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Roton excitation in overpressurized superfluid 4He
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We carry out a theoretical investigation of overpressurized superfluid phases of 4He by means of quantum
Monte Carlo (QMC) simulations. As a function of density, we study structural and superfluid properties, and we
estimate the energy of the roton excitation by inverting imaginary-time density correlation functions computed
by QMC, using maximum entropy. We estimate the pressure at which the roton energy vanishes to be about
100 bars, which we identify with the spinodal density, i.e., the upper limit for the existence of a metastable
superfluid phase.
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I. INTRODUCTION

Helium is the only element in nature that does not crystal-
lize at zero temperature under the pressure of its own vapor;
instead, its thermodynamic equilibrium phase is a liquid ca-
pable of flowing without dissipation (superfluid). A pressure
of around 25 bars must be applied in order to stabilize a
hexagonal closed-packed crystalline phase.

It is possible, however, to realize experimentally
metastable liquid phases of helium at pressures higher
than that of crystallization [1,2]. This allows one to study
the superfluid response of the system over a significantly
greater range of pressure. Theoretical studies have shown
that at temperature T = 0 the condensate fraction remains
finite in the overpressurized liquid, decaying exponentially
with density [3]. Computer simulations have also yielded
evidence of a possible “superglass” phase, with an estimated
lifetime of the order of 1 ms, displaying a finite superfluid
response but also breaking translational invariance over
relatively long time scales [4]. The predicted resilience of
the overpressurized superfluid phase of 4He is understood to
be a direct consequence of quantum-mechanical exchanges
involving a macroscopic fraction of all particles in the system
(an effect also referred to as “quantum jamming”) [5].

Of particular interest is whether superfluidity persists all
the way to the limit of existence of a metastable overpres-
surized fluid. This limit is identified by a value of density,
henceforth referred to as spinodal, above which only the crys-
talline phase occurs. It is speculated that the energy of the
minimum of the excitation spectrum of superfluid 4He at finite
wave vector, known as the roton, should vanish at the spinodal
density [6,7].

The roton energy as a function of pressure has been mea-
sured experimentally in the equilibrium fluid phase up to a
pressure of 20 bars [8–10], as well as in various porous media,
in which the fluid phase can be stabilized above the bulk
freezing pressure, as crystallization is suppressed by the tight
confinement [11]. The highest pressure at which superfluidity
has been observed in porous media is ∼37 bars, where the

roton mode disappears [12,13]. However, no measurement of
the roton energy in the overpressurized bulk superfluid, which
has been predicted to exist at much higher pressures, has to
our knowledge been carried out yet.

In addition to the outstanding theoretical issue mentioned
above, namely the behavior of the roton energy on approach-
ing the spinodal, the parallel behavior of the superfluid and
condensate fraction at finite temperature, as a function of
pressure, is also of interest; there exist ground-state studies
of the condensate fraction of overpressurized superfluid 4He,
but it is known that the superfluid fraction must be equal to
100% in the ground state of a translationally invariant system.
Furthermore, since the excitation spectrum can be probed
by neutron scattering measurements, knowledge of the roton
energy as a function of density and pressure can be used to
gain information about the local environment experienced by
the fluid in confinement or in restricted geometries.

We report here results of a theoretical investigation of
overpressurized superfluid 4He, carried out by means of
first-principles quantum Monte Carlo (QMC) simulations at
temperature T = 1 K. The goal of this QMC study is to exam-
ine the structural and superfluid properties of the metastable
superfluid phase at very high pressures, as well as to cal-
culate the energy associated with the roton minimum of the
elementary excitation spectrum. This task is complicated by
the lack of a direct probe of real-time dynamical properties
of the system within the context of QMC. There are, how-
ever, indirect ways of extracting some of that information,
such as computing imaginary-time correlation functions, and
converting them to real-frequency spectral functions through
an inverse Laplace transform. This is an ill-posed problem
that requires the use of a regularization scheme; we use the
maximum entropy method (MEM) [14].

Our main result is that the energy of the roton excitation
vanishes at a density ρsp = 0.0320(2) Å−3. This is also the
highest density for which the simulation of a metastable, over-
pressurized superfluid phase of 4He is feasible, as spontaneous
crystallization rapidly occurs at higher density, not allowing
us to collect meaningful statistics. We can therefore identify
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ρsp with the spinodal density, in agreement with the hypothe-
sis of Ref. [7]. The pressure corresponding to ρsp is equal to
104 bars, to be compared to that (67 bars) of the equilibrium
crystalline phase at the same density.

We report estimates for the condensate fraction n0 as a
function of the density, and we find them to be in quanti-
tative agreement with previous ground-state studies, up to a
pressure of approximately 60 bars; significant deviations are
observed from the previously predicted exponential decay at
higher pressure, i.e., the condensate fraction decays consid-
erably more rapidly with density. Analogously, the computed
superfluid fraction ρS remains relatively close to 100% as the
density is increased, but it falls off abruptly on approaching
ρsp.

The remainder of this paper is organized as follows: In
Sec. II we describe the model of the system, and briefly
describe the regularization procedure we use to extract some
dynamical properties of the system; in Sec. III we describe
our QMC methodology; we present and discuss our results in
Sec. IV and finally outline our conclusions in Sec. V.

II. MODEL

We model the system as an ensemble of N pointlike, identical
particles with mass m equal to that of a 4He atom and with spin
S = 0, thus obeying Bose statistics. The system is enclosed in
a cubic cell of volume V with periodic boundary conditions in
the three directions. The density of the system is ρ = N/V .
The quantum-mechanical many-body Hamiltonian reads as
follows:

Ĥ = −λ
∑

i

∇2
i +

∑
i< j

v(ri j ), (1)

where the first (second) sum runs over all particles (pairs of
particles), λ ≡ h̄2/2m = 6.06 K Å2, ri j ≡ |ri − r j |, and v(r)
denotes the pairwise interaction between the helium atoms. In
this investigation, we model this interaction using the well-
established Aziz pair potential [15], which is the canonical
model utilized in most numerical studies of superfluid helium.
This pairwise potential affords an accurate reproduction of the
equation of state of condensed helium in the range of den-
sities considered in this work. To put it more quantitatively,
three-body terms, which provide the leading correction to the
interaction, are estimated to contribute no more than 1–2 % of
the pressure, at or below 100 bars. Their effect on structural
and dynamical properties is negligible [16,17].

III. METHODOLOGY

As mentioned above, we carried out QMC simulations
of the system described by Eq. (1) using the continuous-
space Worm algorithm [18,19]. This technique is by now
well-established, and it has been extensively described in
the literature. Therefore, we will not review it here, instead
referring the reader to the original references. We utilized a
canonical variant of the algorithm in which the total number
of particles N is held constant in order to simulate the system
at fixed density [20,21].

The details of the QMC simulation are standard;
we adopted the usual short-time approximation for the

imaginary-time propagator accurate to fourth order in the
time step ε (see, for instance, Ref. [22]). All of the results
presented here are extrapolated to the limit of vanishing ε.
The numerical estimates of the quantities of interest com-
puted with ε = 1.6 × 10−3 K−1 are indistinguishable from
the extrapolated ones, within the statistical uncertainties of
the calculation. The results shown here were obtained for sys-
tems comprising N = 256 particles. Experience with previous
work [23] suggests that this system size is sufficient to extract
information at the roton wave vector of interest here.

All calculations were carried out at T = 1 K. For densi-
ties up to freezing, such a value of the temperature is well
below the superfluid transition temperature Tc, and therefore
our physical estimates may be expected to approach closely
ground-state values. For example, the excitation spectrum of
the system is experimentally observed to be essentially in-
dependent of temperature in this range of density (see, for
instance, Refs. [10,24]). On the other hand, at higher density,
in the overpressurized metastable regime, this is no longer
guaranteed as pressurization is expected to suppress Tc (there
are no experimental data nor theoretical estimates of which
we are aware).

The properties of the system are studied as a function
of the density; below the freezing density ρ f , equal to
∼0.0262 Å−3, simulations are straightforward, as one is
studying the thermodynamic equilibrium phase. On the
other hand, above the freezing and melting density (ρm ∼
0.0286 Å−3), the system starts displaying a marked tendency
to crystallize, and an appropriate simulation protocol has to be
adopted in order to prevent that from happening too quickly
in order to accumulate enough statistics for the metastable,
homogeneous superfluid phase. We adopted the same pro-
tocol as in Ref. [25], i.e., we increase the density of the
system in steps by rescaling all particle coordinates (i.e., along
imaginary-time world lines [19]) in a many-particle configu-
ration coming from a simulation at a slightly lower density
(the immediately previous step).

The advantage of this approach is that one is starting
from configurations that are already “entangled,” i.e., they
feature permutations of large numbers of particles. To reach
the crystalline, equilibrium phase, the simulation algorithm
must “disentangle” all of these world lines, and although this
will of course eventually happen, the metastable phase may be
sufficiently “long-lived” (in the computer) that one may still
arrive at physically meaningful expectation values. Of course,
there will always be a drift in the averages over the course
of the simulation, as the true equilibrium phase inevitably
emerges, but in most cases it is small enough not to be a
concern.

To study the elementary excitations of the system, one can
estimate the dynamic structure factor S(q, ω) by calculating
by QMC the imaginary-time correlation function

F (q, τ ) = 1

N
〈ρ̂q(τ ) ρ̂†

q(0)〉, (2)

where 〈· · · 〉 stands for thermal average, and with

ρq(τ ) =
N∑

j=1

eiq·r j , (3)
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FIG. 1. Instantaneous density map of a system of N = 256 4He
atoms (view is along the z direction) in a cubic box, at T = 1 K and
density 0.0336 Å−3. Clearly, in this case the system has crystallized.

where the {r j}, j = 1, 2, . . . , N , are the positions of the
N 4He atoms at imaginary time τ , and inferring S(q, ω)
through

F (q, τ ) =
∫ ∞

0
dω(e−ωτ + e−ω(β−τ ) )S(q, ω), (4)

where β = 1/T , 0 � τ � β (we have set the physical con-
stants h̄ = kB = 1). As mentioned above, the inversion in (4)
constitutes a mathematically ill-posed problem, and we use
the MEM to obtain the position of the main peak of S(q, ω)
(i.e., the energy of the excitation dominating the spectrum) as
a function of density.

The MEM (and closely related approaches) has been
adopted in the past to estimate the dynamic structure factor
of superfluid and normal 4He [23,26,27]; in general, while
the sharpest features of the underlying image tend to be lost
in the reconstruction, usually the position of the main peak
is rather accurately identified. In this work, we have not at-
tempted the full reconstruction of the spectral image S(q, ω)
as a function of the wave vector q in order to obtain the
energy dispersion curve ω(q), thereby identifying the position
of the roton minimum for each and every one of the densities
considered. Rather, we have focused for simplicity on a single
wave vector for each density, assuming that the magnitudes of
the roton wave vectors q, q′ at two different densities ρ and ρ ′
are related through (q′/q) = (ρ ′/ρ)1/3, as is experimentally
found to be the case for the equilibrium superfluid phase
below freezing [28].

As mentioned above, since we are using an equilibrium
simulation technique, on simulating the system for a suf-
ficiently long time eventually crystalline order is bound to
emerge. It is therefore necessary to monitor the simulation
in order to ensure that one is actually studying a metastable
superfluid phase, and that crystal order has not yet set in. This
is accomplished first and foremost by visual inspection of
the many-particle configurations (i.e., imaginary-time paths)
generated in the course of the simulation. As shown in Fig. 1,
it is possible to detect the appearance of order rather easily,
as it sets in even if the geometry of the box (cubic) is not
specifically designed to accommodate a crystal of the known

FIG. 2. Pair correlation function of 4He at T = 1 K and a den-
sity of ρ = 0.0319 Å−3 for both the metastable superfluid and the
equilibrium (hcp) crystalline phase (darker curve).

equilibrium structure (hcp in the case of 4He). Another way
to monitor the appearance of crystalline order is through the
calculation of the pair correlation function, and a comparison
with that (computed separately) of the equilibrium crystalline
phase at the same density. An example of this is shown in
Fig. 2; although the two functions follow one another quite
closely, that of the crystal has noticeably higher peaks.

Another important indicator that one is simulating a
metastable superfluid phase, besides of course the value of
the superfluid fraction (ρS), which is computed through the
well-established winding number estimator [29], is the one-
body density matrix n(r), which is expected to plateau at long
distances in a superfluid while decaying exponentially in a
crystal.

IV. RESULTS

In this section, we present our results for structural, su-
perfluid, and dynamical properties of the overpressurized
metastable phase of 4He.

Figure 3 shows the one-body density matrix n(r) for a few
different densities explored in this work. The lowest density
for which results are shown is the equilibrium density, ρeq =
0.021 834 Å−3. For the highest density, namely 0.0336 Å−3,
data are consistent with an exponential decay, suggesting that
this density is above the spinodal. For all other densities,

FIG. 3. One-body density matrix of the metastable liquid phase
of 4He at T = 1 K and at various increasing densities (higher density
shown by the lower curve). The lowest density for which results
are shown is the equilibrium density, the highest (bottom curve) is
0.0336 Å−3. The straight line through the peaks of the bottom curve
illustrates the consistency of the data with exponential decay.
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FIG. 4. Condensate fraction (n0) of the metastable liquid phase
of 4He at T = 1 K as a function of density (squares). Also shown are
the ground state estimates of Ref. [3] (circles).

n(r) plateaus at long distances to a value corresponding to
the condensate fraction n0. Figure 4 shows our results for
the condensate fraction as a function of density, comparing
them with those for the ground state, obtained in Ref. [3].
The results of the two calculations are in perfect agreement,
i.e., consistent with an exponential decay of the condensate
fraction with density. However, in this work we considered
densities ∼15% higher than those in Ref. [3]; the data shown
in Fig. 4 show significant deviations from the exponential
decay, i.e., the condensate fraction decays more rapidly on
approaching ρsp. Assuming that our statistical and systematic
errors are not significantly underestimated (we believe this to
be unlikely), one possibility [30] to account for such devia-
tions is that Tc may be substantially suppressed as the density
approaches ρsp, and therefore the comparison of our results
with ground-state estimates may be complicated by thermal
effects.

The suppression of Tc is corroborated by the values of the
superfluid fraction reported in Fig. 5. As one can see, while
ρS depends very weakly on ρ, remaining relatively large up to
the highest density considered in Ref. [3] (0.0293 Å−3, cor-
responding to a pressure of approximately 60 bars), it decays
abruptly above it, barely reaching ∼10% at the highest density
for which a metastable superfluid phase can be simulated,
using our protocol, namely 0.0319 Å−3.

We report in Table I values of the superfluid and conden-
sate fraction, as well as computed pressure (in bars) for two
different densities. Also shown for comparison are the values

FIG. 5. The superfluid fraction of the metastable fluid phase of
4He at T = 1 K as a function of density.

TABLE I. Superfluid (ρs) and condensate fraction (n0), as well
as the computed value of the pressure (P, in bars) for metastable
superfluid 4He at T = 1 K at different densities above the melting
density. Statistical errors (in parentheses) are on the last digit. Also
shown for comparison is the computed pressure for the equilibrium
crystalline (hcp) phase.

Superfluid hcp

ρ (Å−3) ρs n0 P P

0.0293 0.86(5) 0.0090(5) 62.0(3) 32.2(2)
0.0304 0.36(5) 0.0040(5) 71.4(9) 45.2(3)
0.0319 0.08(1) 0.0020(4) 96(1) 67.1(7)

of the pressure for the corresponding equilibrium (crystalline
hcp) phase, obtained separately in this work. As expected, the
pressure is considerably higher for the metastable superfluid
phase.

Next, we discuss the results for S(qR, ω), which constitute
the most important part of this study (qR is the magni-
tude of the roton wave vector). Figure 6 shows our results
for S(qR, ω), inferred through the MEM for the metastable
superfluid phase at three different densities, including the
equilibrium density ρeq defined above. The results for the two
higher densities are for two overpressurized superfluid phases.

All of the curves feature a well-defined maximum, whose
position corresponds to the energy of the excitation. We
estimate the position of the peak and assign a statistical uncer-
tainty following the procedure outlined in Ref. [27]. Namely,
we perform a METROPOLIS Monte Carlo simulation in the
space of spectral images, and we accumulate statistics on
the position of the maximum of the curve, also obtaining
the uncertainty of its position as the standard deviation. As
expected, and as shown in Fig. 7, the roton energy goes down
as a function of density. In addition, the height of the peak
grows as one approaches the spinodal density and the onset of
crystallization.

FIG. 6. The dynamic structure factor S(q, ω) of superfluid 4He
at T = 1 K, evaluated at densities of ρeq (qR = 1.963 Å−1, circles),
ρ = 0.0293 Å−3 (qR = 2.159 Å−1, diamonds), and ρ = 0.0319 Å−3

(qR = 2.219 Å−1, squares). The standard deviation associated with
the inversion process is shown only for the peaks of the curves,
with the understanding that the adjacent points have comparable or
smaller standard deviations.
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FIG. 7. The roton energy of superfluid 4He as a function of
density at T = 1 K.

In Fig. 7, we map out the roton energy as a function of
density, ωR(ρ). To estimate the density at which ωR = 0, we
make the assumption that that occurs in concomitance with
the divergence of the static structure factor, consistently with
Bijl-Feynman theory of the elementary excitations [31]. This
leads us to posit the following form [7]:

ωR(ρ) = A(ρsp − ρ)γ . (5)

We use this expression to fit the data in Fig. 7, using A, ρsp,
and the unknown exponent γ as fitting parameters. This yields
ρsp = 0.0320(2) Å−3, with a value of the critical exponent
γ = 0.12(5). This is consistent with the observed instability
of the simulated fluid phase at ρ = 0.0336 Å−3, and it yields
a value of approximately 100 bars for the upper limit to which
the superfluid phase can be overpressurized.

V. CONCLUSIONS

We presented state-of-the-art QMC results for metastable
superfluid phases of 4He, pressurized above melting, at a tem-
perature T = 1 K. These metastable phases can be rendered
stable in a computer simulation (and presumably in nature as

well [4,5]) by the presence of long cycles of exchange of 4He
atoms, acting to prevent particles from becoming localized
in space. This confers to the simulated metastable phase an
appreciable “lifetime” (i.e., in the computer) that allows the
meaningful measurement of physical observables.

The condensate fraction in the metastable overpressurized
superfluid phase decays as a function of density, in a way that
is consistent with the exponential decay predicted in previous
ground-state studies [3], up to a pressure of approximately
67 bars; concurrently, the superfluid fraction remains rela-
tively close to 100%. At higher pressures, not explored in
previous calculations, we find that both the condensate and
superfluid fractions decay more rapidly. This suggests that
the superfluid transition temperature, relatively unaffected by
pressure in the equilibrium superfluid phase, and even in the
overpressurized phase for pressures below ∼67 bars, becomes
strongly suppressed at higher pressure.

We computed the energy of the roton excitation in the
overpressurized superfluid phase as a function of density. Our
results are consistent with the hypothesis [7] that the roton
energy should vanish at the spinodal density ρsp, in correspon-
dence to a pressure of approximately 100 bars. Above such
a pressure, an overpressurized superfluid phase is unstable
against crystallization.

The results of our study open up the possibility of more
detailed experimental investigations of the overpressurized
metastable liquid phases of helium, including in confined
geometries. While the high pressures studied here are not
necessarily directly measurable in some experimental settings
such as nanoporous media, the roton energies that we compute
are indeed measurable through neutron scattering techniques.
The results we present here could therefore allow an indirect
estimate of the local pressure of a metastable sample of over-
pressurized superfluid.
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