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Quantum theory of femtosecond optomagnetic effects for rare-earth ions in DyFeO3
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Our theoretical analysis shows that a femtosecond laser pulse can efficiently launch magnetization dynamics
of Dy3+ ions in DyFeO3 and DyAlO3. Excitation of electrons from the ground state to the low-lying electronic
level of Dy3+ ions by circularly or linearly polarized light can be seen as a result of an effective magnetic field
acting on the magnetic moments of the rare-earth ions. It is shown that the launched magnetization dynamics can
be expressed as a combination of coherent oscillations of mutually parallel and mutually antiparallel magnetic
moments of Dy3+ ions, respectively. While the antiparallel magnetic moments lie in the plane perpendicular to
the wave vector of light in the medium k, the parallel magnetic moments are aligned along k. The magnetization
dynamics depend strongly on the duration and the shape of the pumping laser pulse, as well as on the anisotropy
in properties of the rare-earth ion.
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I. INTRODUCTION

The ability to control and switch magnetization between
two stable bit states is the main principle of modern data
storage technology. Due to many new ideas, originating from
fundamental research during the past 50 years, this technology
has developed in a breathtaking fashion, and today it faces
yet another challenge. Ever increasing demands for faster
and more energy-efficient data storage stimulate fundamental
studies of the ways to control the magnetic state of media
with the lowest possible production of heat and at the fastest
possible timescale.

Femtosecond laser pulse is the shortest stimulus in contem-
porary experimental physics of condensed matter. The desire
to understand the response of magnets to such a stimulus
has led to the seminal discovery [1] of ultrafast demagneti-
zation of Ni, and to the new field of ultrafast magnetism. The
problem of conservation and transfer of angular momentum
has become the central issue of this research field [2–6]. It
is remarkable that although most of the theories in ultrafast
magnetism take into account only the magnetism of spins,
the most intriguing experimental results have been obtained
on compounds containing rare-earth ions, for which the spin-
orbit interaction is so strong that spin and orbital moments
are not mutually independent, and orbitals contribute substan-
tially to the net magnetization [7–18].

The goal of this work is to explore magnetization dynam-
ics triggered by femtosecond laser pulses in rare-earth ions

with strongly coupled spin and orbital degrees of freedom.
To explore the mechanisms of ultrafast magnetization dynam-
ics, research is frequently focused on rare-earth orthoferrites
[7,9,14,19,20]. Due to the inherently fast spin dynamics, this
class of materials serves as an excellent playground to in-
vestigate this phenomenon. Here, we consider dysprosium
orthoferrite DyFeO3 and dysprosium perovskite DyAlO3.
These compounds crystallize in an orthorhombic structure
with the space group Pnma, so that the local environment of a
single Dy3+ ion has octahedral symmetry. Magnetic moment
Fe3+ and Dy3+ ions get ordered at different temperatures. The
Néel temperature TN for spins of Fe3+ ions is 600–700 K,
while the Néel temperature TN of Dy3+ ions is around 10 K.
To exclude any interactions between magnetic moments of
Fe3+ and Dy3+, we also consider DyAlO3. The Dy3+ ion
in DyFeO3 has a well-studied electronic structure and well-
defined low-lying states [21–23]. The absorption spectrum
of the Dy3+ ion reveals excited electronic states very close
to the photon energy of Ti-sapphire lasers with the central
wavelength λ = 0.8 μm.

In Refs. [7,24,25], femtosecond laser-induced magnetiza-
tion dynamics in DyFeO3 has been described in terms of
Raman scattering of light by spins of Fe3+ sublattices. In
contrast to [7,24,25], in this paper we explore the spin and
orbital dynamics of Dy3+ ions. Aiming to understand magne-
tization dynamics after a laser pulse, we calculate dynamical
magnetic configurations on timescales significantly exceeding
the pump-pulse duration of 100 fs.
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Our findings show that an ultrashort laser pulse trig-
gers a complex coherent dynamics of magnetic moments of
Dy3+ ions in DyFeO3 and DyAlO3. The dynamics depends
strongly on the duration and shape of the pump pulse. The
laser-induced magnetization oscillates at a frequency ν =
E1/2π h̄ = 1.58 × 1012 Hz, which is much higher than the
spin resonance frequencies of the Fe3+ ions in DyFeO3. Here
E1 = 52.5 cm−1 is the energy of the electronic transition from
the ground state to the low-lying electronic level of the Dy3+

ion in the crystal field. Due to the mismatch between the fre-
quencies of magnetization dynamics of Fe3+ and Dy3+ ions,
any influence of the Fe3+ spin dynamics on the magnetization
dynamics of Dy3+ and optically induced spin transfer (OIST),
in particular [2,3,5,6], can be neglected.

An unexpected result of our study is the emergence of a
dynamic inhomogeneous antiferromagnetic structure in the
rare-earth magnet (for example, C-type structure). Usually
such structures arise at low temperatures (T ≈ 4 K) [26,27]
due to “ f - f ” interactions between rare-earth ions. However,
contrary to the previous reports in Refs. [26,27], the dynamic
structure, induced by electromagnetic radiation, as reported in
this work, can exist at much higher temperatures.

II. NONSTATIONARY THEORY FOR ULTRASHORT
ELECTROMAGNETIC PULSES

To consider the interaction between light and magnetic
moments, we generalize the quantum-mechanical approach
suggested by Pershan et al. [28,29] in the case of ultrashort
femto- and attosecond laser pulses. We take the Hamiltonian
that describes the interaction of a monochromatic electromag-
netic wave with the Dy3+ ion in DyFeO3,

Ĥ = Ĥ0 + V̂ , (1)

where Ĥ0 is the crystal-field (CF) Hamiltonian for an un-
perturbed Dy3+ ion, and V̂ is the potential describing
light-induced perturbation of the ground state.

Note that the CF Hamiltonian of orthoferrites consists of
two parts—Ĥ even

CF and Ĥodd
CF —containing even and odd terms

of irreducible tensor operators, respectively. The even contri-
bution Ĥ even

CF is accounted for in Ĥ0, while the odd contribution
Ĥodd

CF , arising due to the low symmetry of the ion environment,
is accounted for in the perturbation Hamiltonian [30]

V̂ = −Ed + Ĥodd
CF , (2)

where d = −e
∑

n rn is the operator of the dipole moment of
the rare-earth ion with n electrons in the 4 f shell, and E is the
electric field of the light wave.

The combined effect of the CF and the electric field
of an electromagnetic wave on rare-earth ions is accounted
for in the effective potential V̂eff = −ED̂eff, where Deff are
the operators of the effective dipole moment calculated in
Appendix A.

We emphasize that the main role of Ĥodd
CF in our case is a

renormalization of the electric dipole coupling between light
and matter. To explore the evolution of the spin subsystem in
time, we employ the Schrödinger equation ih̄∂ψg/∂t = Ĥψg

with the wave function ψ taken in terms of the eigenfunc-
tions φg of the Hamiltonian Ĥ0, where Ek are the energies of

electronic transitions in Dy3+,

ψg(t ) =
∑

lg

alg(t ) exp (−iωl t )φl

= φg exp (−iωl t ) + ψ1g(t ) + ψ2g(t ) + · · · , (3)

where φg does not depend on t ,

ψ1g(t ) =
∑

l

a(1)
lg (t ) exp (−iωl t )φl ,

ψ2g(t ) =
∑

f

a(2)
f g (t ) exp (−iω f t )φ f , (4)

and

a(1)
lg (t ) = 1

ih̄

∫ t

−∞
exp

(
iωlgt

′)Vlg(t ′)dt ′,

a(2)
f g (t ) = 1

(ih̄)2

∑
l

∫ t

−∞
Vf l (t

′) exp (iω f l t
′)

×
∫ t ′

−∞
Vlg(t ′′) exp

(
iωlgt

′′)dt ′′dt ′. (5)

In Eqs. (3)–(5), ωl = El/h̄, ωlg = (El − Eg)/h̄, and Vlg(t ) =
〈φl |V̂ (t )|φg〉. The summation in a(2)

f g (t ) is conducted on the
intermediate states φl which connect the initial (φg) and the
final (φl ) states of the ion.

Generally, the perturbation Hamiltonian reads

V̂ (t ) = v̂ exp (iωt ) + v̂∗ exp (−iωt ), (6)

where v̂ is determined by Eq. (2). In cases when the amplitude
of light wave field v̂ does not noticeably change in time, we
get

a(1)
lg (t ) ≈ −1

h̄

(
vlg

ei(ωlg+ω)t

ωlg + ω
+ v∗

lg

ei(ωlg−ω)t

ωlg − ω

)
,

a(2)
f g (t ) ≈ 1

h̄2

∑
l

(
v∗

f lvlg

ωlg + ω
+ v f lv

∗
lg

ωlg − ω

)
eiω f gt

ω f g
. (7)

Furthermore, we consider pulse excitations determined by
Eq. (6), whose amplitude v̂ depends on time as a Gaussian,

v̂(t ) = v̂0e−t2/τ 2
,

v̂0 = −E0D̂eff, (8)

where E0 is the peak value of the electric field in the pulse,
and τ is the pulse duration.

In the most general case of elliptically polarized light, the
amplitude E0 is a complex number, effective dipole moment
operators Deff are the real operators, and the amplitudes a(1)

lg (t )

and a(2)
f g (t ) have a more complex form compared to the expres-

sions given by Eq. (7).
Using the analogy with stimulated Raman scattering of

light by magnons, we consider a Raman process that allows
an excitation of low-lying states of Dy3+ ions by photons of a
much higher energy. In this case, the second and third terms in
Eq. (3) [see (4)] are sufficient to account for the low-frequency
excitations.

We explore laser-induced transitions between electronic
states in the Dy3+ ion. The ground state of the Dy3+ ion is
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6H15/2 being an Ising doublet with the orbital moment L = 5,
the spin moment S = 5/2, and the total magnetic moment J =
15/2. The crystal field splits multiplet 6H15/2 into doublets
with the energies E0 = 0, E1 ≈ 52 cm−1, E2 ≈ 147 cm−1,
E3 ≈ 225 cm−1, etc. [21]. The ground Ising doublet with the
energy E0 = 0 is described by the wave function | ± 15/2〉;
the first excited doublet with the energy E1 ≈ 52 cm−1 is the
Ising doublet described by the wave functions | ± 13/2〉 (Ap-
pendix C). Furthermore, we consider the transitions between
these states, since the next doublets have much higher energy
and have a negligible impact on the laser-induced dynamics.

The photon energy of laser pulses commonly used in
ultrafast time-resolved experiments is around 1.5 eV (the
wavelength is 800 nm) [8,19]. It is quite close to the difference
between the energies of multiplets 6H15/2 and 6F5/2 of Dy3+

ions (≈12 × 103 cm−1) [31]. An entanglement between the
ground 4 f N (N is the number of electrons in the electronic
shell) and the excited 4 f N−15d, 4 f N−15g configurations of the
Dy3+ ion, which arises due to the low-symmetry CF, allows
electric-dipole transitions 6H15/2 →6F5/2. Note that without the
entanglement, such a transition must be forbidden by parity
and quantum number J . Hence 6F5/2 is practically an interme-
diate state in the analysis of the laser-induced magnetization
dynamics of Dy3+ ions in DyFeO3.

It can be shown (see Appendix C) that the wave function
ψg acquires the form

| ± g〉 = | ± 15/2〉 + Q(2)
± (E , t )| ± 13/2〉. (9)

For a case close to the resonance ω ≈ ω0, one finds

Q(2)
± (E , t ) = √

πq(2)
± (EE∗)

( τ

T

)2
fτ−(t ), (10)

where T = 2π/ω,

q(2)
± (EE∗) = ±(q1E∓E∗

z − q2EzE
∗
±) − i(q3E∓E∗

± + q4|Ez|2),

E± = Ex ± iEy,

E∗
± = E∗

x ± iE∗
y , (11)

q1 =
( T

8h̄

)2

R
(
C15/2 13/2

5/2 5/2 6 4C
15/2 15/2
5/2 5/2 6 5K4K ′

5

−K5K ′
6C

15/2 13/2
5/2 3/2 6 5C

15/2 15/2
5/2 3/2 6 6

)
,

q2 = q1(K � K ′),

q3 = q1(K ′ → K ),

q4 = q1(K → K ′), (12)

fτ− = exp(−iω1t )Fτ−(t ), (13)

Fτ−(t ) = 1

τ

∫ t

−∞
φ−(t ′)dt ′, (14)

φ−(t ) = exp

(
− 2t2

τ 2
+ iω1t

)
exp (Z2

−(t ))erfc(Z−(t )), (15)

Z−(t ) = i

2
τ (ω0 − ω) − t

τ
. (16)

Here we account for |φ+(t )| � |φ−(t )| (see also Appendixes
B and C).

Q(2)
± (E , t ) defines the quantum torque generated by the

laser pulse. The torque changes the direction of the magnetic
moment of the Dy3+ ion as a result of the electronic transition
from the ground state |15/2〉 to the excited state |13/2〉. We
therefore conclude that the laser pulse generates a magnetic
torque, which results in a rotation of the magnetic moment of
the Dy3+ ion.

Let us explore the transformation of the magnetic struc-
ture under the action of linear and circular polarization laser
pulse. We assume that the light propagates along the “b”
axis of the crystal. The components of the vector E in the
coordinate system composed of the crystallographic axes
are

E (k)
x = Ec

(
cex

k

)
, E (k)

y = Ea
(
aey

k

)
, E (k)

z = Ea
(
aez

k

)
, (17)

where eα
k , k = 1, . . . , 4 are determined as

ex
k = (0, 0, (−1)k ), ey

1,2 = ( − sin(α),± cos(α), 0),

ex
k = ( cos(α),± sin(α), 0), ey

3(4) = −ey
1(2),

ez
3(4) = −ez

1(2), (18)

where Ea,c are the projections of vector E on the axes a and c.
In the �4 phase, the magnetic field H‖c induces a mag-

netic moments of Dy3+ ions aligned along the c-axis. At
low temperatures TM < T < E1/kB = 78 K, the correspond-
ing magnetization is M0

c = 15(μBgJ )2Hc/h̄ω1. If the field is
generated by a laser pulse, it would induces a transient mag-
netization of Dy3+ ions,

Mα = 〈g+|μα|g+〉 + 〈g−|μα|g−〉, (19)

where μα = −gμBJα is the operator of the magnetic moment
component, g = 4/3 is the Landé factor for the Dy3+ ion,
and ±g〉 = | ± 15/2〉 + Q(2)

± (E , t )| ± 13/2〉. Below we con-
sider the case of incident light waves with linear and circular
polarizations.

III. ULTRASHORT INVERSE QUANTUM
COTTON-MOUTON EFFECT

Consider a linearly polarized wave (i.e., the amplitudes Eα

are real). We keep only the principal components containing
fτ−(t ). It can be shown [see Eq. (C3)] that

M (k)
a = ±μeffEcEa(q1 − q2) sin (2α)Aτ (t )

( τ

T

)2

× sin [ω1t − βτ (t )],

M (k)
b = 2μeffEcEa(q1 − q2) cos2 αAτ (t )

( τ

T

)2

× sin [ω1t − βτ (t )],

M (k)
c = ±μeff

[
q3E2

c + E2
a

(
q3 sin2 α + q4 cos2 α

− q1 + q2

2
sin (2α)

)]
Aτ (t )

( τ

T

)2
sin [ω1t − βτ (t )],

(20)
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FIG. 1. (a) Shape of the laser pulse, where E/E0 is the nor-
malized electric field of the light pulse; (b) the amplitudes of
dynamic magnetization; and (c) the initial magnetization phase
βτ (t ) = arctan (Im(Fτ−(t ))/Re(Fτ−(t ))), where curve 1 stands for
ω − ω0 = −1013, curve 2 stands for ω − ω0 = 0, curve 3 stands for
ω − ω0 = +1013, and the pulse duration τ = 20 fs.

where μeff = μBg
√

15π , Aτ (t ) = |Fτ−(t )| [Fig. 1(b)], ω1 =
E1/h̄ = 1013 rad/s, βτ (t ) = arctan (Im(Fτ−(t ))/Re(Fτ−(t )))
[Fig. 1(c)], c = μBgJ

√
15π ( T

8h̄ )2, k = 5, 6, 7, 8 is the number
of Dy3+ ions in the unit cell (see Fig. 2), and ± signs in
front of the M (k) components correspond to the direction of
magnetization of the kth ions, i.e., + stands for the fifth and
sixth ions, while − stands for the seventh and eighth ions.

Note that while the amplitude Aτ (t ) depends weakly on the
frequency difference ω − ω0, for the phase βτ the dependence
is significant.

FIG. 2. Unit cell of DyFeO3. Configurations of the components
of the magnetic moments of the Dy3+ ions induced by a short laser
pulse with the central wavelength λ = 0.8 μm. Red arrows stand
for M (k)

a components, green arrows stand for M (k)
b components, and

blue arrows stand for M (k)
c components; k = 5, 6, 7, 8. The magnetic

moments of the Dy3+ ions are oriented parallel to the “b” axis and
antiparallel to the “a” and “c” axes, respectively.

Using irreducible representations of the D16
2h symmetry

group, Eqs. (20) can be represented as

Ca = M5
a + M6

a − M7
a − M8

a

= μeffEcEa(q1−q2) sin (2α)Aτ (t )
( τ

T

)2
sin [ω1t − βτ (t )],

Fb = M5
b + M6

b + M7
b + M8

b

= 2μeffEcEa(q1 − q2) cos2 αAτ (t )
( τ

T

)2
sin [ω1t −βτ (t )],

Cc = M5
c + M6

c − M7
c − M8

c

= μeff

[
q3E2

c + E2
a

(
q3 sin2 α + q4 cos2 α

− q1 + q2

2
sin (2α)

)]
Aτ (t )

( τ

T

)2
sin [ω1t − βτ (t )].

(21)

Following the analogy with the spin dynamics of Fe3+ ions
in DyFeO3, below we will refer to Ca and Cc as antiferromag-
netic modes and Fb will be called a ferromagnetic mode. The
antiferromagnetic mode Ca and the ferromagnetic mode Fb are
transformed according to the irreducible representation �3.
The irreducible representation for the antiferromagnetic mode
Cc is �1. Equations (21) show that the electric field products
EcEa are coupled with the Ca and Fb modes, while E2

c and E2
a

excite the Cc mode.
In the case of short pulses at t > τ , one can assume

Fτ−(t ) ≈ Fτ−(τ ). It means that fτ−(t ) = exp(−iω1t )Fτ−(τ ),
and the dependencies M (k)

a,b,c [see (19)] have an oscil-

lating character M (k) = M (k)
a(b,c) sin (ω1t − βτ ), where βτ is

the initial phase determined from the relation tan βτ =
Im(Fτ−(τ ))/Re(Fτ−(τ )) (Fig. 1).

As seen from Eqs. (20), the transient magnetization left
after the laser pulse excitation is determined by the dynamic
amplitude A(t ), the frequency ω1, and the phase βτ (t ). The
properties of the rare-earth ion depend on the CF parameters qi

and on the angle α between the Ising ion axis and the principal
crystal axis.
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A short pulse of linear polarized light propagating along
the b-axis induces coherent oscillations of magnetic moments
of Dy3+ ions in time domain t > τ . The arrangement of
magnetic moments can be described as a combination of an
“antiferromagnetic part” with magnetic moments in the “a-c”
plane, and a “ferromagnetic part” with magnetic moments
aligned along the b axis as shown in Fig. 2.

Note that in the case of monochromatic radiation, the
excitation is present for an infinitely long time (see Ref.
[12]), and the functions fτ± are real and equal to fτ± =
2/

√
πτ 2ω1(ω0 ± ω). Hence, in accordance with Eq. (20),

monochromatic linearly polarized light, in contrast to pulsed
light, does not induce a magnetic textures.

IV. ULTRAFAST INVERSE QUANTUM FARADAY EFFECT

The electric field E of a circular polarized wave propagat-
ing along the “b” axis is defined as E = Ecc + Eaa, where

Ec = E0 exp

(
− t2

τ 2

)
cos (ωt ),

Ea = ±E0 exp

(
− t2

τ 2

)
sin (ωt ), (22)

and then

E = 1

2
E0 exp

[
−

(
t

τ

)2]
[exp (iωt )(c ∓ ia) + c.c.]. (23)

Here, the upper sign of the ± notation stays for the left-handed
circularly polarized wave, and the lower sign stays for the
right-handed circular polarization. Therefore, the operator V̂0

becomes

V̂0 = −E0

2

∑
γα (k)D̂effα, (24)

where γα (k) = (c ∓ ia)eα
k .

Taking for circularly polarized light

Eα (k) = E0

2
γα (k) (25)

using Eqs. (C1) from Appendix C and, similarly to the treat-
ment explained in Sec. II, limiting ourselves to the main terms
in (C1) for nearly resonant conditions ω ≈ ω0, we find

M (k)
a = ±(−1)mμeffE

2
0

(
q3 sin2 α + q1 + q2

4
sin (2α)

)
,

× Aτ (t )
( τ

T

)2
cos [ω1t − βτ (t )],

M (k)
b = (−1)mμeffE

2
0

(
q3

sin2 (α)

2
+ q1 + q2

2
cos2 α

)
,

× Aτ (t )
( τ

T

)2
cos [ω1t − βτ (t )],

M (k)
c = ∓μeffE

2
0

(
q3(1 + sin2 α) + q4 cos2 α

− q1 + q2

2
sin (2α)

)
Aτ (t )

( τ

T

)2
cos [ω1t − βτ (t )],

(26)

where m = 1 if light is left-handed circularly polarized, and
m = 2 if light is right-handed circularly polarized.

Rewriting Eqs. (26) in terms of irreducible representations
of the D16

2h symmetry group, one obtains

Ca = M5
a + M6

a − M7
a − M8

a ,

= (−1)mμeffE
2
0

(
q3 sin2 α + q1 + q2

4
sin (2α)

)

× Aτ (t )
( τ

T

)2
cos [ω1t − βτ (t )],

Fb = M5
b + M6

b + M7
b + M8

b

= (−1)mμeffE
2
0

(
q3

sin2 (α)

2
+ q1 + q2

2
cos2 α

)

× Aτ (t )
( τ

T

)2
cos [ω1t − βτ (t )],

Cc = M5
c + M6

c − M7
c − M8

c

= μeffE
2
0

(
q3(1 + sin2 α) + q4 cos2 α

− q1 + q2

2
sin (2α)

)
Aτ (t )

( τ

T

)2
cos [ω1t − βτ (t )].

(27)

In the case t > T , the M (k)
a,b,c components induced by the

wave field have an oscillating character that is proportional to
cos (ω1t − βτ ). Note that Mc are independent of the helicity of
circularly polarized light [see Eq. (26)] and the dependencies
of magnetization amplitudes on the orientation of the Ising
axis are different in the cases of linearly polarized and circu-
larly polarized pulses [see Eqs. (20) and (26)].

Let us explore using Eqs. (20) and (26) the influence of
pulse duration on the amplitudes and phases of oscillations
corresponding to the magnetic modes. We consider ultrashort
light pulses of the same fluence, and we write the electric field
of the interacting light wave in the form

E (τ, t ) = E0(τ ) exp (−t2/τ 2) sin (ωt ), (28)

where ω = 2π/T , and T is the wave period (for λ = 0.8 μm,
T = 8/3 fs). It can be shown that

E2
0 (τ )

∫ ∞

−∞
[exp (−t2/τ 2) sin (ωt )]dt

= E2
0 (τ )τ

√
π

8

{
1 − exp

[
−2

(
πτ

T

)2]}
= const. (29)

At τ � T , one gets exp [−2( πτ
T )2] � 1, and in this case

Eq. (29) is equivalent to the relation E2
0 (τ )τ = const. It is easy

to see that the oscillations of magnetic modes excited by light
pulses under the condition E0(τ ) ≈ 1/

√
τ can be represented

in the form

μαi = M(μ, α, i)mi(τ, t ), (30)

where the symbol μ determines the modes C and F , α are
the axes a, b, c, and the index i = 1, 2 indicates whether
we discuss the cases of a linearly polarized pump or the in-
verse Cotton effect (i = 1), or a circularly polarized pump and
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FIG. 3. Magnetization dynamics of Dy3+ ions triggered by lin-
early polarized laser pulse. The dependencies m1(t ) are determined
by Eq. (31). The effect of light on the ion magnetization can be seen
as the inverse Cotton-Mouton effect [32,33]. Red curve 1 stands for
ω − ω0 = −1013, blue curve 2 stands for ω − ω0 = 0, green curve 3
stands for ω − ω0 = +1013, the pulse duration τ = 20 fs, the dashed
curve corresponds to τ = 2T , and the dotted curve corresponds to
τ = T .

the inverse Faraday (i = 2) effect, respectively. The dimen-
sionless function mi(τ, t ) describing the dynamics of modes
has the form

mi(τ, t ) = Aτ (t )
τ

T
sin

(
ω1t − βτ (t ) + π

2
(i − 1)

)
. (31)

In Eq. (30), M(μ, α, i) are the quantities that do not depend on
t and τ , the form of which for each specific mode and effect
can be easily found from a comparison of Eqs. (20), (26), and
(30).

Dependencies of mi on t for different τ are shown in
Figs. 3 and 4. A significant decrease in the amplitudes of the
steady-state oscillations of magnetic modes (at t > τ ) upon a
decrease in the pulse duration is clearly seen from the figures.

Hence, we have shown that after excitation with a short
laser pulse, transient magnetization dynamics of Dy3+ ions
depends on both the properties of the ions and detuning be-
tween the central frequency of the laser excitation and the
resonant frequencies of the electronic transition in Dy3+. The
amplitude and the phase of the stabilized oscillations, as well
as the process of establishing these values in time, depend on
the shape and duration of the pulse. We also highlight the
difference in magnetization dynamics triggered by linearly
and circularly polarized pulses. Polarized laser pulses excite
oscillating magnetic moments of Dy3+ resembling antiferro-
magnetic and ferromagnetic modes of Fe3+ spin resonances.
In the same way, the influence of circularly and linearly polar-
ized light on the magnetic moment Dy3+ can be considered as
the inverse Faraday and Cotton-Mouton effects, respectively.
Note that the oscillations of the magnetic moments in the
inverse Faraday and Cotton-Mouton effects are phase-shifted
by π/2.

FIG. 4. Magnetization dynamics of Dy3+ ions induced by cir-
cularly polarized light. The dependencies m2(t ) are determined by
Eq. (31). The effect can be seen as the ultrafast inverse Faraday
effect. Red curve 1 stands for ω − ω0 = −1013, blue curve 2 stands
for ω − ω0 = 0, green curve 3 stands for ω − ω0 = +1013, the pulse
duration τ = 20 fs, the dashed curve corresponds to τ = 2T , and the
dotted curve corresponds to τ = T .

V. CONCLUSION

Upgrading the theoretical framework for the inverse
magneto-optical effects suggested by Pershan et al. [28] and
making it applicable to the case of femtosecond laser pulses,
we explored the laser-induced magnetization dynamics in
Dy3+ ions.

Our findings show that ultrashort laser pulses excite new
dynamic textures of magnetic moments of Dy3+ ions in
DyFeO3. These textures resemble ferromagnetic and antifer-
romagnetic modes of magnetic resonance in DyFeO3. After
laser excitation, the magnetic moments coherently oscillate at
the frequency of the electronic transition from the ground to
the low-lying state in the Dy3+ ion. The damping of magnetic
oscillations is determined by the relaxation time of the rare-
earth ions, which is about 10 ps.

On the timescales of the pulse duration, the entire dy-
namics of magnetization, including the phase of oscillations,
can be tuned using the form factor calculated in this work.
The transient magnetic textures predicted in this work can be
investigated using advanced ultrafast imaging techniques and
advanced sources of light such as free-electron lasers [34,35].
We believe that our theoretical result may be of interest for
further experiments aiming to understand the magnetization
dynamics of rare-earth ions.

Finally, we note that here we neglected the effects induced
by the Fe3+ sublattices. In orthoferrites, the frequencies of
the ferromagnetic and antiferromagnetic resonances for Fe3+

ions are rather far from the frequencies of the magnetization
dynamics of Dy3+ ions.
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APPENDIX A: ELECTRIC-DIPOLE INTERACTIONS IN
RARE-EARTH IONS AND THE TRANSITION 6H15/2 →6F5/2

IN DyFeO3

The Hamiltonian of a crystal field acting on the rare-earth
ions in orthoferrite contains odd terms since the point sym-
metry group Cs of their environment lacks a space inversion
element [the reflection in the “a-b” plane (Cs) corresponds
to the change x → −x]. In the general case, the crystal field
Hamiltonian reads

V̂cr =
∑

rt bt
τ ĉt

τ , (A1)

where ĉt
τ are the one-electron irreducible operators of the

order “t ,” and bt
τ are the crystal-field parameters. The fifth

and seventh terms in (A1) representing the allowance of the
transition 6H15/2 →6F5/2 read

Vodd = r5b5
0ĉ5

0 + r5b5
1i

(
ĉ5

1 + ĉ5
−1

) + r5b5
2

(
ĉ5

2 + ĉ5
−2

)
+ r5b5

3i
(
ĉ5

3 + ĉ5
−3

) + r5b5
4

(
ĉ5

4 + ĉ5
−4

)
+ r5b5

5i
(
ĉ5

5 + ĉ5
−5

)
. (A2)

We restrict ourselves by reducing of the fifth-order terms in
(A2). Interaction of a rare-earth ion with the electric field E
reads

V̂E = −Ed = eE
∑

n

rn. (A3)

Interactions (A2) and (A3) mix states of the ground config-
uration lN (l = 3 is the orbital quantum number of the 4 f
shell) and lN l ′ (l ′ = l ± 1) configurations of excited states,
displaced from the ground state in energy on Wl ′ = 105 cm−1.
We project V = Vodd + VE on the space of functions of the
ground configuration 4 f N , and we obtain the matrix (Veff )12 =
−∑ V1kVk2

Wk
, where states |1〉 and |2〉 belong to the 4 f N config-

uration, and |k〉 are the states of lN l ′ configurations. Terms of
matrix (Veff )12 linear in E components can be represented by
the effective Hamiltonian (for details, see [30])

Ĥme = 2
∑
μtτ l ′

∑
nm

(−1)μE−μBt
τ (ll ′)A(ll ′tn)W −1

l ′

×Cnm
1μtτ ĉn

m, (A4)

where t and τ corresponds to ones given in eq. (A2), μ =
0,±1; n = 2, 4, 6; m = −n ÷ n; l ′ = l ± 1,

E+1 = − 1√
2

(Ex + iEy),

E−1 = 1√
2

(Ex − iEy),

E0 = Ez,

are the circular components of vector Eμ,

A(ll ′, tn) = −erll ′
Cl0

l ′010C
l ′0
l0t0

Cl0
l0n0

(
t1n

lll

)√
(2l ′ + 1)(2l + 1),

and Cnm
1μtτ and

(abc
def

)
are the Clebsh-Gordon coefficients and the

6 j symbols, respectively.

To obtain Eq. (A4), we neglected the splitting of 4 f N−15d
(l ′ = 2) and 4 f N−15g (l ′ = 4) configurations. Expression
(A4) is valid for odd crystal fields of a general form.
Specifically for (A2), taking into account only the 4 f N−15d
configuration, we get H (5)

me = −∑
α EαDeffα ,

Deff,x = A

[
B5

3

√
15

14
i
(
C6

−4 − C6
4

) + B5
4

√
15

12

(
C6

−5 − C6
5

)

+ B5
3√
2

i
(
C6

−6 − C6
6

)]
,

Deff,y = A

[
− B5

3

√
15

14

(
C6

−4 + C6
4

) + iB5
4

√
15

12

(
C6

−5 + C6
5

)

− B5
3√
2

(
C6

−6 + C6
6

)]
,

Deff,z = A

[
B5

4

√
10

33

(
C6

−4 + C6
4

) + B5
3i

(
C6

−5 + C6
5

)]
, (A5)

where A = P0
Wd

√
6×13
7×11 and B5

q = r5
f d b5

q are the parameters of

the odd CF. In (A5) we keep only actual terms containing
operators C6

m, m = ±4,±5,±6. In the general case, operators
of the effective dipole moment Deffα are of the form (13); in
this case, Vodd accounts the seventh-order terms and 4 f N−15g
configurations.

APPENDIX B: EFFECTIVE DIPOLE MOMENTS Deff OF
THE RARE-EARTH IONS IN DyFeO3

DyFeO3 is an antiferromagnet, where antiferromagnet-
ically coupled Fe3+ ions are also exchange coupled to
paramagnetic Dy3+ ions. Exchange interaction between Fe3+

and Dy3+ ions results in an effective magnetic field that
acts on Dy3+ ion. The magnetic structures of DyFeO3 and
its evolution as a function of temperature were explored in
Refs. [23,36], where it was shown that depending on tem-
perature, the structure transforms according to the �1 and �4

representations.
In the phase �1 below the Morin temperature TM = 40 K,

the effective magnetic field from the exchange interaction
between Dy3+ and Fe3+ ions is equal to zero. In the phase
�4 at higher temperatures T > TM a nonzero magnetic field
along the c axis (local “x” axis) mixes the | ± 15/2〉 and the
| ± 13/2〉 doublets without splitting.

At E = 0 the wave functions of an ion ground state read

| ± g0〉 = | ± 15/2〉 − hx| ± 13/2〉,
| ± f 〉 = | ± 13/2〉 − hx| ± 15/2〉, (B1)

where hx = √
15gJμBHx/2ω1h̄ ≈ 0.1, H is the effective mag-

netic field acting on the Dy3+ at T > TM , at T < TM H = 0,
and ω1h̄ = E1 ≈ 52 cm−1.

The actual components of D̂eff for the transition determined
in the local axes [see (C1) and Appendix A]

Deff,x = K4i
(
C6

−4 − C6
4

) + K5
(
C6

−5 − C6
5

)
+ K6i

(
C6

−6 − C6
6

)
,
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Deff,y = −K4
(
C6

−4 + C6
4

) + K5i
(
C6

−5 + C6
5

)
− K6

(
C6

−6 + C6
6

)
,

Deff,z = −K ′
4

(
C6

−4 + C6
4

) + K ′
5i

(
C6

−5 + C6
5

)
− K ′

6

(
C6

−6 + C6
6

)
, (B2)

where C6
±m are the actual irreducible tensor operators of the

crystal field, and Km and K ′
m are the magnitudes that are

dependent on the odd CF parameters, which are of the form
(see Appendix A) K ≈ P0B5

q/Wd , where P0 = er f d is the ele-
mentary dipole moment of Dy3+, r f d ≈ 0.04 nm is the radial
integral [37], and Wd ≈ 105 cm−1 is the difference between
the energies of the 4 f N−15d and 4 f N configurations [31]. The
CF parameters Bk

q can attain values of the order of 103 cm−1

according to [38] for Pr3+ in PrFe3(BO3)4, B5
3 = 2170 cm−1.

Thus, K ≈ P0ξ , ξ ≈ 10−2.

APPENDIX C: WAVE FUNCTIONS OF
THE Dy3+ION IN DyFeO3

The ground state of the Dy3+ ion is the 6H15/2 Ising dou-
blet. It is described by | ± 15/2〉 wave functions determined
in the local reference frame, where the z-axis lies in the “a-b”
plane at the angles α = ±60◦ to the axis “a” [38]. The local
symmetry axes of four Dy3+ ions in the DyFeO3 unit cell are
determined as follows:

ex
k = (0, 0, (−1)k ), ey

1,2 = ( − sin(α),± cos(α), 0),

ex
k = ( cos(α),± sin(α), 0), ey

3(4) = −ey
1(2),

ez
3(4) = −ez

1(2). (C1)

CF splits multiplet 6H15/2 into two doublets with the
energies E0 = 0, E1 ≈ 52 cm−1, E2 ≈ 147 cm−1, E3 ≈
225 cm−1, . . . , etc. [21]. The first excited doublets are the
Ising doublets described by the wave functions | ± 13/2〉 in
the local reference frame (C1).

We neglect splitting of multiplet 6F5/2 in the CF and ex-
change field. The unperturbed wave functions of the ground
state φg and φ f are determined by Eq. (B1), and for a laser
pulse with a central photon energy of 1.5 eV, the wave func-
tions of an intermediate state 6F5/2 are determined by φm =
|m〉, where m = ±1/2, ±3/2, ±5/2 is the magnetic quantum
number of the 6F5/2 (J ′ = 5/2) states.

Let us obtain the actual expressions for a(2)
f g (t ) and ψ2g(t )

functions for Gaussian laser pulse induced excitations of the
Dy3+ ion in orthoferrites and orthoaluminates.

Substituting the expressions for φg, φ f , φl → |m〉 as well
as the pulse shape v(t ) in Eq. (7) and integrating them over t ′′

yields

a(2)
± f ±g = −

√
π

2

τ 2

h̄2

∑
m

[〈± f |v∗
0 |m × m|v0| ± g〉Fτ+(t )

+〈± f |v0|m × m|v∗
0 | ± g〉Fτ−(t )], (C2)

where

Fτ±(t ) = 1

τ

∫ t

−∞
φ±(t ′)dt ′, (C3)

φ(±)(t ) = exp

(
− 2t2

τ 2
+ iω1t

)
exp [Z2

±(t )]erfc[Z±(t )],

(C4)

Z±(t ) = i

2
τ (ω0 ± ω) − t

τ
. (C5)

In Eq. (C5), ω0 = (E ′
J − E0)/h̄ ≈ 12 × 103 cm−1, and E ′

J
is the weighted median energy of multiplet 6F5/2. In Eq. (C2)
we neglected the terms comprising exp (±2iωt ) in accordance
with the rotating-wave approximation.

Consider the wave functions ψg(t ) = φg + ψ2g(t ) [see (3),
(5), (B1), and (C2)] and represent them in the zero in h
approximation,

| ± g〉 = | ± 15/2〉 + Q(2)
± (E , t )| ± 13/2〉, (C6)

Q(2)
± (E , t ) = √

π [q(2)
± (E∗E ) fτ+(t )

+ q(2)
± (EE∗) fτ−(t )], (C7)

q(2)
± (EE∗) = ±(q1E∓E∗

z − q2EzE
∗
±) − i(q3E∓E∗

± + q4|Ez|2),

E± = Ex ± iEy,

E∗
± = E∗

x ± iE∗
y , (C8)

q1 =
( T

8h̄

)2

R
(
C15/2 13/2

5/2 5/2 6 4C
15/2 15/2
5/2 5/2 6 5K4K ′

5

− K5K ′
6C

15/2 13/2
5/2 3/2 6 5C

15/2 15/2
5/2 3/2 6 6

)
,

q2 = q1(K � K ′),
q3 = q1(K ′ → K ),

q4 = q1(K → K ′), (C9)

where R = 〈6F5/2‖C6‖6H15/2〉 is the reduced matrix element,
R = 100–10−1, and Cc γ

a α bβτ
are the Clebsh-Gordon coeffi-

cients: C15/2 13/2
5/2 5/2 6 4 =

√
2×11
13×17 , C15/2 15/2

5/2 5/2 6 5 =
√

5
17 , C15/2 13/2

5/2 3/2 6 5 =
− 7√

15×17
, C15/2 15/2

5/2 3/2 6 6 = −
√

12
17 ,

fτ± = exp(−iω1t )Fτ±(t ). (C10)
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