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Quantum coherence and spin nematic to nematic quantum phase transitions in biquadratic spin-1
and spin-2 XY chains with rhombic single-ion anisotropy
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We investigate quantum phase transitions and quantum coherence in infinite biquadratic spin-1 and -2 XY
chains with rhombic single-ion anisotropy. All considered coherence measures such as the l1 norm of coherence,
the relative entropy of coherence, and the quantum Jensen-Shannon divergence, and the quantum mutual
information show consistently that singular behaviors occur for the spin-1 system, which enables to identify
quantum phase transitions. For the spin-2 system, the relative entropy of coherence and the quantum mutual
information properly detect no singular behavior in the whole system parameter range, while the l1 norm of
coherence and the quantum Jensen-Shannon divergence show a conflicting singular behavior of their first-order
derivatives. Examining local magnetic moments and spin quadrupole moments lead to the explicit identification
of novel orderings of spin quadrupole moments with zero magnetic moments in the whole parameter space. We
find the three uniaxial spin nematic quadrupole phases for the spin-1 system and the two biaxial spin nematic
phases for the spin-2 system. For the spin-2 system, the two orthogonal biaxial spin nematic states are connected
adiabatically without an explicit phase transition, which can be called quantum crossover. The quantum crossover
region is estimated by using the quantum fidelity. Whereas for the spin-1 system, the two discontinuous quantum
phase transitions occur between three distinct uniaxial spin nematic phases. We discuss the quantum coherence
measures and the quantum mutual information in connection with the quantum phase transitions including the
quantum crossover.
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I. INTRODUCTION

Quantum phase transitions [1] lie at the heart of quan-
tum many-body phenomena in condensed matter physics. In
contrast to classical phase transitions induced by thermal fluc-
tuations, quantum fluctuations originated from the Heisenberg
uncertainty principle give rise to quantum phase transitions
for varying system parameters at zero temperature. Especially,
the investigations of various quantum spin systems have re-
vealed many novel states and quantum phase transitions for
quantum magnetism [2]. Of particular interest are quantum
nonmagnetic phases of matter such as, for instance, Haldane
phase [3–8], dimerized phase [9–12], and spin nematic (or
quadrupolar) phase [13–29] because quantum magnetism nor-
mally originates from the spin exchange coupling between
quantum spins but such exotic states have no conventional
long-range magnetic order, i.e., spin correlations are short
ranged. Furthermore, in manipulating cold atoms in optical
lattice, the recent impressive progresses [30–34] have made
various quantum spin nematics [35–41] realizable among
other exotic states experimentally.

Essentially, quantum phase transitions are abrupt changes
of ground-state wave-function structure driven by quantum
fluctuations. Such changes of ground-state wave-function
structure lead to similar sudden changes of correlations. For
example, in the ground state of the transverse-field Ising
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model at zero temperature, the spin-spin correlation is long
ranged, indicating the spin ordering, but this disappears expo-
nentially when the transverse field exceeds the critical value
[42]. Thus, quantum phase transitions are often characterized
by such a behavior of the responsible correlation. Studying the
decay of two-point correlation with distance is one of the tra-
ditional approaches to investigate quantum phase transition.
Meanwhile, quantum correlation measures, introduced from
the perspective of information theory, have been shown to be
very useful in exploring the states of many-body systems. If
it is not known a priori whether there is a quantum phase
transition or what kind of phase there is at all for a given
many-body system, for instance, quantum mutual information
measuring the sum of quantum and classical correlations can
be used to identify quantum phase transitions [43–49] because
the two-point mutual information is bounded from below by
any possible two-point correlation in the model [43].

Recent quantification of quantum coherence [50] in quan-
tum information science has also lead to disclose intriguing
connections between quantum coherence and correlation
[51–54]. Another aspect of fundamental feature of quantum
phases and quantum phase transition in a many-body sys-
tem can be thus explored from a perspective of quantum
coherence as a fundamental property of quantum mechan-
ics. Quantum coherence exhibits even in separable product
states [55] without quantum entanglement (correlation) [56],
which may imply that quantum coherence measures can detect
quantum phase transitions even when entanglement measures
fail to do so [57]. Actually, a variety of quantum coherence
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measures are introduced including the l1 norm of coherence
[50], the relative entropy of coherence [50], and the quan-
tum Jensen-Shannon divergence [58]. Such various quantum
coherence measures have been studied in detecting and char-
acterizing quantum phase transitions for several spin chain
models such as the transverse-field Ising model [59], the spin-
1/2 anisotropic XY chain [60], the two-dimensional Kitaev
honeycomb model [61], the anisotropic spin-1/2 Heisenberg
XYZ chain with the Dzyaloshinskii-Moriya (DM) interac-
tion in magnetic fields [62,63], the spin-1/2 XY chain with
DM interaction under magnetic fields [58], the spin-1/2 XY
model with three-spin interaction [64,65] and a transverse
magnetic field [66], the compass chain under an alternating
magnetic field [55], and the spin-1 XXZ chain [57,67] and
bilinear-biquadratic chain [67]. Accordingly, as an example,
the continuous (or second-order) quantum phase transition
belonging to the Ising universality class in the spin-1/2 XY
model has been shown to be captured by using quantum
coherence measures such as the derivative of quantum coher-
ence quantified by the l1 norm of coherence [64], the relative
entropy [59], the quantum Jensen-Shannon divergence [58],
and the skew information [60].

In fact, many of such studies on quantum coherence in
quantum spin systems have been performed for spin-1/2
systems based on available analytical solutions. Higher-spin
systems have then received relatively less attention on explor-
ing connections between quantum coherence and quantum
phase transitions. In contrast with spin-1/2 systems, however,
it is known that the presence of biquadratic interaction can
induce a quadrupole order for spins higher than 1/2 [13]. For
example, the Heisenberg model with biquadratic interaction
possesses a quadrupole phase in two-dimensional spin lattice
systems for spin-1 [20,25–28,68–71] and for spin-3/2 [29],
and in three-dimensional spin lattices for spin-1 [24].

Thus to understand various aspect of fundamental fea-
tures of quantum phase transitions, the purpose of this paper
is to investigate quantum coherence and quantum phase
transition in spin nematic systems without the conventional
long-range magnetic order. Specifically, the pure biquadratic
spin-1 model HBQ = J

∑
i (

∑
α Sα

i Sα
i+1)2 is not in a spin ne-

matic state, where Sα
i is the spin-1 operator at site i and

α ∈ {x, y, z}. It is well known that the pure biquadratic spin-1
model is in a dimerized state for the interaction strength J < 0
[9,10] and in a ferromagnetic state for J > 0 [72]. In our study,
we then introduce one-dimensional infinite biquadratic spin-1
and spin-2 XY models with rhombic single-ion anisotropy.
The main motivation for introducing this model is twofold.
On the one hand, we consider the model to search for spin
nematic to nematic transitions because at least, to our best
knowledge, the full phase diagram of our model is unknown
although the rhombic single-ion anisotropy itself gives rise to
a spin nematic state for spin-1 system [73,74].

On the other hand, by interpreting the behaviors of quan-
tum information theoretical measures without knowing any
information of the full phase diagram of the model, we want
to directly demonstrate how and to what extent quantum phase
transitions can be understood.

To investigate our infinite-lattice model numerically, we
employ the infinite matrix product state (iMPS) representation

with the infinite time-evolving block decimation (iTEBD)
method [75–77]. Our numerical results show that the phase
diagrams of the spin-1 and -2 systems are very different from
each other. Connections between quantum phase transitions
and tools of quantum information theory are studied for our
spin models by calculating the l1 norm of coherence, the
relative entropy of coherence, the quantum Jensen-Shannon
divergence, and the quantum mutual information. The quan-
tum coherence measures show their characteristic features
that are the two discontinuities for the spin-1 system and
the incoherent point of zero coherence for the spin-2 system.
However, in their first-order derivatives at the incoherent point
for the spin-2 system, the relative entropy of coherence ex-
hibits a nonsingular behavior, while the l1 norm of coherence
and the quantum Jensen-Shannon divergence have a singular
behavior conflictingly. Supportively to the relative entropy of
coherence, the quantum mutual information show the two dis-
continuous jumps for the spin-1 system and the monotonous
hill shape without any singular behavior for the spin-2 system.
Also, the ground-state energy per site reveals the characteristic
features indicating a first-order quantum phase transition for
the spin-1 system. For the spin-2 system, the frist- and the
second-order derivatives of the ground-state energy per site
do not show any nonanalytical feature of the ground-state
energy per site indicating quantum phase transition at the cor-
responding zero coherence point. We find that for the spin-1
system, the local quadrupole order parameters reveal the three
quadrupolar ordered phases and exhibit the discontinuous
quantum phase transitions between the three distinct uniaxial
spin nematic phases in agreement with the results of the tools
of quantum information theory. While for the spin-2 system,
the two biaxial spin nematic states are connected adiabatically
without explicit phase transition at a specific parameter in
spite of the orthogonal nematic states, which can be called
quantum crossover. The quantum coherence measures and the
quantum mutual information are discussed in connection with
the quantum crossover.

This paper is organized as follows. In Sec. II, the infinite
biquadratic XY chains with rhombic single-ion anisotropy is
introduced for spin 1 and 2. A brief explanation of the iMPS
approach is given in calculating ground-state wave functions
for the infinite chain models. Section III devotes to discuss the
behaviors of the quantum coherence measures and the quan-
tum mutual information. To clarify the relationship between
quantum phase transitions and quantum coherence measures,
we consider the ground-state energy per site and the bipartite
entanglement entropy in our iMPS approach in Sec. IV. In
Sec. V, the local magnetization and the local quadrupole order
parameters are discussed to clarify the uniaxial and biaxial
spin nematic phases and the quantum phase transitions in
association with the quantum coherence measures and the
quantum mutual information. The detailed behaviors of the
uniaxial and biaxial spin nematic states are discussed for the
spin-1 and -2 systems. A summary and remarks of this work
is given in Sec. VI.

In Appendix A, we discuss the iMPS ground-state en-
ergy as a function of the truncation dimension. Using the
exact diagonalization, as an alternative numerical method, the
ground-state energy and the local quadrupole order parame-
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ters are shown to be in agreement with the results of the iMPS
approach in Appendix B.

II. BIQUADRATIC XY CHAINS AND iMPS APPROACH

We start with the one-dimensional biquadratic spin XY
models with rhombic single-ion anisotropy. The Hamiltonian
can be written as

H = −J
∞∑

i=−∞

(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)2 + R
∞∑

i=−∞

[(
Sx

i

)2 − (
Sy

i

)2]
,

(1)
where J (> 0) is the biquadratic exchange interaction and Sα

i
is the spin-1 or -2 operator on the ith site. The rhombic
single-ion anisotropy is denoted by R, which is normally re-
ferred to as zero-field splitting parameter due to a crystal-field
anisotropy. The rhombic single-ion anisotropy effect has been
very recently investigated in the spin-1 Heisenberg model [73]
and XXZ model [74]. We will study the same form of the
Hamiltonian (1) for the spin-1 and-2 systems, respectively.

For our one-dimensional infinite lattices of the spin chains,
a wave function |ψ〉 of the Hamiltonian can be represented
in the iMPS. By employing the iTEBD method, a numerical
ground state |ψG〉 can be obtained in the iMPS represen-
tation [77–80]. When the initially chosen state approaches
to a ground state, the time step is chosen to decrease from
dt = 0.1 to dt = 10−6 according to a power law. Once the
system energy converges to a ground-state energy, which
yields a ground-state wave function in the iMPS represen-
tation for a given truncation dimension, i.e., here χ = 30.
The iMPS ground-state wave function |ψG〉 is the full de-
scription of the ground state in a pure state. The full density
matrix �G = |ψG〉〈ψG| gives any reduced density matrix �L

for lattice-block L by tracing out the degrees of freedom
of the rest of the lattice-block L, i.e., �L = TrLc �G. In our
study, single-site reduced density matrix in the Sz basis is used
because the reduced density matrices for lattice blocks give
no significant changes of the values of quantum coherence
measures compared with the single-site coherence measures.
The single-spin coherence can be experimentally accessible
without requirements of full tomography of the state. For
quantum mutual information, two-site reduced density matrix
in the Sz basis is used.

III. QUANTUM COHERENCE MEASURES, QUANTUM
MUTUAL INFORMATION, AND QUANTUM PHASE

TRANSITION

Over the past two decades, quantum information sci-
ence has developed to embody quantum physical phenomena
in quantum information resources that can be exploited to
achieve tasks that are beyond the realms of classical physics.
Such developments have led to provide quantitative measures
for quantum coherence and correlation. The qualitative mea-
sures have been implemented to explore another aspects of
nature of critical phenomena in quantum many-body sys-
tems. In particular, quantum coherence measures and quantum
mutual information have been investigated whether they can
capture quantum phase transition and its criticality. Also, a
nontrivial ground state such as factorized state or product

state has been studied by using such quantum information
theoretical measures. Various quantum coherence measures,
including the relative entropy of coherence, the l1 norm
quantum coherence, and the Jensen-Shannon divergence, are
suggested in different notions of incoherent operations. In our
spin chain models, we investigate such quantum coherence
measures provided in the alternative frameworks for charac-
terizing quantum phase transitions.

A. Quantum coherence measures

Once a reduced density matrix � is obtained from iMPS
ground-state wave functions, one can calculate quantum co-
herence measures based on the reduced density matrix. For
comparison, we consider the three coherence measures, i.e.,
the l1 norm of coherence Ci1 (�) [50], the relative entropy
of coherence Cre(�) [50], and the quantum Jensen-Shannon
divergence CJS(�) [58]. As a geometric measure that can be
used as a formal distance measure, the l1 norm of coherence
Cl1 (�) is given as the sum of absolute values of all off-diagonal
elements of the density matrix �, i.e.,

Cl1 (�) =
∑
n �=m

|�nm|. (2)

For a given basis, as a valid measure of coherence, the relative
entropy of coherence Cre(�) is given by

Cre(�) = S(� ‖ �diag) = S(�diag) − S(�), (3)

where removing all off-diagonal entries of � gives the in-
coherent state �diag corresponding to the state �. S(�) =
−Tr� log2 � is the von Neumann entropy. Together with
these two coherence measures, we also consider the quantum
Jensen-Shannon divergence given as

CJS(�) =
√

S
(�diag + �

2

)
− S(�diag) + S(�)

2
. (4)

In our study, the quantum coherence measures are calculated
in the Sz basis.

We plot the three coherence measures as a function of
R/J for the biquadratic XY chains with rhombic single-ion
anisotropy in Fig. 1. For the spin-1 system, Fig. 1(a) shows
that all three coherence measures undergo two abrupt jumps
at R = ±0.826J ≡ ±Rc. These nonanalytical points indicate
that discontinuous phase transitions occur at the two points.
Furthermore, three coherence measures become zero simul-
taneously, i.e., Cl1 = Cre = CJS = 0 for −Rc < R < Rc. Then
the ground state is in an incoherent state for −Rc < R < Rc.

In contrast to the case of the spin-1 system, however,
Fig. 1(b) shows that the three coherence measures exhibits
no such abrupt jumps for the spin-2 system. At R/J = 0,
the three coherence measures are zero simultaneously and
thus the ground state is in an incoherence state. Only the
noticeable inflexion of the three coherence measures occurs
at R/J = 0. In order to confirm whether the incoherent point
R/J = 0 relates to a quantum phase transition, we perform
the numerical derivatives of the three coherence measures. As
shown in Fig. 2(a), the first-order derivatives of the Cl1 and
CJS show their nonanalytical behaviors at R/J = 0, which may
indicate an occurrence of quantum phase transition, while the
relative entropy of coherence Cre shows a monotonous change
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FIG. 1. Quantum coherence measures and quantum mutual in-
formation as a function of R/J for (a) the spin-1 system and (b) the
spin-2 system.

across the incoherent point. Even the second-order derivative
of the Cre does not reveal any radical change indicating the
nonanalyticity of Cre, as shown in the inset of Fig. 2(a).

At this stage, for the spin-2 system, it cannot be deter-
mined whether any quantum phase transition occurs or not
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FIG. 2. First-order derivative of (a) three quantum coherence
measures C and (b) quantum mutual information I as a function
of R/J for the spin-2 system. In the insets of (a) and (b), the
second-order derivatives of the relative entropy of coherence and the
quantum mutual information are plotted, respectively.

because the nonanalyticity of the Cre cannot be determined
at R/J = 0 up to the second-order derivative of the Cre. The
other reason is why simply we cannot rule out a possibility
of occurring a higher-order quantum phase transition such as,
for instance, a Berezinskii-Kosterlitz-Thouless- (BKT) type
quantum phase transition known as an infinite-order quantum
phase transition [55,58,65] because actually the nonanalytic-
ity of the quantum information theoretic quantities defined
by the reduced density matrices is connected to the nonan-
alyticity of the ground-state energies of quantum many-body
systems through the reduced density matrix and its derivatives
[81]. Thus from our results at R/J = 0, it is hard to determine
whether the Cre is nonanalytic or not because numerically
reaching to a reliable much higher derivative is to be a very
difficult task. This issue will then be clarified in the following
sections.

Finally, for the both spin-1 and-2 systems in Fig. 1, one
can notice that the l1 norm of coherence Cl1 (�) is bigger than
the relative entropy of coherence Cre(�) except for that all
coherence measures are zero in the range of −Rc < R < Rc

for the spin-1 system and at the incoherent point R/J = 0 for
the spin-2 system. This implies that Cl1 (�) � Cre(�) holds,
which was conjectured and proved only for the pure states
and qubit states in Ref. [82]. For a mixed state, the validity
of the conjecture was shown in a compass chain under an
alternating magnetic field in Ref. [55]. Thus our result support
that the l1 norm of coherence Cl1 (�) is an upper bound for the
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relative entropy of coherence Cre(�), i.e., Cl1 (�) � Cre(�) for
our mixed states.

B. Quantum mutual information

In the previous subsection, we have studied the quantum
coherence measures in detecting quantum phase transitions.
Interestingly, the spin-2 system exhibits an inconsistent be-
havior on the quantum coherence measures. At the incoherent
point R/J = 0, the nonanalytical behaviors of the l1 norm
of coherence [64] and the quantum Jensen-Shannon diver-
gence [58] can be interpreted as an occurrence of quantum
phase transition. However, the nonanalyticity of the Cre could
not be demonstrated. As we discussed in the Introduction,
correlations can also undergo an abrupt change for quantum
phase transitions. Thus in this subsection, we will consider a
generalized correlation, i.e., the quantum mutual information
that is based on entanglement entropy and measures a total
sum of classical and quantum correlations without knowing a
proper correlation operator. Using the von Neumann entropy,
the quantum mutual information between two sites A and B
can be defined as

I (A : B) = SA + SB − SAB, (5)

where SA/A∪B = −Tr�A/A∪B log2 �A/A∪B are the von Neumann
entropies with the reduced density matrix �A/A∪B for one site
A and two sites A ∪ B, respectively. This quantum mutual
information can be used to detect and characterize quantum
phase transitions [44–49].

From our iMPS ground states for the Hamiltonian of
Eq. (1), we calculate the quantum mutual information for
the adjacent two spins. In Fig. 1(a), the quantum mutual in-
formation I (R/J ) is plotted as a function of the interaction
rate R/J for the spin-1 system. Straightforwardly, one can
notice the discontinuous behaviors of the quantum mutual
information at the corresponding discontinuous points of the
quantum coherence measures. As one may expect, this non-
analytical behavior is consistent with those of all quantum
coherence measures. The discontinuous behaviors of all tools
of quantum information theory indicate the occurrence of dis-
continuous quantum phase transitions at the points R = ±Rc.
Noticeably, the quantum mutual information vanishes to be
zero for −Rc < R < Rc. This region of zero quantum mutual
information corresponds to that of the incoherent phase for
−Rc < R < Rc. In the parameter region, the vanishing quan-
tum mutual information means that the entanglement between
the adjacent two spins becomes zero. As a result, the ground
state is in a product state in the incoherent phase for −Rc <

R < Rc.
For the spin-2 system, Fig. 1(b) shows a monotonous hill

shape of the quantum mutual information that has a maximum
value at the incoherent point R/J = 0. Interestingly, compared
to the incoherent phase of the spin-1 system for −Rc < R <

Rc, where the entanglement between the adjacent two spins is
zero, the incoherent state at R/J = 0 for the spin-2 system has
a maximum correlation and thus is not a product state. Such a
maximum value can indicate a quantum phase transition. We
calculate the derivatives of the quantum mutual information
to search for a possible nonanalyticity of the quantum mutual
information. However, as shown in Fig. 2(b), similarly to the

relative entropy of coherence Cre in Fig. 2(a), the first-order
and the second-order derivatives of the quantum mutual in-
formation shows a monotonous change across the incoherent
point R/J = 0. Accordingly, similarly to the relative entropy
of coherence Cre, our quantum mutual information I cannot
determine clearly whether a quantum phase transition occurs
at the incoherent point. However, it should be noted that al-
though the quantum mutual information I measures a different
fundamental nature of ground state from the relative entropy
of coherence, it behaves in accordance with the relative en-
tropy of coherence Cre in detecting quantum phase transition.
In this aspect, it is possible to say that for the spin-2 system,
the quantum mutual information I and the relative entropy of
coherence Cre behave conflictingly to the l1 norm of coherence
Cl1 and the quantum Jensen-Shannon divergence CJS. Then we
will study the nonanalyticity of ground-state energy to solve
this interesting issue in the following section.

IV. GROUND-STATE ENERGY, ENTANGLEMENT
ENTROPY, AND QUANTUM PHASE TRANSITION

So far, we have discussed about the behaviors of the tools
of quantum information theory in characterizing quantum
phase transitions. However, for the spin-2 biquadratic XY
chain with rhombic single-ion anisotropy, the quantum co-
herence measures detect the conflicting behavior each other
although the quantum mutual information I is supportive to
the relative entropy of coherence Cre. As a standard frame-
work, quantum phase transitions are actually connected with
the intrinsic features of ground-state energy of the quantum
many-body systems, i.e., the energy level crossings which
lead to the appearance of nonanalyticities of ground-state en-
ergy. Thus we discuss the behaviors of the ground-state energy
per site e to resolve the conflicting issue for the spin-2 system
in this section.

From our iMPS ground states for the Hamiltonian of
Eq. (1), one can calculate the ground-state energy. In Fig. 3,
the ground-state energy per site e is plotted as a function of the
interaction rate R/J for (a) the spin-1 and (b) spin-2 systems.
In the insets, the first- and second-order derivatives of the
ground-state energy are also plotted. In Fig. 3(a) for the spin-1
system, the ground-state energy e(R/J ) shows clearly the two
sharp kinks indicating energy level crossings at R = ±Rc and
the first derivative of the ground-state energy also shows its
discontinuities at the same points, which indicates that first-
order quantum phase transitions take place. Thus this result
manifests that the discontinuities of the three coherence mea-
sures and the quantum mutual information in Sec. III detect
the occurrences of the first-order (discontinuous) quantum
phase transitions at the transition points R = ±Rc.

Contrastively to the spin-1 system, Fig. 3(b) shows that the
ground-state energy is monotonous and any noticeable signif-
icant change for possible phase transitions around R/J = 0 is
not seen in the first and second derivatives of the ground-state
energy. Then the monotonous behaviors of the ground-state
energy could not also solve the conflicting behaviors of the
quantum coherence measures, i.e., whether quantum phase
transition happens or not at R/J = 0 for the spin-2 system.
However, it should be noted that the ground-state energy e
behaves in accordance with the quantum mutual information I
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FIG. 3. Ground-state energy per site e as a function of R/J for
(a) the spin-1 system and (b) the spin-2 system. In the inset of (a),
the first-order derivative of ground-state energy per site is plotted
for the spin-1 system. Also, we plot the first- and the second-order
derivatives of ground-state energy per site in the inset of (b) for the
spin-2 system.

and the relative entropy of coherence Cre in detecting quantum
phase transitions.

Actually, our iMPS approach provide a way to detecting
critical systems by using its characteristic scaling property of
bipartite entanglement entropy [77–80,83–87]. In the iMPS
approach, it is known that the bipartite entanglement entropy
diverges in critical systems as the truncation dimension χ

increases. For discontinuous (first-order) phase transitions, the
first-order transitions are not critical and thus the bipartite
entanglement entropy does not diverge for increment of the
truncation dimension. Actually, for the spin-1 system, the
bipartite entanglement entropy exhibit discontinuous behav-
iors at the first-order transitions (the details are not presented
here).

In order to get more insight into the conflicting point, let
us then consider the bipartite entanglement entropy for the
spin-2 system. Thus we calculate the bipartite entanglement
entropy (the von Neumann entropy) by considering the bipar-
titioned two semi-infinite chains in the iMPS representation
[77–80]. We plot the bipartite entanglement entropy SvN (χ ) as
a function of the truncation dimension χ at R/J = 0 in Fig. 4.
Usually at critical points for continuous phase transitions,
the bipartite entanglement entropy diverges as the truncation
dimension χ increases. Figure 4, however, shows clearly that
the entanglement entropy does not diverge but converges as
the truncation dimension increases. Even the entanglement
entropy does not change much with the increase of the trunca-

0 20 40 60 80
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0.3085
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0.3095

0.3100

S vN

FIG. 4. Bipartite entanglement entropy SvN (χ ) as a function of
the truncation dimension χ at the incoherent point R/J = 0 for the
spin-2 system.

tion dimension for higher truncation dimension than χ = 30.
Accordingly, this result clarifies that the ground state is not
critical at the incoherent point R/J = 0 and then any contin-
uous quantum phase transition across the incoherence point
does not take place. Also, a discontinuous phase transition
does not occur at R/J = 0 because the ground-state energy
as well as the quantum mutual information and the relative
entropy of coherence is continuous. Conclusively, together
with the ground-state energy, the mutual information and the
relative entropy of coherence, the result of the bipartite entan-
glement entropy represents no occurrence of explicit quantum
phase transition at R/J = 0 for the spin-2 system.

Such a conclusion leaves two consequent unconformable
facts. In the aspect of the quantum coherence measures, the
nonanalytical behaviors of the l1 norm of coherence Cl1 and
the quantum Jensen-Shannon divergence CJS cannot be in-
terpreted as an indication of quantum phase transition at
the incoherent point R/J = 0 for the spin-2 system. In the
viewpoint of quantum phase and quantum phase transition,
more intriguing thing is the fact that the incoherent point has
nothing to do with any continuous or discontinuous quantum
phase transition. This fact that the spin-2 system does not
undergo any explicit phase transition implies that the spin-2
system has a very different phase diagram of ground state
from the spin-1 system even though they have the same form
of the Hamiltonian (1). It shows that spin-2 has fundamentally
different nature from spin-1. The essential difference between
the spin-1 and -2 systems will become apparent in the phase
diagrams in the following section.

V. QUANTUM SPIN NEMATIC PHASE TRANSITIONS

In order to identify the quantum phases in the biquadratic
XY chains with rhombic single-ion anisotropy, let us first
consider the local magnetizations 〈Sα

i 〉. Existing a local mag-
netization implies that the individual spins in the chain are
oriented in a direction in spin space. Such a spin ordered
state is induced by spontaneous breaking both spin-rotation
and time-reversal symmetries. Normally, external fields can
break such symmetries and can make spins ordered in a
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direction. For the both spin-1 and -2 biquadratic XY chains
with rhombic single-ion anisotropy, however, we find that
all components of magnetization are zero for the whole pa-
rameter space, i.e., 〈Sα

i 〉 = 0 for the ground states, which
implies that all states of our model preserve time-reversal
symmetry for the whole parameter space. According to the
results of the ground-state energy and the coherence measures,
thus our systems can have quantum phases without magnetic
order, i.e., the so-called spin nematic phases. According to
the results of the quantum coherence measures, the quantum
mutual information, and the ground-state energy, quantum
phase transitions can occur between spin nematic phases in
our spin systems. Behaviors of quadrupole moments will then
characterize quantum spin nematic phases of our spin systems.

Let us consider the quadrupole moment measured by prod-
ucts of spin operators. A symmetric and traceless rank-2
quadrupole tensor operator [70,88] can be given by

Qαβ
i = 1

2

(
Sα

i Sβ
i + Sβ

i Sα
i

) − 1
3 S2

i δαβ (6)

with α, β ∈ {x, y, z} and the Kronecker delta δαβ at site i.
The actual independent components of quadrupole tensor op-
erator are five because

∑
α Qαα

i = 0 for α = β and Qαβ =
Qβα for α �= β. We find that all off-diagonal components of
quadrupole moments are zero for the whole parameter space,
i.e., 〈Qxy

i 〉 = 〈Qyz
i 〉 = 〈Qzx

i 〉 = 0 for the both spin-1 and -2
ground states. Thus two actual components of quadrupole ten-
sor operator can identify quantum phases in our spin systems.
We calculate the two quadrupole orders given as

Qx2−y2

i = Qxx
i − Qyy

i , (7)

Q3z2−r2

i = 3Qzz
i . (8)

Nonzero quadrupole moments can characterize ground states
breaking spin-rotational symmetry by developing an isotropy
in their spin fluctuations, which indicates that our spin-1 and
spin-2 systems are in spin nematic quadrupole phases.

A. Quadrupole phases for the spin-1 system

Let us first discuss about quadrupole phases in the spin-
1 biquadratic XY chain with rhombic single-ion anisotropy.
Figure 5 displays 〈Qx2−y2

i 〉 and 〈Q3z2−r2

i 〉 as a function of
R/J for the spin-1 system, which shows clearly the discon-
tinuities of the quandrupole order parameters indicating the
occurrence of the first-order quantum phase transitions as
the quantum coherence measures and the quantum mutual
information detected. In each phase, the quadrupole state can
be characterized by the quadrupole moments. We identify the
phases with the characterization of the quadrupole moments
as follows.

(i) The y-ferroquadrupole phase with 〈Qx2−y2

i 〉 > 0 for R <

−Rc. As shown in Fig. 5, 〈Q3z2−r2

i 〉 = 1, i.e., 〈Qzz
i 〉 = 1/3

parameter independently for R < −Rc. At large negative R/J ,
〈Qx2−y2

i 〉 = 〈Q3z2−r2

i 〉 gives 〈Qxx
i 〉 = 〈Qzz

i 〉 = − 1
2 〈Qyy

i 〉, which
implies that the ground state is a uniaxial spin nematic state.

In the limit of large negative R/J , the rhombic single-ion
anisotropy becomes predominant and thus the local spin state
is forced to be the lowest-energy state of the anisotropy term
R[(Sy

i )2 − (Sx
i )2] in the Hamiltonian (1), which is given by

-2 -1 0 1 2
R/J

-2

-1

0

1

2

Q Q3z
2
-r

2

Qx
2
-y

2

FIG. 5. Top: Schematic phase diagram. Bottom: Quadrupole or-
der parameters 〈Qx2−y2 〉 and 〈Q3z2−r2 〉 as a function of R/J for
the spin-1 system. In the phase diagram, α-FQ denote the ferro-
quadrupole phases with the zero local spin fluctuation in the α axis
(α ∈ {x, y, z}). A disk indicates the local spin fluctuation in the plane
perpendicular to the α axis at site i [28].

|Sy
i = 0〉, where the local spin fluctuates in the zx plane [73].

Thus, as shown in the phase diagram in Fig. 5, with the zero
local magnetization Sα = 0, the local spin fluctuations are like
a disk in the zx plane and have zero amplitude along the y axis
[28]. Accordingly, this ground state is a uniaxial spin nematic
state and the product state of |Sy

i = 0〉. This phase is referred
to the y-ferroquadrupole phase.

As the negative R/J approaches to the transition point
R = −Rc from near R = −Rc, a little local spin fluctuation
arises along the y axis and decreases the same amount of the
local spin fluctuation along the x axis without changing along
the z axis because the local spin fluctuation does not change
for the y-ferroquadrupole phase, i.e., 〈(Sz

i )2〉 = 1. The changes
of quadrupole moments reflect to this little local spin fluctua-
tion in the same manner. When the negative R/J crosses the
transition point, the first-order quantum phase transition takes
place at R = −Rc.

(ii) The z-ferroquadrupole phase with 〈Qx2−y2

i 〉 = 0 for
−Rc < R < Rc. Figure 5 shows that 〈Q3z2−r2

i 〉 = −2, i.e.,

〈Qzz
i 〉 = −2/3 and 〈Qx2−y2

i 〉 = 0 parameter-independently for
−Rc < R < Rc. This fact gives 〈Qxx

i 〉 = 〈Qyy
i 〉 = − 1

2 〈Qzz
i 〉.

Straightforwardly, the local spin fluctuations are given as
〈(Sx )2〉 = 〈(Sy)2〉 = 1 and 〈(Sz )2〉 = 0, which means that the
ground state is a uniaxial spin nematic state [14,15]. Thus
the local spin fluctuates only in the xy plane, with no change
in the z axis for the parameter range of the phase. As no-
ticed in the quantum mutual information, the ground state
is in a product state, i.e., the product state of |Sz

i = 0〉 for
the parameter range −Rc < R < Rc. Due to the robust local
spin fluctuation in the xy plane for the phase, the ground-
state structure in the product state does not change until the
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rhombic single-ion anisotropy overwhelms the biquadratic in-
teraction to induce the sudden change of the spin fluctuation
at the transition points R = ±Rc. This phase is referred to the
z-ferroquadrupole phase.

(iii) The x-ferroquadrupole phase with 〈Qx2−y2

i 〉 > 0 for
R > Rc. This phase has the constant quadrupole order
〈Q3z2−r2

i 〉 = 1, i.e., 〈Qzz
i 〉 = 1/3. At large positive R/J , as

shown in Fig. 5, 〈Qx2−y2

i 〉 = −〈Q3z2−r2

i 〉 = −1 gives 〈Qyy
i 〉 =

〈Qzz
i 〉 = − 1

2 〈Qxx
i 〉, indicating that the ground state is a uni-

axial spin nematic state. This positive R/J is equivalent to
exchanging the x axis and y axis of the rhombic single-ion
anisotropy term R[(Sy

i )2 − (Sx
i )2] in the Hamiltonian (1) for

the case of the y-ferroquadrupole phase. The local spin state
is forced to be the lowest-energy state of the anisotropy term
R[(Sx

i )2 − (Sy
i )2] in the Hamiltonian, which is given by |Sx

i =
0〉, where the local spin fluctuates in the yz plane [73]. As a
result, the ground state is a uniaxial spin nematic state and
the product state of |Sx

i = 0〉. This phase is referred to as the
x-ferroquadrupole phase.

Similarly to the y-ferroqudrupole phase, as the positive R/J
approaches to the transition point R = Rc from near R = Rc

in the x-ferroquadrupole phase, a little local spin fluctuation
arises along the x axis and decreases the same amount of
the local spin fluctuation along the y axis without chang-
ing along the z axis because the local spin fluctuation does
not change for the y-ferroquadrupole phase, i.e., 〈(Sz

i )2〉 = 1.
When the positive R/J crosses the transition point in the
x-ferroquadrupole phase, the first-order quantum phase tran-
sition occurs at R = Rc.

B. Quantum crossover for the spin-2 system

Next, we study the spin-2 biquadratic XY chain with rhom-
bic single-ion anisotropy. As one can easily notice, the spin-2
quadrupole order parameter 〈Qx2−y2

i 〉 in Fig. 6(a) reveals its
very different behavior from the discontinuous features of the
spin-1 quadrupole order parameter in Fig. 5. Only a noticeable
change of the spin-2 quadrupole order parameter 〈Qx2−y2

i 〉
is its sign change through R = 0. According to the sign of
the quadrupole order parameter, the two distinct phases are
distinguished. Thus let us discuss in details of the quadrupole
order parameter to clarify what kind of phases can exist and
whether a phase transition occurs or not.

(i) The positive biaxial spin nematic phase with 〈Qx2−y2

i 〉 >

0 for R < 0. At large negative R/J , 〈Qx2−y2

i 〉 = 2
√

3 and
〈Q3z2−r2

i 〉 = 0 gives 〈Qxx
i 〉 = −〈Qyy

i 〉 = √
3 and 〈Qzz

i 〉 = 0
[35]. In contrast to the spin-1 system, then the ground state
is a biaxial spin nematic state [35]. Similarly to the spin-1
system, in the limit of large negative R/J , the spin-2 rhom-
bic single-ion anisotropy becomes predominant and thus the
local spin state is forced to be the lowest-energy state of
the rhombic-anisotropy term R[(Sy

i )2 − (Sx
i )2] in the Hamil-

tonian (1). In sharp contrast to the spin-1 system, however,
the local spin state is not given by |Sy

i = 0〉 where the local
spin fluctuates in the zx plane for the spin-1 system. Whereas
for the spin-2 system, the local spin fluctuates along the
all axes and the lowest-energy state gives 〈(Sx

i )2〉 = 2 + √
3,

〈(Sy
i )2〉 = 2 − √

3, and 〈(Sz
i )2〉 = 2 with 〈Sα

i 〉 = 0. Accord-
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FIG. 6. (a) Quadrupole order parameters 〈Qx2−y2 〉 and 〈Q3z2−r2 〉
and (b) quadrupole moments 〈Qαα〉 as a function of R/J for the spin-2
system.

ingly, this ground state is a biaxial spin nematic state and the
product state of the lowest-energy state of R[(Sy

i )2 − (Sx
i )2]

given by a|Sx
i = 0〉 + b|Sy

i = 0〉 with a = (1 + √
3)/

√
6 and

b = (1 − √
3)/

√
6. This phase is then referred to the positive

biaxial spin nematic phase for the positive order parameter
〈Qx2−y2

i 〉 > 0.

(ii) The ground state at R/J = 0, where 〈Qx2−y2

i 〉 = 0.

〈Qx2−y2

i 〉 = 0 gives 〈Qxx
i 〉 = 〈Qyy

i 〉 = − 1
2 〈Qzz

i 〉 > 0 at R/J =
0, as shown in Fig. 6(a). Thus the ground state is not critical
and a product state, but it is a uniaxial spin nematic state.
However, in contrast to the spin-1 system, the local spin fluc-
tuation is not confined in the xy plane. Actually, this point
R = 0 corresponds to the maximum fluctuation point of the
local spin along the z axis for the whole parameter space, as
shown in Fig. 6(b).

In fact, there are two more such uniaxial nematic states.
From Fig. 6(b), one can notice that there are the three uniaxial
nematic states at R = 0, Ra, and −Ra with Ra = 2.264J in the
whole parameter space. At R = −Ra and Ra, the quadrupole
moments are given as 〈Qyy

i 〉 = 〈Qzz
i 〉 = − 1

2 〈Qxx
i 〉 < 0 and

〈Qzz
i 〉 = 〈Qxx

i 〉 = − 1
2 〈Qyy

i 〉 < 0, respectively. For the three
uniaxial spin nematic states, as we discussed in the spin-1
system, the local spin fluctuation is confined in a plane.

(iii) The negative biaxial nematic phase with 〈Qx2−y2

i 〉 < 0
for R > 0. Contrary to the large negative R/J , at large posi-
tive R/J , 〈Qx2−y2

i 〉 = −2
√

3 and 〈Q3z2−r2

i 〉 = 0 gives 〈Qxx
i 〉 =

−〈Qyy
i 〉 = √

3 and 〈Qzz
i 〉 = 0, i.e., the ground state is a biaxial
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spin nematic state. Similarly to the large negative R/J , in the
limit of large positive R/J , the rhombic single-ion anisotropy
becomes predominant and thus the local spin state is forced
to be the lowest-energy state of the rhombic-anisotropy term
R[(Sx

i )2 − (Sy
i )2] in the Hamiltonian (1). The local spin fluctu-

ates in the all axes and the lowest-energy state gives 〈(Sx
i )2〉 =

2 − √
3, 〈(Sy

i )2〉 = 2 + √
3, and 〈(Sz

i )2〉 = 2 with 〈Sα
i 〉 = 0 as

they should be. Accordingly, this ground state is a biaxial spin
nematic state and the product state of the lowest-energy state
R[(Sx

i )2 − (Sy
i )2] given by b|Sx

i = 0〉 + a|Sy
i = 0〉. This phase

is referred to the negative biaxial spin nematic phase for the
negative order parameter 〈Qx2−y2

i 〉 < 0.
Note that the positive and negative biaxial spin nematic

states are orthogonal each other although |Sx
i = 0〉 and |Sy

i =
0〉 are not orthogonal each other. Thus depending on the sign
of the quadrupole order parameter 〈Qx2−y2

i 〉, the two distinct
biaxial spin nematic phases can be distinguished. However,
as noticed by the relative entropy of coherence Cre and the
quantum mutual information I in Sec. III, and the ground-state
energy per site e in Sec. IV, the spin-2 biquadratic XY chain
with rhombic single-ion anisotropy does not undergo any
explicit phase transition as the R/J varies from R/J = −∞
to R/J = ∞. Accordingly, the two orthogonal biaxial spin
nematic states are connected adiabatically without an explicit
abrupt phase transition.

This adiabatic connection between the two orthogonal bi-
axial spin nematic states can be called quantum crossover that
is a substantial change in the nature of many-body ground
state that occurs over a finite range of the system param-
eter rather than abruptly at a critical point. This can be
understood by comparing with the quantum phase transition
between those two biaxial spin nematic states. To do this, let
us consider the Hamiltonian in Eq. (1) for J = 0, i.e., HR =
R

∑∞
i=−∞[(Sx

i )2 − (Sy
i )2]. For R < 0, similar to the Hamilto-

nian in Eq. (1), the ground state is given by the product state
of a|Sx

i = 0〉 + b|Sy
i = 0〉. While for R > 0, the ground state

should be the product state of b|Sx
i = 0〉 + a|Sy

i = 0〉. The

quandrupole order parameter becomes 〈Qx2−y2

i 〉 = 2
√

3 for

R < 0 and 〈Qx2−y2

i 〉 = −2
√

3 for R > 0, where 〈Q3z2−r2〉 = 0.
It is shown clearly that the ground state changes abruptly at
R = 0. The discontinuity of the quadrupole order parameter
indicates an occurrence of discontinuous quantum phase tran-
sition between the positive and negative biaxial spin nematic
phases at R = 0. In sharp contrast to this discontinuous quan-
tum phase transition at R = 0, as a consequence, the spin-2
biquadratic XY chain with rhombic single-ion anisotropy un-
dergoes the quantum crossover between the two biaxial spin
nematic states.

The substantial change of ground-state wave-function
structure for the quantum crossover can be quantified
by directly comparing the ground-state wave functions.
Actually, one can define the overlap function between the
ground-state wave functions as, for instance, f (R/J ) =
〈ψG(R/J )|ψG(+∞)〉 that ranges 0 � f (R/J ) � 1 because
the positive and negative biaxial spin nematic states are or-
thogonal each other, i.e., 〈ψG(−∞)|ψG(+∞)〉 = 0, and the
overlap function of the positive/negative biaxial spin nematic
states by themselves give 〈ψG(±∞)|ψG(±∞)〉 = 1, where
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FIG. 7. First-order derivative of quantum fidelity per site d (R/J )
as a function of R/J for the spin-2 system. In the inset, the quantum
fidelity is plotted.

|ψG(R/J )〉 is the ground-state wave function at R/J . With
one of the biaxial spin nematic states as a reference state,
the rapidity of the change occurring in the ground-state wave-
function structure is to be the slope of the overlap function,
i.e., the derivative of the overlap function with respect to
the variable R/J . Recently, the fidelity susceptibility [89] has
been used to estimate the crossover region in the BCS-BEC
crossover. Without the loss of generality, we then consider
the ground-state quantum fidelity per site F (R/J ) [78,90]
given as ln F (R/J ) = limL→∞ ln f (〈ψG(R/J )|ψG(+∞)〉)/L
in our iMPS framework. Figure 7 displays the first deriva-
tive of the quantum fidelity per site F (R/J ) as a function
of R/J with the F (R/J ) in the inset. The most rapid change
of the ground-state wave-function structure takes place with
the value dF/d (R/J ) = 0.364 at R/J = −0.19, as shown in
Fig. 7. Then as a strict definition for quantum crossover re-
gion, one can choose the full width at half maximum of the
peak in the derivative of quantum fidelity per site, i.e., as
an example, −1.21J � Rcross � 0.49J from Fig. 7. As one
can confirm in Figs. 6(a) and 6(b), the quadrupole moments
change relatively rapidly for the quantum crossover region
estimated from the quantum fidelity. However, as a less-strict
definition for quantum crossover region based on the sig-
nificant changing behavior of the quadrupole moments, one
can also choose the region in between the two uniaxial spin
nematic points, i.e., −Ra � Rcross � Ra, as can be noticed in
Fig. 6(b).

VI. SUMMARY

We have investigated quantum coherence in the ground
state of infinite biquadratic spin-1 and -2 XY chains with
rhombic single-ion anisotropy by employing the iMPS
representation with the iTEBD method. The three quantum
coherence measures such as the l1 norm of coherence Cl1 , the
relative entropy of coherence Cre, and the quantum Jensen-
Shannon divergence CJS, and the quantum mutual information
have been calculated for the iMPS ground states. In fact,
the spin-1 and -2 systems reveal very different features of
quantum phases and phase transitions each other although
their Hamiltonians have the same form in Eq. (1).
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For the spin-1 system, all of the physical quantities includ-
ing the ground-state energy, we have considered, have solidly
captured the two discontinuous quantum phase transitions by
means of their nonanalytical behaviors at the transition points
R = ±Rc. However, for the spin-2 system, the l1 norm of
coherence Cl1 and the quantum Jensen-Shannon divergence
CJS behave nonanalytically, which may indicate a phase tran-
sition similar to the case of the spin-1 system, at the vanishing
rhombic-anisotropy point R = 0. Contrary to them, not only
the relative entropy of coherence Cre and the mutual infor-
mation I but also the ground-state energy do not show any
nonanalytical behavior up to their second-order derivatives.

However, in our iMPS approach, the saturation behavior
of the bipartite entanglement entropy with the increase of the
truncation dimension χ manifests that the spin-2 system is not
critical at R = 0, which rules out a possibility of occurring
a continuous quantum phase transition. Accordingly, it was
shown that the spin-2 system does undergo no explicit abrupt
phase separation for the whole parameter space.

In order to determine the phases and the quantum phase
transitions in the biquadratic spin-1 and -2 XY chains with
rhombic single-ion anisotropy, the local magnetic moments
and quadrupole moments have been investigated. We found
that for the both spin-1 and -2 systems, the local magnetic
moments are zero, i.e., 〈Sα

i 〉 = 0 for the whole parameter
space. For the spin-1 system, the local spin quadrupole or-
der parameter 〈Qx2−y2

i 〉 characterize the three distinct uniaxial
spin nematic phases by using the three different quadrupole
orderings. Explicit discontinuous quantum phase transitions
between the three uniaxial spin nematic phases have exhibited
in the quadrupole order parameters.

In contrast to the spin-1 system, according to the sign
change of the quadrupole order parameter 〈Qx2−y2

i 〉, the two
biaxial nematic phases can be separated at the vanishing
rhombic-anisotropy point R = 0 in the biquadratic spin-2 XY
chain with rhombic single-ion anisotropy. As expected from
the relative entropy of coherence Cre and the quantum mutual
information I , no explicit phase transition between the two
biaxial spin nematic phases was seen in the quadrupole order
parameters. However, one biaxial spin nematic state is con-
nected to the other biaxial spin nematic state by varying the
system parameter through the vanishing rhombic-anisotropy
point R = 0. Then this phase change can be called the quan-
tum crossover, which was discussed by comparing with the
explicit discontinuous phase transition in the Hamiltonian
with R = 0. Furthermore, the quantum crossover region was
estimated by using the quantum fidelity. As a result, in the
sense that the quantum crossover between the two biaxial
spin nematic phases does not undergo an abrupt change at
a critical point, the relative entropy of coherence Cre and
the quantum mutual information I exhibit a proper behavior
without any abrupt change, while the l1 norm of coherence Cl1
and the quantum Jensen-Shannon divergence CJS disclose an
unfaithful singular behavior of their first-order derivatives.

Finally, we summarize different features between the spin-
1 and -2 systems. A remarkable difference between the spin-1
and -2 systems is the fact that the both spin-1 and spin-
2 systems have the spin nematic phases but the nematic
states are uniaxial for the spin-1 system and biaxial for the

spin-2 system. For the spin-2 system, the quantum crossover
implies that one biaxial spin nematic state with local spin
fluctuations along all axes can be gently varied to the other
orthogonal biaxial spin nematic state through uniaxial spin
nematic states by varying the rhombic single-ion anisotropy
R inducing change of local spin fluctuations along all axes,
as shown in Fig. 6(b). In contrast to the spin-2 system, for
the spin-1 system, one uniaxial spin nematic state with local
spin fluctuations in a characteristic plane is abruptly varied
to the other orthogonal uniaxial spin nematic state with local
spin fluctuations in an orthogonal plane to the characteristic
plane by varying the rhombic single-ion anisotropy R. In
this sense, another remarkable difference between the spin-
1 and -2 systems is the uniaxial spin nematic phase in the
parameter region −Rc < R < Rc in between the other spin
nematic phases for the spin-1 system, compared to the spin-2
system. This uniaxial spin nematic phase with the local spin
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FIG. 8. Energy per site e(χ ) and the relative error as a function
of the truncation dimension χ for (a) the spin-1 and (b) the spin-2
systems.
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fluctuation in the xy plane is in the product state of |Sz = 0〉,
being an exact eigenstate of the Hamiltonian (1), and its char-
acteristic features are Cl1 = Cre = CJS = I = 〈Qx2−y2〉 = 0. At
the corresponding point R = 0 of the spin-2 system character-
ized with Cl1 = Cre = CJS = 〈Qx2−y2〉 = 0, the sharp contrast
to the parameter region of the spin-1 system is the fact that
the mutual information has the nonzero value and it is also
maximum I (R/J = 0) = Imax for the whole parameter range.
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APPENDIX A: iMPS GROUND-STATE ENERGY

In our iMPS approach, the truncation dimension χ = 30
was chosen because a higher truncation calculation does not
change the physics we discussed in the main text. In this Ap-
pendix, we present the iMPS energy per site to show how the
ground-state energy per site e(χ ) changes with the truncation
dimension χ . We choose the energy per site e(χ = 80) for the
truncation dimension χ = 80 as a reference value of energy
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FIG. 9. Energy per site e(χ ) as a function of the truncation di-
mension χ for (a) the spin-1 and (b) the spin-2 systems from the
exact diagonalization. In the insets, the errors defined as error(L) ≡
e(L) − e(L − 2) are presented, where L denotes the system size.

per site eref ≡ e(χ = 80). Thus we define the relative error as
Error (χ ) ≡ abs[(e(χ ) − eref )/eref ].

We plot the energy per site e(χ ) and the relative error as
a function of the truncation dimension χ for (a) the spin-1
and (b) the spin-2 systems in Fig. 8. For the both spin-1 and
-2 systems, Fig. 8 shows that the iMPS energy per site e(χ )
is readily saturated for the truncation dimension χ = 10 with
the relative error, Error (χ = 10) ∼ 10−13 for the spin-1 sys-
tem and Error (χ = 10) ∼ 10−8 for the spin-2 system, where
(a) for the spin-1 system, the reference energy per site are
e(χ = 80) = −2.000075210876099 for R/J = 0.826, e(χ =
80) = −2.002732436996759 for R/J = 0.829, e(χ = 80) =
−2.005390963256291 for R/J = 0.832 and (b) for the spin-
2 system, e(χ = 80) = −19.793351181555600 for R/J = 0,
e(χ = 80) = −19.793366930763035 for R/J = 0.003, and
e(χ = 80) = −19.793414177619063 for R/J = 0.006.

For χ = 30, the relative error reaches Error (χ = 30) ∼
10−15 for the spin-1 system and Error (χ = 30) ∼ 10−13 for
the spin-2 system.

APPENDIX B: EXACT DIAGONALIZATION
CALCULATION

Our results based on the iMPS calculation can be con-
firmed by using an alternative numerical method, i.e., an
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FIG. 10. Quadrupole order parameters 〈Qx2−y2 〉 and 〈Q3z2−r2 〉 as
a function of R/J for (a) the spin-1 and the spin-2 systems from the
exact diagonalization. For the spin-1 system, the system sizes L = 4
and 12 are considered. The system sizes L = 4 and 10 are considered
for the spin-2 system.
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exact diagonalization. In this Appendix, we will consider
the finite lattice sizes of the Hamiltonian in Eq. (1). The
finite-lattice-size biquadratic spin XY models with rhom-
bic single-ion anisotropy can be described by using the
Hamiltonian

H = −J
L∑

i=1

(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)2 + R
L∑

i=1

[(
Sx

i

)2 − (
Sy

i

)2]
,

(B1)
where the lattice chains consist of L spin-1 or -2 interacting
spins. For the exact diagonalization, we consider the chains
with the periodic boundary conditions.

Using the ground state obtained from the exact diagonal-
ization, we plot the ground-state energy per site e(L) as a
function of R/J for the system size L in Fig. 9. The overall fea-
tures of the energy are similar to those of the energy from the
iMPS calculation in Fig. 3. In the insets, we present the differ-
ence between the energies, i.e., error (L) ≡ e(L) − e(L − 2).
The insets show that the error (L) becomes smaller as the L
increases.

For the spin-1 system, the energy per site e(L) does not
change much with respect to the system size L in the region
−Rc < R < Rc because the system is in a product state. Fur-
thermore, one can easily notice the nonanalytic behaviors of

the energy at R = ±Rc, which indicate the occurrences of
the first-order phase transitions. For the spin-2 system, the
energy does not exhibit any significant change at R = 0 as the
system size L increases. Similarly to the iMPS calculation,
any nonanalytic behavior of the energy is not observed for the
spin-2 system.

From the exact diagonalization, we confirm that the mag-
netization is zero for the whole parameter range in the both
spin-1 and -2 systems. Then in Fig. 10, we plot the quadrupole
order parameters as a function of R/J in the cases of L = 4
and L = 12 for the spin-1 system and in the cases of L = 4 and
L = 10 for the spin-2 system, respectively. Figure 10(a) for
the spin-1 system shows that the quadrupole order parameter
〈Qx2−y2〉 distinguishes the three spin nematic phases clearly,
i.e., 〈Qx2−y2〉 = 1 for R < −Rc, 〈Qx2−y2〉 = 0 for −Rc < R <

Rc, and 〈Qx2−y2〉 = 1 for R > Rc. This result is in agree-
ment with the quadrupole order parameter from the iMPS
calculation in Fig. 5. Also, Fig. 10(b) for the spin-2 system
shows that 〈Qx2−y2〉 > 0 for R < 0, 〈Qx2−y2〉 = 0 for R = 0,
and 〈Qx2−y2〉 < 0 for R > 0 in agreement with the iMPS cal-
culation in Fig. 6(a). Consequently, it is shown that the results
of the exact diagonalization and the iMPS calculations are in
good agreement for the phase diagrams of the both spin-1 and
-2 systems.
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