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Lattice vibration as a knob on exotic quantum criticality
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Control of quantum coherence in a many-body system is one of the key issues in modern condensed matter,

and conventional wisdom is that lattice vibration is an innate source of decoherence. Much research has been
conducted to eliminate lattice effects. Challenging this wisdom, we show that lattice vibration may not be
a decoherence source but an impetus of a novel coherent quantum many-body state. We demonstrate the
possibility by studying the transverse-field Ising model on a chain with renormalization group and density-matrix
renormalization group methods and theoretically discover a stable A = 1 supersymmetric quantum criticality
with central charge ¢ = 3/2. Thus, we propose an Ising spin chain with strong spin-lattice coupling as a
candidate to observe supersymmetry. Generic precursor conditions of novel quantum criticality are obtained
by generalizing the Larkin-Pikin criterion of thermal transitions. Our work provides the perspective that lattice
vibration may be a knob for exotic quantum many-body states.
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I. INTRODUCTION

Quantum critical systems have been a central area of re-
search because fundamentally new phenomena with enlarged
symmetry may emerge from quantum fluctuations, which may
also extend to nonzero temperatures [1]. A key feature of
quantum critical systems is that their wave function is made
up of a complex superposition of configurations at all length
scales. Universal scale dependence of correlation functions,
characterized by their critical exponents, indicates intrin-
sic long-range entanglement [2,3]. Such criticalities usually
appear at quantum critical points between quantum phases
[1], but quantum critical phases also exist, for example, in
symmetry-protected topological semimetals [4—7] and super-
conductors [8,9]. If a quantum critical system is hosted with a
lattice structure, then an intrinsic length scale, the lattice con-
stant, exists with broken translational symmetry, and acoustic
phonons appear down to the lowest energy scale, guaranteed
by the Goldstone theorem.

One important question in quantum critical systems is how
gapless quantum critical modes couple to acoustic phonons.
Since the two types of excitations are intrinsically gapless,
naive perturbative calculations fail, and careful analysis of the
interplay between the two modes is necessary. Most of all, it
is essential to check whether the two coherent modes remain
coherent as a whole once they are coupled. The existence of
a coherent quantum critical state with phonons indicates that
acoustic phonons do not play the role of a heat bath, which
is in drastic contrast to the conventional wisdom that lattice
vibration is an innate source of decoherence. Note that it is
essential that acoustic phonons are dealt with as dynamical
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degrees of freedom to maintain quantum coherence of the
whole system.

The coupling physics in a quantum critical system was
overlooked for a long time until recent experiments reported
that acoustic phonons qualitatively affect the critical behavior,
such as scaling exponents of the dielectric susceptibility in
quantum ferroelectric materials SrTiOs and KTaO5 [10-13],
followed by a theory proposing a new class of criticality from
spin-lattice coupling [14] applying the quantum-classical
mapping. For the case of classical criticality, where a phase
transition occurs at a nonzero temperature, the effect of lat-
tice vibration has been exhaustively studied in the literature.
Larkin and Pikin first provided the instability condition for
classical critical systems coupled with lattice vibrations in
terms of the specific heat critical exponent [15]. Other groups
subsequently performed renormalization group (RG) analysis
in a variety of critical models and applied the Larkin-Pikin
criterion [16-20]. Models with smaller degrees of freedom
such as the two- and three-dimensional Ising models become
more unstable under lattice vibrations, and first-order phase
transitions often appear.

In this work, we demonstrate striking interplay physics
between quantum critical modes and acoustic phonons and
find quantum critical classes with acoustic phonons. We
first analyze the quantum transverse Ising model on a one-
dimensional lattice. Surprisingly, although the transverse
Ising model and acoustic phonons are both well-studied
problems, we uncover the existence of a supersymmetric sta-
ble fixed point with central charge ¢ = 3/2 at the critical
point of the spins. We also predict experimental implications
for the measurable phonon velocity, which may serve as a
smoking gun for supersymmetry in a condensed-matter sys-
tem. This exemplifies the possible physics stemming from
the interaction between quantum criticality and acoustic
phonons.

©2021 American Physical Society
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TABLE 1. Scaling dimensions of the coupling ([g] =1/v —
deir/2) in models with continuous phase transitions. The effective
dimension d.s = (d + 1) is introduced for spatial dimension d. For
[g] > O, the original criticalities become unstable, signaling the first-
order phase transition under lattice vibration, while the criticalities
remain stable for [g] < 0. For [g] = 0, a novel quantum criticality
may appear as in the aforementioned spin-chain model.

Model desr v [g]
Ising [21] 2 1 0
Tricritical Ising [21] 2 5/9 >0
Three- (four-) state Potts [21] 2 5/6 (2/3) >0
g-state clock (¢ > 4) [22] 2 00 <0
Ising [23] 3 0.63 >0
g-state clock (g > 4) [24] 3 0.67 <0
ON) (N = 2)[23,24] 3 >0.67 <0
N =2 WZSUSY [25] 3 0.917 <0
N =2 XYZ SUSY [26] 3 1/24 €/4 <0
OWN) [1] 4 1/2 0

We also study the generic scenario when an order parame-
ter of a continuous quantum phase transition is coupled with
the underlying lattice vibration. The stability condition, which
may be considered a quantum version of the Larkin-Pikin
criterion, is obtained based on the scaling dimension of the
coupling. We enumerate the stabilities of quantum critical
models using this new criterion (Table I).

The outline of this paper is as follows. In Sec. II, we
introduce a model Hamiltonian for the transverse-field Ising
model with lattice vibration. The noninteracting lattice Hamil-
tonian and spin-lattice coupling Hamiltonian are introduced.
In Sec. III, we analyze our model at the critical point by using
the momentum-shell RG method. The low-energy action at
the critical point is explicitly written. We obtain the RG flow
equations in terms of the dimensionless parameters and show
the existence of a stable fixed point. Also, we find the intrigu-
ing property of the stable fixed point, which is the emergence
of A= 1 supersymmetry (SUSY). In Sec. IV, we analyze
our model by using the numerical method, in particular, the
density-matrix renormalization group (DMRG) method. By
calculating entanglement entropy, we find the central charge
¢ = 3/2, which is consistent with the results of Sec. III, at
the stable fixed point. In Sec. V, we generalize our spin chain
result into generic quantum criticality with lattice vibrations.
From scaling analysis of coupling between generic quantum
criticality and lattice vibration, we find the condition for the
stability of the generic quantum criticality with lattice vibra-
tions. Section VI presents the discussion and conclusion.

II. MODEL

Let us consider the transverse-field Ising chain model with
acoustic phonons for a proof of principle. The Hamiltonian
without spin-lattice coupling is [1,27]

P} Mawj
o = Y [osisia i+ 2

(Mi+1—bti)2} (D

i

FIG. 1. Illustration of the transverse Ising model under lattice
vibrations. The red arrow stands for the Ising spin, and the springs
represent the vibrating lattices. The green arrow at the top shows
the transverse field, and y is the coupling constant between the spin
degree of freedom and lattice vibrations.

with a magnetic exchange interaction J, a transverse mag-
netic field &, Debye frequency wy, and ion mass M (Fig. 1).
The deviation of spin positions is captured by u;, and the
quantum spins are represented by the Pauli matrices (s}
at site j. The Hamiltonian is exactly solvable and discussed
extensively in the literature [1,27]. Following the literature,

the Hamiltonian is expressed as Hy = >, €( f,j fr — %) +
Wy (bibk + %). The bosonic operators (by, bz) describe acous-
tic phonons with the energy spectrum, w; = 2wy| sin(’%)l,

and the fermionic ones (f, f; ) are from the Jordan-Wigner
transformation of spins and have an energy spectrum of
€ = 2J\/1 — 2rcos(ka) + r?. Lattice spacing a and the ratio
r = h/J are introduced. Note that the pure spin term may
also be represented by two Majorana fermions at each site
[775.1) = —([1;; s7)s; and n® =] s")sif]. For example,

j i<jSi
i 4 0 (2) (1)
the spin exchange term becomes s7s5, | = —in; "0,/

WS = in this
representation. In Fig. 2(a), the phase diagram of our system
is illustrated. At » = 1, a gapless Majorana fermion excitation
arises in the pure spin model, indicating the Ising universality
class of central charge ¢ = 1/2. On the other hand, the phonon
spectrum is gapless because phonons are Goldstone bosons of
translational symmetry.

The spin-lattice coupling appears with spatial modula-
tion of the magnetic exchange interaction, J — J; ;y1 =J +
v (Uiy1 — u;) + O((uiry — u;)?) [28], and the leading interac-
tion term is

Hy =y Z(Miﬂ — U;)S;s;, - (2)

Away from the critical point (» # 1), the perturbative calcula-
tion indicates that the decay rate of a quantum state is, indeed,
proportional to 7' o y2, and the spin-lattice coupling be-
comes a source of decoherence.

III. SUPERSYMMETRY FROM SPIN-LATTICE COUPLING

Now, let us consider a quantum critical state. The scale
invariance allows us to use the critical theory of spin and
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FIG. 2. (a) Phase diagram of the transverse-field Ising model
under lattice vibrations. r < 1 corresponds to the ordered phase, and
the spin degrees of freedom are aligned along the z axis, while r > 1
indicates that the system is in the quantum disordered phase and the
spin degrees of freedom are along the x axis. » = 1 and T = 0 are the
quantum critical point which is described by the A/ = 1 supersym-
metric conformal field theory (CFT) with central charge ¢ = 3/2.
(b)-(d) DMRG calculation of the entanglement entropy of the system
for three different values of r as indicated in the phase diagram in
(a). The values are represented by circles. Here, [ is the length of
the subsystem. CFT predicts the scaling of entanglement entropy,
and the results for central charge ¢ = 1/2 (dash-dotted line), ¢ = 1
(dotted line), and ¢ = 3/2 (dashed line) are plotted as a comparison.
At the critical point [in (c)], the scaling suggests a central charge of
3/2, while away from the critical point [in (b) and (d)], the central
charge is 1.

lattice degrees of freedom, whose form is [1,27]

1 1 v
So :/ ET}T(ar + vy o, 0)n + E(aru)z + ?S(axu)z’ 3
T,x |

dodk
(2m)?
dowdk
@2m)?

S, q) = & /B A

Mp(iQ. q) = —%Zqz f
aA

(ikoy)Gy (i + i, k + q)(—ikoy)Gpn(iw, k)

S

(a) (b) (c)

FIG. 3. Feynman diagrams for the RG analysis in the transverse
Ising model under lattice vibration up to one-loop order. (a) and
(b) are for the fermion and boson self-energies, and (c) is for the
vertex correction. The solid line with the arrow and the wavy line
stand for the fermion and boson, respectively.

where the Pauli matrices oy, . are defined in the two-
component Majorana spinor 5T = (n) n®) space. The
Majorana fields are rescaled to have the factor 1/2, and the
shorthand notation fm = [dtdx is used hereafter. The two
velocities (vy = 2Ja, vy = wpa) are associated with magnetic
exchange and Debye energy scales, respectively.

The two point correlation functions from Eq. (3) are
given by

dwdk o
(a(T. )75(0, 0)) = (;”T)ZGM,abaw,k)e—W“, )
(u(z, x)u(0, 0)) = %Gph(iw,k)e_iw”ikx, (5)

where Gy = (—iwoy — vyko,)~! and Gph = (w* + vszkz)_1
are the Majorana and phonon propagators, respectively. The
spin-lattice coupling may be identified as (see Appendix A)

5=4 / @uyToym, ©)

with g = —2y. The total critical theory, Sy + S, is analyzed
by introducing the two dimensionless coupling constants, p =
vs/vy and o = g%/ (2mv2vy). We perform the RG analysis
up to the one-loop order corrections [1,27,29,30]. Only three
Feynman diagrams in Fig. 3 are necessary, and the loop cor-
rections are given by

p . P
L — oY —oq,——— k)e,
Olg(1+p)200(l ) ag(1+p)2al(vM )

Tr[o, Gy (iw + iQ, k + ¢)o, Gy (iw, k)] = agv?g*L,

dwdk Tr[(iko,)Gy(iw, k)o,Gpn(iw, k)(—ikoy)]
=s ),

(2m)? Tr[oyo,]

where ), and Ilp are self-energies for the Majorana spinor
and phonon and I'y is the vertex correction to the spin-lattice

. 4
Gph(lw, k) = —agmﬂ,

coupling. Note that we parametrize frequency and momen-
tum as w = vyq cos B and k = ¢ sin 6, so the shell integration
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FIG. 4. (a) RG flow diagram with the two dimensionless parameters, the velocity ratio of phonons and spinons p (= vs/vy) and the
spin-lattice coupling constant o, [= & /(2mv?vy)]. While the RG flow (red) is directed to (p, a,) — (0, 00) for p < 1, the flow (blue) is
directed to the fixed point (p*, a7) = (1, 0) for p > 1. The fixed point is described by N = 1 superconformal field theory with central charge
¢ =3/2. (b) and (c) DMRG calculations of the entanglement entropy with spin-lattice coupling y. The two plots represent each side (p < 1
and p > 1) of the flow diagram as p = (.2 for (b) and p = 1.5 for (c). One can observe the strong deviation from the original CFT for p < 1.
The inset shows how the linear entropy and the average phonon occupancy change with y. The significant increase of the linear entropy for
p < 1 shows the state is flowing away from the fixed point, and a similar trend of phonon density indicates that the phonons are responsible

for this.

becomes [, ?2‘”7‘1)’; =(vM/4rr2)f02” do f: gdq, and pu=Ae".

After adding the loop corrections to the original action and
rescaling and renormalizing the fields and parameters, we get
the RG flow equations of the parameters of vy, vs, and g as
follows:

1 doy 2p
— =l —q,— 7
o dl z ag(1+p)2 @)
1 dv, o
I _1__5’, 8
v dl ¢ 2 ®
ldg 3 P2+ p)
- =—-(z-1)—a,——. 9
Vgt =3E DT ©)

From Egs. (7)—(9), we obtain the RG flow equations of the
dimensionless parameters o and o,
1— 1—
P p) (10)

2
(1+p>p’ 1+p

In Fig. 4(a), the flow diagram is illustrated, and the fixed
point is at (p*, (x;j) = (1, 0). The RG flow around the fixed
point is intriguing. If the phonon is slower than the Majorana
fermion (p < 1), the fixed point (p*, oez,‘) becomes unstable. In
the opposite case where the phonon is faster than the Majorana
fermion (p > 1), the RG flow is directed to the stable fixed
point (p*, a;).

The Hamiltonian at the stable fixed point may be written as

He=J3 [ (11)

with rescaled momentum and position operators, p; =
Pj//Mwg and x; = /M wou;. We introduce an operator

dp
de

g

2

dayg
de

2

o

B4

— 58t

iSiy1 — 5+ plz + (Xig1 _xi)z]a

0 == (ITsi |l —xpsi+pi5)] (12
J I<j

which is fermionic, proven by the Jordan-Wigner transforma-
tion, and satisfies A = 1 supersymmetry algebra, Hy. = JQ?

[31-33] (see Appendix B). Therefore, this fermionic operator
becomes a supercharge, [Q, Hy.] =0, and the N' = 1 super-
symmetry with central charge ¢ = 3/2 is obtained.

A few comments are as follows. First, the supersymmet-
ric quantum state emerges from the spin-lattice coupling.
Without the coupling, the state loses supersymmetry unless
interactions are fine-tuned. Note that the interactions from the
spin lattice are unique in the sense that bosons have a shift
symmetry u; — u; + a, in contrast to ladder systems [34-37].
Second, the supersymmetric quantum criticality cannot be
obtained by the standard quantum-classical mapping. This
is because lattice vibrations are intrinsically tied to spatial
dimensions. There are two phonon modes along the two spa-
tial directions. in sharp contrast to one mode in the quantum
model. Thus, supersymmetry is intrinsically impossible in the
corresponding classical thermal transition. Third, the origin
of the supersymmetry in our work is different from the pre-
viously suggested ones in the literature [25,26,34,36,38—42]
where bosons are made of fermions and special types of
interactions or surface degrees of freedom are necessary. In
contrast, bosons are from the lattice, and fermions are from
the spins in this work. One crucial point is that bosons are
in a critical phase in the sense that their spectrum is always
gapless, and spin degrees of freedom realize gapless fermionic
excitations at the critical point. Last, the p = 1 fixed line in the
RG flow diagram [Fig. 4(a)] is exact up to one loop. Unlike
the fixed point at o, = 0, the fixed line for nonzero «; is
not protected by any symmetry and thus may deviate from
the straight line when higher-order contributions are included.
Nevertheless, we expect the boundary between the stable and
unstable regions exists, as predicted in Ref. [37] for a different
microscopic model with a similar low-energy theory.

IV. NUMERICAL CALCULATION

Our analysis is further supported by the DMRG method
[43—45]. For a chain of length L = 40, we calculate the ground
state of the system and its bipartite entanglement entropy
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for different ratios of energy scales (J, i, y). We also obtain
the central charge of the system utilizing the conformal field
theory (CFT) scaling of the entanglement entropy. For an open
one-dimensional gapless system of length L, the entanglement
entropy S of the ground state scales with the subsystem size /

as [46]
2L [
S = %ln(;sin%) +c, (13)

where ¢ is the central charge of the system and ¢’ is a
nonuniversal constant. After obtaining the ground state, we
can calculate the entanglement entropy by cutting the system
at different locations. Comparing the resulting entanglement
entropy scaling with the theoretical prediction [Eq. (13)], we
determine whether the state is gapless or not and read out the
central charge ¢ when it is gapless. In the calculations, we kept
up to 500 states to keep the truncation error per step around
10712,

Without spin-lattice coupling, we find ¢ = 3/2 at the crit-
ical point (r = 1), while ¢ = 1 otherwise as the spin sector
becomes gapped and only the acoustic phonon contributes
[Figs. 2(b)-2(d)]. Two distinct behaviors arise for the regions
p > 1 and p < 1 when the interaction is turned on and the
system is at the critical point. While big deviations from
¢ = 3/2 occur for p < 1 [Fig. 4(b)], the system is stable for
p > 1, manifested by the central charge being unchanged at
¢ = 3/2 [Fig. 4(c)]. Thus, our DMRG calculations are consis-
tent with the results of the RG flow. In each calculation, we
have computed the linear entropy S, = 1 — Tr ,?)fpm [47,48]
with the reduced density matrix of the spin degrees of freedom
Pspin in addition to the average phonon density to measure how
strongly the phonons and spins are coupled. It is clear that Sy,
and phonon density for p = 0.2 [inset of Fig. 4(b)] demon-
strate the conventional decoherence from phonons, which is
in contrast to those for p = 1.5 [inset in Fig. 4(c)], showing
that the spins and phonons remain decoupled. Note that for
the unstable region p < 1, the significant deviation from the
conformal behavior of the entanglement entropy indicates that
a structural transition such as Peierls instability may appear.

A couple of notes on the numerical calculations are as
follows. The calculations are done for an open chain with
fixed boundary conditions, u; = u;, = 0. This is to suppress
the zero-momentum mode of the acoustic phonon. However,
the effect of fixed boundary conditions diminishes as the sys-
tem size increases, and therefore, we chose an intermediate
length of L = 40. L =40 is far shorter than the maximum
computational ability, even considering the large local Hilbert
space (spin-half and boson degrees of freedom), but this is
to keep the suppression in effect. As a result, the simulation
suffers from finite-size effects (see Appendix D), and the
sharp distinction between the two sides near p = 1 in Fig. 4(a)
is not observed in the numerics. Rather, we accept the fact
that the finite-size effect is unavoidable while suppressing the
zero-momentum mode and observe the qualitative difference
between both sides of p < 1 and p > 1, but not necessarily
near p = 1.

We also have to truncate the phonon Hilbert space at a
certain number of occupancy for the numerical simulation.
All calculations are done with the restricted Hilbert space of a
maximum of 10 phonons per site. We have checked that this

number is an order larger than the actual phonon occupancies
of the calculated ground states and thus the restriction on the
Hilbert space does not affect the ground state. Some phonon
occupancies in the calculations are shown in the insets in
Figs. 4(b) and 4(c). Throughout the calculation, where we
scanned the region 0.1 < p < 2.0 and 0.0 < y < 0.5, the
phonon occupancies were all below 1.0 expect for small p
and large y, which is deep in the unstable regime even with
the finite-size effect.

V. GENERALIZATION

Our spin chain results may be generalized by considering
a generic Landau-Ginzburg Hamiltonian with a local order
parameter ¢ [27],

H==Y t¢ip;+ Y Aot +Hpn.  (14)
(ij) ijkl

Here, the indices are for the positions of the order parameters.
For simplicity, we consider the case where the symmetry
group of the order parameter is decoupled from that of the
lattice, leaving other cases for future works. The lattice Hamil-
tonian Hp, generally consists of harmonic and anharmonic
terms with an additional polarization index. As in the Ising
model, we promote the coupling at the lowest order of ¢ to
have a spatial modulation to introduce minimal interaction
between the order parameter and the lattice vibrations: ¢t —
iy =1t +yu; —u) + O(u; — u;)*).

A quantum phase transition may be described by tuning
the parameter A/t. To study the behavior near the phase tran-
sition, we again consider the critical field theory. The total
action S = S, + Spp + Sp-e describes the interplay physics
between quantum criticality and acoustic phonons, where S,
is the critical action for the original theory of the order pa-
rameter, for instance, S; = [, 110:9)* + (V¢)* + r¢p?] for
(])4 theory, Spy, is the action for the acoustic phonons, and
Sph-c Tepresents the interaction of the two. The coupling term
in the action Spp.. is solely determined by the symmetry of
the theory, and the most relevant interaction term is Sph.c =
gfm O Zf:l e;;. The strain tensor ¢;; = d;u; + 9;u; with the
phonon field ; is introduced with a spatial dimension d. The
form of the energy operator O depends on the system, for
example, O = ¢ in the conventional ¢* theory.

The standard scaling analysis may be performed at the
fixed point without the lattice-order parameter coupling. The
scaling dimension of the strain tensor [¢;;] = (d + z)/2 is de-
termined by the phonon action, [Spn] = [ j; - efj]. The energy

operator has the scaling dimension [Og] = z+4+d — %, and the
coupling constant g has
1 d+z 2—-d+2v

el =~ = 7 , s)
whose sign becomes the main criterion for the stability. For
[g] < 0, the quantum criticality of S, is stable, so the ground
state may be described by a disentangled state of order pa-
rameters and phonons. Perturbative calculations give rise to
decoherence of quantum states of order parameters. Note that
the scaling analysis also applies for a continuous symmetry-
broken phase with Goldstone bosons, and it is easy to see that
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a lattice coupling is also irrelevant because all the couplings
with Goldstone bosons are suppressed [27]. But for [g] >0,
the disentangled state becomes unstable, indicating two
possibilities. First, the second-order phase transition may
become a first-order transition as in most thermal phase
transitions under lattice vibration. Second, as in the above
spin-chain model, a novel quantum criticality may appear. The
scaling dimensions of the lattice-order parameter in several
models which have z = 1 following Eq. (15) are presented in
Table 1.

Note that our condition becomes the Larkin-Pikin criterion
[15] in the limit of classical phase transitions. Namely, setting
7 =0, [g] <0 becomes the negative heat capacity critical
exponent « =2 —dv < 0, and the corresponding classical
criticality is stable. The generalized Larkin-Pikin criterion
may also be applied to unconventional quantum criticalities
such as topological phase transitions and deconfined phase
transitions (see Appendix C).

VI. DISCUSSION AND CONCLUSION

Decoherence from the environment in a quantum many-
body system has been an issue since the start of quantum
mechanics and has recently received more attention than ever
because of new developments in quantum science and tech-
nology. One of the most serious issues in the decoherence
is lattice vibration, and experimentalists have fought against
this for decades by, for example, cooling the system near zero
temperature. Our work provides a different perspective on
this fight by showing that phonons may drive the system to
a coherent state.

Specifically, the coherent state we find in the spin chain
model has the special property of being supersymmetric, and
our calculation provides nontrivial predictions in experiments
of emergent phenomena in quantum material. The N =1
supersymmetry indicates that the velocity of acoustic phonons
becomes equalized to the spinon velocity, which may be tested
by sound attenuation experiments [49,50], for example, in
CoNb,Og [51]. The phonon velocity is generically faster than
the spinon velocity, so we predict significant decreases of
phonon velocity around the quantum critical point, and the
two eventually become equal in the ideal case. Thus, we
propose that the discovery of supersymmetry is possible by
observing the equalized velocities of spinons and phonons
in the spin 1/2-chain system. Furthermore, our generalized
Larkin-Pikin criterion may become a reliable and useful
guideline to look for novel entangled phonon-order parameter
systems.

In conclusion, we demonstrated that lattice vibration may
be an impetus of a novel quantum many-body state, not an
intrinsic source of decoherence. A whole system with spin and
lattice degrees of freedom may form a macroscopic quantum
many-body state by entangling quantum critical modes and
acoustic phonons. One example we discovered in this work is
a supersymmetric quantum criticality of an Ising spin chain.
Its striking characteristics of the entanglement may be ob-
served in experiments, for example, equal phonon and spinon
velocities in the Ising chain. Our results indicate that interplay
between quantum criticality and lattice vibration may open a
new regime of quantum many-body physics.
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APPENDIX A: SPIN-LATTICE COUPLING
IN THE CONTINUUM LIMIT

In the continuum limit, the interaction Hamiltonian H; in
the main text is written as follows:

H =y Z(um
i

. 2)
—iy Z(”Hl —unP'n'l),

S

22

/dx (3 u)(m(z) @ _ (1) (2))

-7 / dx (B)(nT o).

After rescaling the Majorana fields, it is written as

= § / (Ba(nTy).

where g = —2y.

APPENDIX B: SUPERSYMMETRY OF THE
(141)-DIMENSIONAL TRANSVERSE FIELD
ISING MODEL WITH LATTICE VIBRATION

Let us define the following operator:

Q2_2<]_[sx> (rjot = X)55 + s,

J <J

where x; = /Mwou; and p; = P;j/«/Mw,, which are the
same in the main text.

First of all, let us check that Q is a fermionic operator. To
do this, let us consider the following operators:

0" = —(x —xj)(l_[ Sf)sﬁ’
i<j
A2
07 =, (Héﬁ*)s’?-
i<j

Then O can be written in terms of Q;l) and Q(z)
0=y, (Q(l) +Q(2)) Since Q(l) and Q(z) are Hermitian,

(Q(1 2))T Q(1 2) Q is Hermitian. They satisfy the following
antlcommutatlve relatlons

{017, 0} = 28;j(xj1 —x;)%,
(0. 0} =28p7. {0/". 07} =

: _ ab__ abc
where we use the properties [x;, p;] = i3;; and s sj—éije

[81 JHLS S]+1+51/ ]]

s?—i—s?s?. Since Qﬁl) and Q;z) satisfy the anticommutative
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relations, they are fermionic operators. Therefore, Q0 is also
a fermionic operator because Q is the summation of the
fermionic operators. From the properties of Q(l) and Q(Z),

can obtain 02,

0 =X [5100. 07} + 310702} + 107 0]
LJ

SC/J1

where Hy, = sz [—s5sj01 — 57+ p? + (xj41 — x;)*]is the
Hamiltonian at the stable fixed point [Eq. (4) in the main text].
This is (1+1)-dimensional supersymmetry algebra in a lattice
[31,32]. And Q is Hermitian, Q = (. Also we can easily
show [0, Hy.] = 0. Therefore, Q is the supercharge operator
for the Hamiltonian.

Some remarks are in order. First, since Q is the Hermi-
tian and fermionic operator, it could be represented in terms
of Majorana fermions, O = Z nil)(x] 1= xj) — Z nﬁz)pj,
where n(l 2 are nﬁl) = —(]_[KJ s7)s5 and r; (HK/ j‘)s

respectively. Second, the supercharge O in the Majorana
fermion representation is similar to that in Ref. [32] without
V(¢(x)) and overall sign. Last, there is another choice for the

supercharge, Q’—Z ([Ticj sDOIxj=1 — x))s) + pjs51, and
in the MaJorana fermion representation, Q Z n(z)(xj, 1 —

- n] 'p;, where it satisfies (Q')* = Hy/J, [Q/, Hy] =

, and (Q/)T = (. At the lattice, we need only one of them.

However, in the continuum limit, we need both of them
[31,32].

APPENDIX C: DISCUSSION OF UNCONVENTIONAL
QUANTUM CRITICALITY WITH LATTICE VIBRATIONS

The generalized Larkin-Pikin criterion may also be applied
to unconventional quantum criticalities. First, topological
phase transitions in weakly correlated systems are generically
described by the Dirac/Weyl fermions, whose Hamiltonian
is written as Hpyw = [ d9xy7(—i9,[)¢, witha =1, ...,d,
the Clifford algebra matrices I',, and the spinor ¥ [52]. The
sign of the mass determines whether the system is in the
topological phase, and the correlation length critical exponent
is v = 1. Setting z = 1, the coupling constant is marginal in
d = 1 and irrelevant for d > 1. For criticalities with z > 1,
the coupling becomes less irrelevant but is still irrelevant at
higher dimensions such as d = 3. Thus, a new universality
class or instability may appear at d = 1, while topological
phase transitions in higher dimensions may be decoupled from
the lattice vibration.

Second, quantum criticalities with an enlarged symmetry,
such as criticalities in a deconfined phase, may have different
universality classes from that of the Landau-Ginzburg-Wilson
paradigm [53,54]. For example, a Z, symmetry-breaking
transition with Z, local gauge with d = 2 has the same univer-
sality class as that of the U (1) symmetry transition [55,56], so
the lattice vibration becomes decoupled.

Third, the criterion may be applied to the recently proposed
quantum annealed criticality [57], which connects a quantum
critical point with a line of first-order thermal phase transi-

tions. One good candidate is the Z; clock model in d = 2.
At zero temperature the model shows the U (1) universality
class because a fourfold anisotropy is reported to be irrele-
vant [23,24], but at nonzero temperatures, the model shows
nonuniversal behaviors [58]. Namely, its universality class
may be the same as that of the Ashkin-Teller (four-state Potts)
model with var = 2/3 depending on the systems’ parameters
[59], indicating a first-order transition.

Last, the criterion indicates that the interplay between
lattice vibration and quantum criticality may be accessed
perturbatively in recently reported ferroelectric quantum crit-
icalities in SrTiO3 and KTaO3 [10-13].

APPENDIX D: DMRG HAMILTONIAN
AND THE FINITE-SIZE EFFECT

The Hamiltonian for the transverse-field Ising model with
spin-lattice coupling is as follows [Egs. (3) and (4) in the main
text]:

P2
H =H,+ H, =Z|: Jsisi — hst +W
Mw?
5 i = )+ (i — unaﬂ] (D1)

We change the basis of the phonons to the local boson
creation/annihilation operators (b;/ bf) used in Refs. [60,61].

hZ
u; =
<8M2a)3 )

Let us set i =M =1 from now on. The free phonon part
becomes identical to Eq. (5) of Ref. [60],

1/4
(b] + by).

D2)

+ 1 \/_ o
Hp=Y ﬁwo<b}bi + 5) (b} + b)(BL, | + bis1),
(D3)
and the phonon-spin coupling becomes
1% B
Hypg =) e (bl,, + biz1 — b] — b)) sisi,,. (D4

7 (8w5)
The Hamiltonian [Eq. (D1)] can be rewritten in the b;/ b:f basis
as

1
H= Z [ Jsist, — hsi + «/Ea)o(bjb,- +5

(H+bth+mH»
4

+ %(bjﬂ + biy1 —
(825)

With the intermediate system size of L = 40 and consid-
ering our calculation is in the critical regime, we need to
make sure that the qualitative behavior we observe in the
numerics is not a result of the finite-size effect. In Figs. 5(a)
and 5(b), we plot the size dependence of the y = 0.5 en-
tanglement entropies in Figs. 3(b) and 3(c), respectively. As
pointed out in the main text, the entanglement entropy scaling

b )Sl z+l] (DS)
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10F 1 1.0F 1 1
0.08 L=20, p=15
sk vvv - ___:::;;_ 1 osh vavVVVVVVVVVVv ] L=30,p=15
T li— E v v 0.06f —g= L =40, p=15 ]
v v o S LY Ve P
0.6[ 7 / 1 0.6 v v 1 .
/7 v A7
S y v / v S Slin 0.04 / -
/ v ¥ 0
0.4f 3 v K : 04f : /
; 'VL:?)O VL:?)O 0.02 (u] +
7 v 7 AU
0.2 L =40 = A 0.2r L =40 A n/
— |4
p702 L =50 P = 1.5 L =50 0 D__—vl:l/ 4
0.0 . . . . ] 0.0 . . . ] ; . . . . .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5
l/L l/L vy

FIG. 5. The finite-size effect of the DMRG calculation. (a) and (b) Entanglement entropy scaling for y = 0.5 as shown in Figs. 3 (b) and
(c). The deviation from the ¢ = 3/2 CFT (gray dashed line) is more prominent for larger systems. (c) Linear entropy as a function of y as in the
inset in Fig. 3(c). The decrease of Sy, in system size implies the decoupling of spin and lattice in the thermodynamic limit for this parameter

regime (p > 1).

in the p < 1 regime [Fig. 3(b)] significantly deviates from
the original ¢ = 3/2 CFT. The finite-size study shows the
deviation is more prominent for larger systems, and this indi-
cates that our conclusion will hold for large enough systems.
We also compute the linear entropy, presented in the inset
of Fig. 3(c), for a number of system sizes in Fig. 5(c). The
nearly zero Sy, for p > 1 demonstrated the spins and lattice

are well decoupled, and the finite-size study shows that Sy,
approaches zero as we increase the system size. We believe
that Sy, for p > 1 will approach zero in the thermodynamic
limit as predicted in the field theory calculations. The size
dependence of Sy, for p < 1 is less evident than that of p > 1,
which suggests the system will remain unstable for large
systems.
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