors and
small amplitude, the difference between d2+ and d2−-wave
superconductors becomes small in their chirality dependent
phenomena.

As for the local electronic states which may be observed
by STM experiments, chiral d-wave superconductors show

different behavior compared with p±-wave superconductors.
While zero energy LDOS of vortex bound state is more robust
against the nonmagnetic impurity scattering in the p−-wave
superconductor in the Born limit, it is rapidly suppressed as a
function of 1/τ0 in chiral d-wave superconductors. The rapid
suppression occurs even in the p−-wave superconductors in
the unitary limit. The differences are due to lack of Majorana
properties related to the s-wave Cooper pair amplitude, and
one of key features to distinguish between chiral p and d-wave
superconductors. Robustness against the impurity scattering
effects is also related to the local impurity scattering rate
1/τ (r) around a vortex.

These results about the impurity effects in the vortex state
will be important in future studies to identify properties of
chiral superconductors in candidate materials [8,10–16].
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APPENDIX: IMPURITY EFFECTS IN VORTEX STATES OF
AN s-WAVE SUPERCONDUCTOR

To understand characteristic behaviors of vortex states in
chiral superconductors, we need to see also behaviors in a
conventional isotropic s-wave superconductor with �(r, p) =
�s(r). The spatial structures of the zero-energy LDOS N (E =
0, r)/N0 and s-wave Cooper pair amplitude | fs(E = 0, r)| are,
respectively, presented in Figs. 8(a) and 8(b). Outside of the
vortex core, the differences between the Born and the unitary
limits are very small. Far from the vortex, N (E = 0, r)/N0

is reduced to a small value, and | fs(E = 0, r)| → 1. There,
1/τ0 dependence is very weak, reflecting Anderson theorem
that the nonmagnetic impurity scattering effects are absent in
the uniform bulk state in an isotropic s-wave superconductor
[69,73].

On the other hand, inside of the vortex core we see the
1/τ0 dependence and differences between two limits. As is
shown in Fig. 8(c), the peak height of N (E = 0, r)/N0 at the
vortex center r = 0 decreasing as a function of 1/τ0 is higher
in the unitary limit than that in the Born limit [58]. This is
contrasted to behaviors of chiral superconductors in Fig. 5,
where N (E = 0, r)/N0 at the vortex center is higher in the
Born limit. Approaching vortex, | fs(E = 0, r)| increases from
1. And after a peak at finite r, it rapidly decreases towards 0 at
r → 0, since fs(E = 0, r) has phase winding w = 1 around a
vortex center in an s-wave superconductor. The peak height at
finite r decreases, with increasing 1/τ0.

Figure 8(d) shows local scattering rate in the unitary limit.
In an s-wave superconductor, τ0/τ (r) → 1 far from the vor-
tex. Approaching the vortex center, τ0/τ (r) decreases toward
0 at r → 0. The 1/τ0 dependence is almost negligible. Be-
cause of the cleaner vortex core contribution, the impurity
scattering effect in the vortex state is weaker in the unitary
limit, compared with the case of τ0/τ (r) = 1 in the Born limit.
This is a reason why the peak height of N (E = 0, r)/N0 in
Fig. 8 is higher in the unitary limit, indicating cleaner than in
the Born limit.
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FIG. 8. Vortex states in an isotropic s-wave superconductor for 1/τ0 = 0, 0.05, 0.10, and 0.15 in the Born (solid lines) and the unitary
(dashed lines) limits. T/Tc = 0.5. B/B0 = 0.01. (a) Zero energy LDOS N (E = 0, r)/N0 and (b) s-wave Cooper pair amplitude | fs(E = 0, r)|
as a function of radius r along x axis of NNN vortex direction. (c) Peak height of zero-energy LDOS N (E = 0, r = 0)/N0 at the vortex center
as a function of 1/τ0 in the Born and unitary limits. (d) Local scattering rate τ0/τ (r) from Eq. (9) in the unitary limit as a function of r for
1/τ0 = 0.05, 0.10, and 0.15. In the Born limit, τ0/τ (r) = 1.
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