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We investigate the magnetic properties of LiYbO2, containing a three-dimensionally frustrated, diamondlike
lattice via neutron scattering, magnetization, and heat capacity measurements. The stretched diamond network
of Yb3+ ions in LiYbO2 enters a long-range incommensurate, helical state with an ordering wave vector
k = (0.384, ±0.384, 0) that “locks-in” to a commensurate k = (1/3, ±1/3, 0) phase under the application
of a magnetic field. The spiral magnetic ground state of LiYbO2 can be understood in the framework of a
Heisenberg J1-J2 Hamiltonian on a stretched diamond lattice, where the propagation vector of the spiral is
uniquely determined by the ratio of J2/|J1|. The pure Heisenberg model, however, fails to account for the relative
phasing between the Yb moments on the two sites of the bipartite lattice, and this detail as well as the presence
of an intermediate, partially disordered, magnetic state below 1 K suggests interactions beyond the classical
Heisenberg description of this material.

DOI: 10.1103/PhysRevB.103.014420

I. INTRODUCTION

In the field of three-dimensionally frustrated magnets, the
predominant research focus has centered on the magnetic
diamond and pyrochlore lattices [1–16]. Both of these frame-
works appear within the family of transition-metal spinels
of the form AB2X4 (A, B = transition metal or metalloid, X
= chalcogenide), where the diamond and pyrochlore lattices
appear on the A- and B-site sublattices, respectively. Strong
magnetic frustration within each of these sublattice types is
known to suppress typical Neél order and instead favor the
manifestation of unconventional ground states, including clas-
sical spin liquids [10,11], (quantum) spin ices [12–14,16], and
(quantum) spiral spin liquids [1–3].

Quantum fluctuations that manifest in the small spin
limit on these lattices further suppress magnetic order and
can formulate the basis for highly entangled ground states
[17–22]. At this limit, the magnetic diamond lattice has
been less thoroughly studied in comparison to the mag-
netic pyrochlore lattice, as the magnetic pyrochlore lattice
also manifests in a large, well-studied family of rare-earth
Ln2M2O7 (Ln = lanthanide, M = metal or metalloid) com-
pounds [5–16]. Furthermore, while introducing model Jeff =
1/2 lanthanide moments within frustrated magnetic motifs has
shown promise in realizing intrinsically quantum disordered
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states (e.g., Yb2Ti2O7 pyrochlore [16,23] and triangular lat-
tice NaYbO2 [24–27]), isolating materials that comparably
incorporate model f -electron moments within a diamond lat-
tice framework is a challenge.

Frustration within the diamond lattice is best envisioned
by dividing the lattice into two interpenetrating face-centered
cubic (FCC) lattices with two exchange interactions, J1 and
J2, where in the Heisenberg limit (Fig. 1) [1–3],

H = J1

∑
〈i, j〉

Si · Sj + J2

∑
〈〈i, j〉〉

Si · Sj. (1)

In the two limits where either J1 or J2 is zero, this bipartite sys-
tem is unfrustrated with a conventional Neél ordered ground
state. However, when J2 > 0 and |J1| > 0, ordering becomes
frustrated. When J2/|J1| � 1/8, the classical interpretation
of this model develops a degenerate ground-state manifold
of coplanar spin spirals [1–3]. Each of these spirals can be
described by a unique momentum vector, and together the
degenerate momentum vectors formulate a spin spiral surface
in reciprocal space [1–3]. The degeneracy of these spin spirals
can be lifted entropically via an order-by-disorder mechanism
that selects a unique spin spiral state [1–3], but in the presence
of strong quantum fluctuations (S � 1), long-range order is
quenched and a spiral spin liquid ground state manifests that
fluctuates about the spiral surface [3].

Identifying materials exhibiting (quantum) spiral spin
liquid states derived from this J1-J2 model remains an out-
standing goal. Transition-metal-based AB2X4 spinels have
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FIG. 1. (a) Crystal structure of LiYbO2 with YbO6 octahedra shaded in green and black spheres noting the positions of Li ions. (b) The
frustrated J1-J2 model on the diamond lattice consists of two interpenetrating FCC sublattices, A and B, with a J1 (black) magnetic interaction
connecting the two sublattices and a J2 (orange) spanning interactions within an FCC sublattice. When this structure is stretched along one
of the cubic axes, the I41/amd lattice of LiYbO2 is reproduced where the dashed green line represents the unit cell origin of LiYbO2 shown
in panel (c). In LiYbO2, the stretched bond (5.909 Å, dashed orange) is 1.527 Å longer than the in-plane J2 (4.382 Å, solid orange). In the
present model for LiYbO2, the stretched bond is assumed negligible in strength relative to the shorter J2. (c) NN (J1) and NNN (J2) exchange
pathways between Yb ions in LiYbO2 with Yb ions in the A and B sublattices shaded differently for clarity.

been primarily investigated as potential hosts; however, two
vexing problems typically occur: (1) nonnegligible further
neighbor interactions beyond the J1-J2 limit arise and lift the
degeneracy and (2) weak tetragonal distortions from the ideal
Fm3̄m spinel structure appear. For example, detailed investi-
gations of the spinels MgCr2O4 [28,29], MnSc2S4 [30–32],
NiRh2O4 [3,33], and CoRh2O4 [34] have all required expand-
ing the model Hamiltonian to include up to third-neighbor
interactions, originating from the large spatial extent of d
orbitals, to describe the generation of their helical magnetic
ground states. Within some materials like NiRh2O4 [3,33],
single ion anisotropies must also be incorporated to digest the
experimental results. Complexities with extended interactions
beyond the J1-J2 limit may also compound with inequivalent
exchange pathways that form as the cubic Fm3̄m spinel struc-
ture undergoes a distortion to a tetragonal I41/amd or I 4̄2d
space group prior to magnetic ordering (e.g., NiRh2O4 [3,33]
and CoRh2O4 [34]).

The tetragonal distortion in spinels can be viewed as a
compression of the diamond lattice along one of its cubic axes
(opposite to that illustrated in Fig. 1), and it splits the nominal
J2 of the ideal diamond lattice structure into two different
pathways. This disrupts the reciprocal space spiral surface
generated in the J1-J2 model’s cubic limit. Despite these
complications common to A-site transition metal spinels, the
predictions born from the model Hamiltonian show substan-
tial promise as materials such as MnSc2S4 [30–32], CoAl2O4

[35–37], and NiRh2O4 [3,33] are nevertheless either close to
or partially manifest degenerate spiral spin states. Identifying
other crystal structures that realize comparable physics but
with more localized f -electron moments is an appealing path
forward.

Here we present an investigation of an alternative, frus-
trated diamond lattice framework in the material LiYbO2.
This material can be viewed as containing a stretched diamond
lattice of Yb3+ moments (Fig. 1), and it falls within a broader
family of ALnX2 (A = alkali, Ln = lanthanide, X = chalco-
genide) materials where the lattice structure is dictated by

the ratio of lanthanide ion radius to alkali plus chalcogenide
radii (Fig. 2). Our results show that LiYbO2 realizes the ex-
pected ground state derived from a J1-J2 Heisenberg model
on a tetragonally elongated diamond lattice and that Jeff =
1/2 Yb3+ ions in related materials may act as the basis for
applying the Heisenberg J1-J2 model to Ln-ion diamondlike
materials. Notably, however, variance between the observed
and predicted phasing of Yb moments on the bipartite lattice
as well as the emergence of an intermediate, partially disor-
dered state suggests the presence of interactions/fluctuation
effects not captured in the classical J1-J2 Heisenberg
framework.

II. METHODS

A. Sample preparation

Polycrystalline LiYbO2 was prepared from Yb2O3

(99.99%, Alfa Aesar) and Li2CO3 (99.997%, Alfa Aesar)
via a solid-state reaction in a 1:1.10 molar ratio. This off-
stoichiometric ratio was used to compensate for the partial
loss of Li2CO3 during the open crucible reaction. The con-
stituent precursors were ground together, heated to 1000 ◦C
for three days in air, reground, and then reheated to 1000 ◦C
for 24 h. Samples were kept in a dry, inert environment to pre-
vent moisture absorption. Measurements were conducted with
minimal atmospheric exposure to maintain sample integrity.
Sample composition was verified via x-ray diffraction mea-
surements on a Panalytical Empyrean powder diffractometer
with Cu-Kα radiation, and data were analyzed using the Ri-
etveld method in the Fullprof software suite [38].

B. Magnetic susceptibility

The bulk magnetization and static spin susceptibility of
LiYbO2 were measured using three different instruments.
Low-field dc magnetization data from 2 to 300 K were
collected on a Quantum Design Magnetic Properties Mea-
surement System with a 7-T magnet, and isothermal dc
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magnetization data between 2 to 300 K were collected on
a Quantum Design Physical Properties Measurement System
(PPMS) equipped with a vibrating sample magnetometer in-
sert and a 14-T magnet. Low-temperature ac susceptibility
data between 2 K and 330 mK were collected on an ac suscep-
tometer at 711.4 Hz with a 0.1 Oe (7.96 A m−1) drive field) in
a 3He insert. The background generated by the sample holder
in this low-temperature ac measurement is subtracted from the
data presented.

C. Heat capacity

Specific heat measurements were collected between
100 mK and 300 K on sintered samples of LiYbO2 in external
magnetic fields of 0, 3, 5, and 9 T. Specific heat data between
2 to 300 K were collected on a Quantum Design PPMS with
the standard heat capacity module, while specific heat data
below 2 K was obtained with a dilution refrigerator insert.
The lattice contribution to the specific heat of LiYbO2 was
modeled with a Debye function using two Debye temperatures
of �D1 = 230.5 K and �D2 = 615.3 K. The magnetic specific
heat was then obtained by subtracting out the modeled lattice
contribution from the data, and Cmag/T was integrated from
100 mK to 40 K to determine magnetic entropy of LiYbO2 at
0, 3, 5, and 9 T.

D. Neutron diffraction

Neutron powder diffraction data were collected on the HB-
2A diffractometer at the High Flux Isotope Reactor in Oak
Ridge National Laboratory. The sample was placed inside a
cryostat with a 3He insert and a 5-T vertical field magnet,
and data were collected between 270 mK and 1.5 K. Sintered
pellets of LiYbO2 were loaded into Cu canisters, and incident
neutrons of wavelength λ = 2.41 Å were selected using a
Ge(113) monochromator. Rietveld refinement of diffraction
patterns was conducted using the FullProf software suite [38],
and magnetic symmetry analysis was performed with the
program SARAh [39]. The structural parameters were deter-
mined using data collected at 1.5 K and then fixed for the
analysis of the temperature-subtracted data used for magnetic
refinements.

Inelastic neutron scattering (INS) data were collected on
two instruments. High-energy inelastic data were obtained on
the wide Angular-Range Chopper Spectrometer (ARCS) at
the Spallation Neutron Source in Oak Ridge National Labora-
tory. Two incident neutron energies of Ei = 150 meV (Fermi
2, Fermi frequency 600 Hz) and 300 meV (Fermi 1, Fermi
frequency 600 Hz) were used, and data were collected at 5 K
and 300 K [40]. Background contributions from the aluminum
sample can were subtracted out by measuring an empty can-
nister under the same conditions. Crystalline electric field
(CEF) analysis was conducted by integrating energy cuts
(E -cuts) of the 300-meV data between |Q| = [4, 6] Å−1. Inte-
grated E -cuts of the 150 meV data between |Q| = [2, 3] Å−1

are shown in the Supplemental Material [41]. Peaks were fit
with a Gaussian function that approximates the beam shape
of the instrument. Low-energy inelastic scattering data were
collected on the Disc Chopper Spectrometer (DCS) instru-
ment at the National Institute of Standards and Technology

TABLE I. Rietveld refinement structural parameters at 1.5 K
from elastic neutron scattering measurements on LiYbO2 on HB2A
in the I41/amd space group with origin setting two. Within error,
all ions refined to full occupation and no quantifiable site mixing is
present.

T 1.5 K

χ 2 3.421
λ 2.41 Å
a = b 4.3824(2) Å
c 10.0625(2) Å

Atom Wyckoff x y z Biso (Å2) Occupancy

Yb 4a 0 0 0 0.28(9) 1.000(6)
Li 4b 0 0 0.5 2.02(30) 1.00(5)
O 8e 0 0 0.22546(7) 0.74(9) 1.00(3)

(NIST) Center for Neutron Research. Neutrons of incident
energy Ei = 3.32 meV in the medium-resolution setting were
used, and the sample was loaded into a cryostat with a 10-T
vertical field magnet and a dilution insert.

E. Crystalline electric field analysis

The CEF of LiYbO2 was fit following a procedure outlined
in Bordelon et al. [25], and a rough overview is reviewed here.

In LiYbO2, magnetic Yb3+ with total angular momentum
J = 7/2 (L = 3, S = 1/2) is split into a series of four Kramers
doublets in the local D2d CEF point group symmetry. Estima-
tions of the splitting can be modeled with a point charge (PC)
model of varying coordination shells in the crystal field in-
terface of Mantid Plot [42]. Three coordination-shell variants
with increasing distance from a central Yb ion are displayed
as PC 1, PC 2, and PC 3 in Table I. The minimal Hamiltonian
with CEF parameters Bm

n and Steven’s operators Ôn
m [43] in

D2d symmetry is written as follows:

HCEF = B0
2Ô0

2 + B0
4Ô0

4 + B4
4Ô4

4 + B0
6Ô0

6 + B4
6Ô4

6. (2)

The diagonalized CEF Hamiltonian was used to calculate
energy eigenvalues, relative transition intensities, a powder-
averaged gavg factor, and corresponding wave functions. These
values were compared with data obtained from integrated
E -cuts of ARCS 300-meV data and bulk magnetic property
measurements. The deviation was minimized with a combina-
tion of Mantid Plot [42], SPECTRE [44], and numerical error
minimization according to the procedure in Bordelon et al.
[23,25] to approach a global minimum that represents the Yb
CEF environment in LiYbO2.

III. EXPERIMENTAL RESULTS

A. Radius ratio rule in ALnX2 materials

The I41/amd space group is one of the seven major space
groups (R3̄m and P63/mmc, C2/c, α-I41/amd , β-P21/c γ -
Pbmn, δ-P21/c) that represent the ALnX2 compounds as
shown in Fig. 2. The structure types adopted by this family
of compounds switch depending on the relative sizes between
alkali and lanthanide radii. An empirical relationship between
the radii of all three chemical constituents of the ALnX2 family
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FIG. 2. The series of ALnX2 (A = alkali, Ln = lanthanide, X =
chalcogenide) compounds crystallize in several structures governed
by the ratio of lanthanide radius divided by the sum of the alkali and
chalcogenide radii derived from tabulated ionic radii and reported
crystal structures [45–53]. Crossover between differing phases oc-
curs at the dashed lines, and materials on these lines can crystallize
in both neighboring space groups (e.g., NaErO2 R3̄m and C2/c [48]).

and the major space groups reported in this series is shown
in Fig. 2 by comparing reported structures in the literature
[47–53] to tabulated ionic radii [45,46]. The α, β, γ , δ follow
the nomenclature of Hashimoto et al. [47], and the R3̄m space
group is the α-NaFeO2 structure type. Plots of the radius ratio
relationships for varying chalcogenides are also displayed in
the Supplemental Material section [41].

Compounds residing close to or on the dashed lines sepa-
rating two space groups can crystallize in either space group
depending on synthesis conditions or temperature. For ex-
ample, NaErO2 crystallizes in R3̄m and C2/c [48] structures
at room temperature, and LiErO2 goes through a structural
phase transition from α-I41/amd at 300 K to β-P21/c at
15 K [47]. Two related crystal structures are possible in the
R3̄m and P63/mmc area of Fig. 2, and both of these space
groups contain sheets of equilateral triangles composed of
lanthanide ions and vary only in the stacking sequence of the
triangular sheets (ABC for R3̄m and AAA for P63/mmc). Pre-
vious reports also indicate that the P63/mmc phase is favored
with large Cs+ ions [49,53]. We note here that this empirical
radius-ratio rule excludes one of the known ALnX2 phases:
the chemically disordered Fm3̄m NaCl phase that is primarily
present at high temperatures when the alkali radius is close
to that of the lanthanide radius [52,54–58]. This chemically
disordered phase goes through a first-order phase transition to
the R3̄m phase in materials such as NaNdS2 [57,58].

B. Chemical structure

Elastic neutron powder diffraction data collected from
LiYbO2 are shown in Fig. 6. The crystal structure was fit
at 1.5 K to the I41/amd structure previously reported [47],

and this structural fit was used as the basis for analyzing
the magnetic peaks observed below 1.5 K as a function of
magnetic field. Details of the structural fit are presented in
Table I. Within resolution of this experiment, all chemical
sites are fully occupied without site-mixing, and no impurity
phases are present.

LiYbO2 consists of D2d edge-sharing YbO6 octahedra
that are connected three-dimensionally within a bipartite
magnetic lattice (Fig. 1). Each sublattice of trivalent Yb
ions (A or B sublattice in Fig. 1) connects to the neigh-
boring sublattice’s layers with two bonds above and two
bonds below with a nearest-neighbor YbA/B-YbB/A distance
of 3.336 Å (J1). This forms a stretched tetrahedron with
a Yb ion at its center. The next-nearest-neighbor bond is
within the same Yb sublattice where four bonds within
the ab plane are connected at 4.4382 Å (J2). Despite
this nearest-neighbor and next-nearest-neighbor interaction
appearing significantly different in length, superexchange
is likely promoted along J2 due to the more favorable
Yb-O-Yb bond angle, making the longer next-nearest-
neighbor exchange comparably relevant to the nearest-
neighbor J1. Exchange pathways through oxygen anions along
J1 and J2 are nearly equivalent at 4.473 Å and 4.410 Å,
respectively. Therefore, the two magnetic exchange interac-
tions are likely similar in magnitude, and when |J1| > 0 and
J2 > 0, this lattice is expected to be geometrically frustrated.

The Yb3+ magnetic lattice can be visualized as an ex-
treme limit of tetragonal elongation of the diamond lattice as
shown in Fig. 1. The diamond lattice originally contains two
magnetic interactions, J1 and J2, where J2 interactions within
any face of the diamond lattice are equivalent. Stretching
the lattice in LiYbO2 breaks the J2 degeneracy, creating a
J2a interaction along the elongated direction 5.9090 Å and
an in-plane J2b of 4.438 Å. In the full chemical unit cell of
LiYbO2, the elongated J2a interaction necessitates two O2−
ion superexchange links relative to the single O2− superex-
change in the in-plane J2b and the J1 interaction. As it is likely
negligible in strength relative to the other two interactions, the
elongated J2a interaction is therefore neglected in this paper
and J2b is simply referred to as J2.

C. Crystalline electric field excitations

INS data were collected at T = 5 K and Ei = 300 meV
to map the intramultiplet CEF excitations in LiYbO2.
Figures 3(a)–3(c) show three CEF excitations that are centered
around 45, 63, and 128 meV. A cut through S(Q, h̄ω) shows
the energy widths of the transitions in Fig. 3(b) are limited by
the instrumental resolution at Ei = 300 meV. As expected,
the lowest-energy CEF transition is high enough to render
the ground-state Kramers doublet a well-separated Jeff = 1/2
state at low temperatures. An analysis of the CEF splitting of
the J = 7/2 Yb3+ manifold is detailed in Fig. 3 and Table II.
With the extracted parameters from the S(Q, h̄ω) cut, the best
level scheme fit to the data is shown in Table II. The calcu-
lated CEF gavg is split into two anisotropic components of
g// = 0.58 and g⊥ = 3.71, where gavg = √

(1/3(g2
// + 2g2

⊥)).
The fit diverges from point charge models of varying co-
ordination size presented in Table II and is closest in sign

014420-4



FRUSTRATED HEISENBERG J1-J2 MODEL … PHYSICAL REVIEW B 103, 014420 (2021)

FIG. 3. (a) INS spectrum S(Q, h̄ω) collected at 5 K and Ei = 300 meV on the ARCS spectrometer with full width half max resolution in
the elastic line of 12.8 meV. Three CEF levels indicated by dashed black lines were observed. (b) Q-integrated cut from panel (a) overplotted
with model line shapes derived from the CEF fits in Table I and convolved with the instrumental resolution in MantidPlot [42]. (c) The
D2d J = 7/2 Yb3+ ion generates four Kramers doublets centered at 45, 63, and 128 meV determined via CEF fits to the INS data. Errors
shown correspond to instrumental resolution, and the well-separated ground-state doublet has an average g factor gavg = 3.0. The intensity
ratios I2/I1 and I3/I1 were determined relative to the 45-meV CEF excitation. (d) INS spectrum S(Q, h̄ω) collected at 5 K and Ei = 150 meV
from the ARCS spectrometer. The first two CEF excitations observed with Ei = 300 meV show splitting of ≈7 meV, highlighted by the
dashed black lines. At Ei = 300 meV, this splitting is not resolvable due to the poorer energy resolution. [(e) and (f)] Integrating the split CEF
excitations shows that the ratio of integrated intensities of CEF mode 2 (I2a + I2b) to CEF mode 1 (I1a + I1b) correlates to the ratios of the
integrated intensities in (b). The splitting of CEF excitations may represent two distinct chemical environments within LiYbO2 that are not
resolvable within structural neutron powder diffraction experiments.

to the parameters Bn
m generated from a point charge model

incorporating two ionic shells (3.1 Å with O2− and Li+ ions).
The first two CEF excitations were further analyzed with

lower Ei = 150 meV INS data presented in Figs. 3(d)–3(f).
Within this higher resolution window, the lower two CEF

excitations at 45 and 63 meV show new features, and the two
CEF excitations are asymmetrically split into peaks centered
at 39.5 meV + 47.0 meV (excitation 1) and 55.6 meV +
62.6 meV (excitation 2). At Ei = 300 meV, this splitting is
below the instrumental resolution and is not readily apparent.

TABLE II. Point charge models and CEF fit for LiYbO2 obtained by minimizing observed parameters from Ei = 300 meV INS data and
powder averaged gavg factor from isothermal magnetization. The three PC models of increasing size incorporate one (O2− ions), two (O2− and
Li+ ions), and three (O2−, Li+, and Yb3+ ions) coordination shells surrounding a central Yb3+ ion, respectively.

E1 E2 E3
I2
I1

I3
I1

gavg χ 2 B0
2 B0

4 B0
6 B4

4 B4
6

PC (2.5 Å) 33.3 33.8 69.0 0.98 0.08 3.6 51.0 −0.67210 −0.031153 0.000064591 −0.17420 −0.0012000
PC (3.1 Å) 30.9 86.2 87.5 0.10 0.06 3.7 27.8 2.1336 −0.029755 0.000069724 −0.19050 −0.0012660
PC (3.5 Å) 108.6 149.9 156.6 0.07 0.08 4.5 232.0 −4.2146 −0.033288 0.000081398 −0.18211 −0.0014202
Fit 45.0 62.8 127.9 1.74 0.10 3.0 0.002 0.31777 −0.072378 0.0010483 −0.27051 0.0015364

Observed 45.0 63.0 128.0 1.76 0.10 3.0
Fit wave functions:
|ω0,±〉 = 0.901|∓1/2〉 + 0.434|±7/2〉
|ω1,±〉 = −0.434|∓1/2〉 + 0.901|±7/2〉
|ω2,±〉 = 0.849|±3/2〉 + 0.529|∓5/2〉
|ω3,±〉 = −0.529|∓3/2〉 + 0.849|±5/2〉
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The relative integrated intensities of the split modes in exci-
tation 1 and excitation 2 at Ei = 150 meV, however, agree
with the ratios of the single/convolved modes observed in the
Ei = 300 meV. The most likely explanation for the observed
splitting at Ei = 150 meV is the presence of two distinct
chemical environments surrounding Yb ions that are outside
of the resolution of the current neutron powder diffraction
measurements.

LiYbO2 indeed contains two sublattices of Yb ions [A
and B in Fig. 1(c)], and, in the ideal I41/amd structure, Yb
ions within each sublattice reside in chemically equivalent
environments. Since the CEF fit is closest to a point charge
model including both nearest O2− and Li+ ions, the observed
splitting could arise from these nonmagnetic ions residing
slightly off of their ideal Wyckoff positions. A similar chemi-
cal feature has been observed in tetragonally distorted spinels,
such as CuRh2O4 [34] where Cu ions are displaced off of
their ideal Wyckoff site. While such a feature is outside of the
resolution of the average structural refinement for LiYbO2, the
large isotropic thermal parameter of the Li ions suggests this
as a possibility. We note here that this distortion is necessarily
small and should not significantly affect the J1-J2 model of
the LiYbO2 magnetic lattice. For this reason, analysis of the
CEF environment was calculated in the limit assuming only
one CEF environment using the Ei = 300 meV data.

D. Magnetization, susceptibility, and heat capacity results

Figure 4 shows the magnetic susceptibility, isothermal
magnetization, and ac susceptibility measured on powders of
LiYbO2. In the low-temperature regime where the ground-
state Kramers doublet is primarily occupied (T < 100 K),
data were fit to a Curie-Weiss-type behavior with a �CW =
−3.4 K and an effective moment μeff = 2.74 μB. This implies
a powder-averaged g factor gavg,CW = 3.13 assuming Jeff =
1/2 Yb ions. The nonlinearity of the Curie-Weiss fit above
100 K arises due to Van Vleck contributions to the suscepti-
bility that derive from the CEF splitting of the J = 7/2 Yb
manifold. In order to independently determine gavg, the χVV

contribution to the total susceptibility was fit in the saturated
regime (μ0H > 10 T) of the 2 K isothermal magnetization
data shown in Fig. 4. In the near-saturated state, the slope
of isothermal magnetization yields χVV = 0.0206 cm3 mol−1

Y b
[59], and the intercept of this linear fit with μ0H = 0 T was
utilized to determine the saturated magnetic moment (gμB/2)
that corresponds to a powder-averaged gavg,VV = 2.98. As the
Curie-Weiss fit is more susceptible to minor perturbations and
background terms, the gavg,VV = 2.98 derived from isothermal
magnetization data was used for fitting the CEF scheme in
Figure 3 and Table II.

Magnetic susceptibility data in Fig. 4 explore the low tem-
perature magnetic behavior of LiYbO2. Two low-temperature
(T < 10 K) features appear: The first is a broad cusp in
susceptibility centered near 1.5 K and is an indication of the
likely onset of magnetic correlations. The second feature is a
small upturn below 0.45 K. When compared with specific heat
measurements in Fig. 5, these two features in χ ′(T ) coincide
with the two sharp anomalies in Cp(T ) at TN1 = 1.13 K and
TN2 = 0.45 K. An additional broad peak also appears in C(T )
centered near 2 K, likely indicative of the likely onset of short-

FIG. 4. (a) Temperature dependence of the inverse magnetic sus-
ceptibility of LiYbO2. Solid line shows the a Curie-Weiss fit to the
data between 20 < T < 100 K. (b) Field dependence of the mag-
netization collected at a variety of temperatures. (c) 2 K isothermal
magnetization curve with a linear fit in the saturated state above 10 T.
The 0-T intercept (gavgμB/2) provides a powder-averaged gavg,VV and
the slope provides χVV . (d) ac magnetic susceptibility χ ‘(T ) data
collected for 330 mK < T < 3.5 K at zero-field. The two dashes
lines at 1.13 K and 0.45 K mark the onset of peaks observed in
zero-field heat capacity data.

range correlations. As discussed later in this manuscript, the
two lower-temperature peaks in Cp(T ) mark the staged onset
of long-range magnetic order with TN1 marking the onset of
partial order with disordered relative phases between the A
and B Yb-ion sublattices and with TN2 marking the onset of
complete order between the two sublattices.

Figure 5(a) also displays the total magnetic entropy re-
leased on cooling down to 100 mK. Below 200 mK, a nuclear
Schottky feature arises from Yb nuclei as similarly observed
in NaYbO2 [24]. Integrating Cp/T between 100 mK and 40 K
shows that 98% of Rln(2) is reached at 0 T, showing that
the ordering is complete by 100 mK. Approximately half of
Rln(2) is released on cooling through the broad 2 K peak
representing the onset of short-range correlations. Cp(T ) data
were also collected under a series of applied magnetic fields.
The onset of TN1 stays fixed at 1.13 K from 0 T to 5 T and
shifts up to 1.40 K at 9 T. The 0-T heat capacity anomaly at
TN2 = 0.45 K begins to broaden at 3 T into a small shoulder
of the initial 1.13 K transition and vanishes by 5 T. The broad
Cp(T ) peak marking the onset of short-range correlations near
2 K shifts to higher temperatures with increasing magnetic
field, consistent with a number of other frustrated spin sys-
tems [24,60]. The suppression of the staged TN1-TN2 ordering
under modest magnetic field strengths suggests that zero-field
fluctuations/remnant degeneracy likely influence the ordering
behavior.
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FIG. 5. [(a)–(d)] Specific heat C(T ) of LiYbO2 collected as a
function of temperature under μ0H = 0, 3, 4, and 9 T. The integrated
magnetic entropy δSM is overplotted with the data as a black line.
Results from a Debye model of lattice contributions to C(T ) are
shown as orange lines. The horizontal dashed lines represent Rln(2).

TABLE III. Coefficients of the magnetic basis vectors creating
the helical models of the base temperature magnetic structure of
LiYbO2 at 0 T and 3 T, where bv1 = (100), bv2 = (010), and bv3 =
(001).

270 mK, 0 T 270 mK, 3 T
k = (0.384, ±0.384, 0) k = (1/3, ±1/3, 0)

Atom (x, y, z) bv1 bv2 bv3 bv1 bv2 bv3

Yb1 (0, 0.75, 0.125) 0 −1.26i 1.26 0 −1.26i 1.26
Yb2 (0, 0.25, 0.875) 0 −1.26i 1.26 0 −1.26i 1.26

E. Neutron diffraction results

To further investigate the low-temperature, ordered state,
neutron powder diffraction measurements were performed.
Figure 6 details the field and temperature evolution of mag-
netic order in LiYbO2 about the TN1 and TN2 transitions
identified in specific heat measurements (Fig. 5). Magnetic
peaks appear in the powder neutron diffraction data below
1 K, and three regions of ordering were analyzed: (1) In the
zero-field low-temperature, fully ordered state (T < 450 mK);
(2) in the zero-field, intermediate ordered state (450 mK <

T < 1 K); and (3) in the field-modified ordered state (T <

450 mK and μ0H = 3 T). Figure 6(a) shows the data and
structural refinement collected at 1.5 K in the high tem-
perature paramagnetic regime—this is used as nonmagnetic
background that is subtracted from the low-temperature data.
Figure 6(b) shows the subtracted data in each of the above re-
gions overplotted with one another, and each magnetic profile
is discussed separately in the following subsections. We note
here that in each region, the large difference signal observed
slightly above 1.5 Å−1 is due to the slight under/over subtrac-
tion of a nuclear reflection.

1. Region 1: μ0H = 0 T, T < 450 mK

At 270 mK, well below TN2, a series of peaks appear at
incommensurate momentum transfers. These new magnetic
reflections are described by a doubly degenerate ordering
wave vector of k = (0.384,±0.384, 0). The best fit to the
data in this regime corresponds to a helical magnetic structure
shown in Fig. 6(c) that is produced from the 
1 irreducible
representation (Kovalev scheme) of this space group with the
three basis vectors bv1 = (1, 0, 0), bv2 = (0, 1, 0), and bv3 =
(0, 0, 1). The helical state is defined by a combination of the
ordering wave vector k and the helical propagation direction.
The latter defines a vector that moments rotate in the plane
perpendicular. Best fits for the refinement data were achieved
when the helical propagation vector is restricted to the ab
plane. However, all helical propagation directions within the
ab plane produce equivalent fits to the data.

The fit presented in Fig. 6(d) corresponds to the instance
where helices propagate along the b axis with moments rotat-
ing within the ac plane depicted in in Fig. 6(c). Coefficients
of the basis vector representation of this fit are shown in
Table III. Due to the bipartite nature of this lattice, two
magnetic Yb3+ atoms are defined in the system (denoted as
sublattices A and B), and in effect, this creates a relative
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FIG. 6. Neutron powder diffraction data collected for LiYbO2 at HB-2A at the High Flux Isotope Reactor. (a) Fits to the elastic scattering
data at 1.5 K reveal only one structural phase. (b) Temperature-subtracted diffraction data (T − 1.5 K) revealing a series of new magnetic
peaks on cooling. Additionally, at 270 mK and 3 T, another set of magnetic peaks arise. Intensity near 1.5 Å−1 results from slight under/over
subtraction of the structural peak at that position in (a) and is not a magnetic Bragg reflection. (c) Helical magnetic structure fit below the
ordering transition TN2. (d) The 270 mK data collected under zero field with the 1.5 K structural data subtracted. Green line shows the resulting
fit using the magnetic structure described in the text. (e) The 830 mK data collected under zero field with the 1.5 K structural data subtracted.
The orange line shows the partially disordered, intermediate helical state described in the text and the green line shows a fit using the fully
ordered helical structure for comparison. (f) The 270 mK data collected under μH = 3 T with the 1.5 K structural data subtracted. The red
line shows the fit to the commensurate magnetic structure describe in the text.

phase difference in the moment rotation between the two sites
that is experimentally fit at 0.58π . Additional simulations
provided in the Supplemental Material section detail how
altering the phasing of the sublattices affects the refinement
[41]. The ordered magnetic moment refined with this fit is
μ = 1.26(10) μB, comprising 84% of the expected 1.5 μB

moment in a Jeff = 1/2 system with gavg = 3.

2. Region 2: μ0H = 0 T, 450 mK < T < 1.13 K

As the temperature is increased above TN2 to 830 mK
into the intermediate ordered state, incommensurate mag-
netic reflections with the same ordering wave vector of k =
(0.384,±0.384, 0) persist [Fig. 6(e)]. Order in this TN1 state is
seemingly still long-range and the lowest angle reflection can
be fit to a Lorentzian peak shape to extract an estimated, mini-
mum correlation length. In both the 270 mK base temperature
and 830 mK intermediate temperature regimes, the mini-
mum correlation length corresponds to ≈364 Å. Modeling
the pattern of magnetic peaks in this intermediate tempera-
ture regime using the same TN2 structure as described above
however fails to fully capture the data. As seen in Fig. 6(e), the
TN2 (green) structure overestimates reflections near 1.2 Å−1.

One potential model for the magnetic order in this inter-
mediate temperature regime is to allow the relative phasing
of the A and B magnetic sublattices to become disordered on
warming into the TN1 state. In other words, helical magnetic
order could establish with k = (0.384,±0.384, 0); however,
the phasing between Yb sites would remain disordered prior
to selecting a specific phase below TN2. This conjecture was
modeled by averaging over ten fits using equally-spaced rela-
tive phases from zero to 2π between Yb sites, and where each
fit was calculated using an identical moment size (1.26 μb).
This averaged phasing model [Fig. 6(d), orange] captures the
relative peak intensities better than the single-phase model
used below TN2 and is supported by C(T ) data showing that
additional entropy freezes out below TN2.

3. Region 3: μ0H = 3 T, T < 450 mK

On applying a magnetic field to the low-temperature
ordered state below TN2, the magnetic ordering of the sys-
tem changes. Figure 6(f) shows that a μ0H = 3-T field
drives commensurate peaks to appear in place of the
incommensurate reflections in the zero-field ordered state.
The modified propagation vector corresponds to the doubly
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FIG. 7. Low-energy INS spectra S(|Q|, h̄ω) collected on the
DCS spectrometer at (a) μ0H = 0 T and 36 mK, (b) μ0H = 0 T and
800 mK, and (c) μ0H = 3 T and 36 mK. All data have data collected
at 36 mK and 10 T subtracted, where LiYbO2 enters a field-polarized
state, indicated by isothermal magnetization data from Fig. 4(b).

degenerate k = (1/3,±1/3, 0). Although the modified k re-
flects a locking into a commensurate structure, qualitatively,
the details of the ordered state remain similar to the zero-
field TN2 model. The commensurate 3-T state is still best
represented by an ab-plane helical magnetic structure with
basis vector coefficients displayed in Table III. The magnetic
moment is refined to be μ = 1.26(9) μB and the two Yb
sublattices differ by a relative phase of 0.42π .

F. Low-energy magnetic fluctuations

The low-energy spin dynamics of Yb moments in LiYbO2

were investigated in all three ordered regimes described in
the previous section via inelastic neutron scattering mea-
surements. While the powder-averaged data are difficult to
interpret given the complexity of the ordered state, Fig. 7 plots
a series of background-subtracted inelastic spectra that quali-
tatively illustrate a few key points. Below TN2 and in zero field,
the bandwidth of spin excitations extends to roughly 1 meV.
Spectral weight appears to originate from the magnetic zone

centers of k = (q,±q, 0) (where q = 0.384 at 0 T and q =
1/3 at 3 T) and the 
 point. As the ordered does not change
appreciably under moderate fields, the low-energy spectra
remain qualitatively similar for both 0-T and 3-T data below
TN2. Similarly, on heating from TN2 into the TN1 state, minimal
changes are observed in the inelastic spectra. At 10 T and
36 mK, however, LiYbO2 enters a field-polarized state where
the low-energy spin fluctuations are dramatically suppressed.
The removal of low-energy fluctuations in this high-field data
was used to subtract out background contributions in the data
shown in Fig. 7. There are slight differences in the dynamics
of the 0-T and 3-T states in Fig. 7 that will require future
experiments to detail their differences with higher statistics.
The raw data for each field and temperature setting are plotted
in the Supplemental Material section for Ref. [41].

IV. THEORETICAL ANALYSIS

In the following subsections, we construct a classical
Heisenberg Hamiltonian to describe the interactions of Yb
ions in LiYbO2. We then use this Hamiltonian, extended out
to next-nearest neighbors, to model the potential magnetic
ground states in LiYbO2 for comparison with experimental
data. Spin excitations are then also modeled in the parameter
space predicting magnetic order most closely matching that
experimentally observed.

A. LiYbO2 symmetry analysis

A minimal Hamiltonian describing the nearest-neighbor
(NN) interactions in LiYbO2 (I41/amd) following symmetry
analysis [41] can be written as

H1 =
∑
〈i, j〉

JzS
z
i Sz

j + Jxy
(
Sx

i Sx
j + Sy

i Sy
j

)
+ Jδ (Si · f i j )(S j · f i j ) + Jcz

(
Si · f i jS

z
j + Sz

i · f i j ẑ
)
,

(3)
where f i j is the projection of the bond vector ei j onto the basal
plane. The symmetry-allowed next nearest-neighbor (NNN)
interactions are written as

H2 =
∑
〈〈i, j〉〉

J ′
zS

z
i Sz

j + J ′
xy

(
Sx

i Sx
j + Sy

i Sy
j

)
+ J ′

δ (Si · ei j )(S j · ei j ) + Di j · Si × S j, (4)

where the Dzyaloshinskii-Moriya (DM) vectors for the NNN
bonds 〈i j〉 along a and b are Di j = (−1)μ(i)Da × ẑ and Di j =
(−1)μ(i)Db × ẑ, respectively. Here μ(i) = 0, 1 for the sublat-
tice i = A, B, respectively, indicating that the sign of the DM
vector alternates between layers.

We hereby restrict our study to the Hamiltonian up to
NNN: H = H1 + H2. For f -orbital ions such as Yb, the
anisotropies Jδ and J ′

δ are usually negligible, and as a good
approximation we take the Heisenberg limit Jz = Jxy = J1,
and J ′

z = J ′
xy = J2 (see Ref. [41] for a discussion on the effect

of Jz 
= Jxy and J ′
z 
= J ′

xy). This generates as a physical model
the J1-J2 Heisenberg Hamiltonian

H = J1

∑
〈i j〉

Si · S j + J2

∑
〈〈i j〉〉

Si · S j + Di j · Si × S j . (5)
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FIG. 8. Phase diagram of magnetic order in the J1-J2 Heisenberg
model, assuming J2 > 0, where ferromagnetic (FM), incommensu-
rate (IC) spiral, and antiferromagnetic (AFM) Néel order exist.

B. The J1-J2 model and spiral order

We first look at the J1-J2 Heisenberg model on the stretched
diamond lattice without the DM term. The classical ground
state of this model can be solved exactly. In momentum space,
the J1-J2 Heisenberg model is written as

H =
∑
q,μ,ν

Sq,μJμν
q S−q,ν , (6)

with

J11
q = J22

q = J2(cos q · a + cos q · b),

J12
q = J21∗

q = J1

(
e−i q·c

4 cos
q · a

2
+ ei q·c

4 cos
q · b

2

)
.

Therefore the lower branch of the band is

λq = J11
q − ∣∣J12

q

∣∣. (7)

Solving for the minimum of λq, the classical ground state is
an incommensurate spiral, with wave vector

q = 2π

a
(q, q, 0) or q = 2π

a
(q,−q, 0), (8)

where

q ≡
{± 1

π
arccos |J1|

4J2
,

0,

respectively for

{|J1| � 4J2,

|J1| > 4J2.

Note that due to the sublattice structure, both the FM and
AFM Néel orders have q = 0. From now on we assume J2 > 0
since spiral order can appear only for a positive J2 (Fig. 8).
The experimental value for the doubly degenerate spiral wave
vector is 2π

a (0.384,±0.384, 0), which gives

J1 = ±4 cos(0.384π )J2 = ±1.426J2. (9)

The eigenvector corresponding to λq is uq = 1√
2
(eiφq , 1)T ,

where the phase φq = π + ArgJ12
q determines the relative an-

gle or phase between the spins of the two sublattices. The
magnetic order then is

Sri = (0, cos q · ri, sin q · ri ) (10)

or any coplanar configuration that is related to Eq. (10) by a
global SO(3) rotation.

A more intuitive, geometrical way to obtain the ground
state of the Heisenberg J1–J2 Hamiltonian is to rewrite it as
the sum over all the “elementary” triangles 
 that are enclosed
by two NN bonds and one NNN bond, where each NNN bond
belongs to only one “elementary” triangle while each NN
bond is shared by two “elementary” triangles. Concretely, for

FIG. 9. The classical ground-state condition S
,1 + S
,2 +
J1

2J2
S
,3 = 0.

each 
, label the two spins connected with an NNN bond as
S
,1 and S
,2, and the third spin as S
,3, we then have:

H = const + J2

2

∑



(
S
,1 + S
,2 + J1

2J2
S
,3

)2

. (11)

Written in this way, the classical ground state is the spin con-
figuration that satisfies S
,1 + S
,2 + J1

2J2
S
,3 = 0 for all 
.

Denote the (orientationless) angle between two vectors S1 and
S2 by 〈S1, S2〉. One easily infers from Fig. 9 that

〈S
,1, S
,3〉 = 〈S
,2, S
,3〉

=
{
π − arccos J1

4J2
> π

2 , 4J2 � J1 > 0
arccos |J1|

4J2
< π

2 , 4J2 � −J1 > 0
,

〈S
,1, S
,2〉 = 2 arccos
|J1|
4J2

. (12)

This result agrees with the exact diagonalization result above.
When J1 = 1.426J2 > 0 with a sublattice phasing of π , the
angle between the two spins in a primitive cell is expected to
be π − arccos(1.426/4) = 1.935 ∼ 111◦.

C. Effect of other terms; phasing and lattice distortion

The J1-J2 model reproduces the spiral phase and the incom-
mensurate wave vector in the ground state of LiYbO2. The
angle difference between the nearest spins (111◦), however,
does not agree with the best experimental fitting (staggered in
alternating 34◦ and 172◦ angles). One plausible explanation
is a small lattice distortion that is outside of resolution of the
neutron powder diffraction data.

In this subsection, we study the effect of a lattice distor-
tion on the magnetic order. We assume a simple scenario in
which the lattice distortion results in a displacement between
two sublattices: Suppose the μ = 1 sublattice, originally
δ = a/2 + c/4 part from the μ = 0 sublattice, is offset by
ε from the original position, where ε = (ε, ε, 0). In this
case the NN vectors from the Yb ion at the origin become
a
2 + c

4 + ε, − a
2 + c

4 + ε, b
2 − c

4 + ε, and − b
2 − c

4 + ε, which
correspond to J ′

1, J ′′
1 , J ′

1, J ′′
1 , respectively. Here we assume

antiferromagnetic exchange J ′
1, J ′′

1 > 0 in order to agree with
experiment. We can again write down the Hamiltonian in
momentum space in the form of Eq. (6), with modified off-
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diagonal element

J12
q = J21∗

q = J ′
1

2

[
eiq·( a

2 + c
4 +ε) + eiq·( b

2 − c
4 +ε)

]
+ J ′′

1

2

[
eiq·(− a

2 + c
4 +ε) + eiq·(− b

2 − c
4 +ε)

]
= 1

2
eiq·ε[J ′

1eiq·( a
2 + c

4 ) + J ′
1eiq·( b

2 − c
4 )

+J ′′
1 eiq·(− a

2 + c
4 ) + J ′′

1 eiq·(− b
2 − c

4 )
]
, (13)

where we denote qx = q · a, qy = q · b, and qz = q · c. It is
easy to show that

λq � J2(cos qx + cos qy) −
√

J ′2
1

4
+ J ′′2

1

4
+ 1

2
J ′

1J ′′
1 cos qx

−
√

J ′2
1

4
+ J ′′2

1

4
+ 1

2
J ′

1J ′′
1 cos qy,

(14)
hence the energy minimum is reached at qx = qy ≡ q0 and
qz = 0. Here q0 = 0.384 × 2π is the required experimental

value to minimize f (q) = J2 cos q −
√

J ′2
1
2 + J ′′2

1
2 + J ′

1J ′′
1 cos q,

and we get

cos q0 = J ′2
1 J ′′2

1 − 4J2
2

(
J ′2

1 + J ′′2
1

)
8J2

2 J ′
1J ′′

1

,

This equation restricts the value between J ′
1/J2 and J ′′

1 /J2.
Setting J ′

1 = J ′′
1 = J1 recovers the previous undistorted result,

J1 = 4 cos q0

2 = 4 cos πq. The eigenvector corresponding to
λq is again uq = 1√

2
(eiφq , 1)T , where we now have

φq0
= π + q0 · ε + arctan

(
tan

(
π

4
− β

)
tan

q0

2

)
≈ π + arctan

(
tan

(
π

4
− β

)
tan

q0

2

)
, (15)

and we define tan β = J ′′
1 /J ′

1. The term q · ε is small and can
be ignored. Equation (15) suggests that the angle difference
between NN spins (which is φq0

+ q0/2) depends on the spiral
wave vector and the ratio of NN bond exchange energies. If we
plug in φq0

= 360◦ − 34◦ = 172◦, then we get tan β ≈ 6. This
means that in our simple lattice distortion scenario, a large
exchange ratio is needed in order to reproduce the experimen-
tally observed order.

We note that the DM contribution vanishes if different lay-
ers are assumed to have the same order: Assume D � J1, J2;
suppose the coplanar order is normal to n, then the DM inter-
action in layer l is proportional to (−1)μ(l )D(a − b) · n sin qa.
The sign (−1)μ(l ) indicates that neighboring layers (belonging
to different sublattices A and B) have opposite contributions,
leading to a vanshing DM energy.

D. Linear spin wave theory

In this subsection, we present simulations of the dynamical
structure factor using linear spin wave theory. An undis-
torted lattice is assumed. Introducing Holstein-Primakoff

(HP) bosons

Si · ai = √
s

ai + a†
i√

2
, Si · bi = √

s
ai − a†

i√
2i

, Si · ci = s − ni,

(16)
where ci = u cos q̃ · ri + v sin q̃ · ri is the spin order (u and v

are orthogonal unit vectors spanning the order plane), bi =
u × v, and ai = bi × ci. We define q̃ = 2π

a (1 − q, 1 − q, 0) to
remind that the angle between NN spins is obtuse in the J1-J2

model. The spin wave Hamiltonian is then

H =
∑

k∈BZ+
�

†
kH(k)�k, (17)

where �k = (ak,0, ak,1, a†
−k,0, a†

−k,1)
T

are the HP bosons in
momentum space, and

H(k) = 2

⎛⎜⎝h11 h12 p11 p12

h∗
12 h11 p∗

12 p11

p11 p12 h11 h12

p∗
12 p11 h∗

12 h11

⎞⎟⎠, (18)

with

h11 = J2

∑
δ=a,b

(
2s cos k · δ

[
1

4
(cδ + 1)

]
− scδ

)
− J1

∑
δ=± a

2 − c
4 ,± b

2 + c
4

s

2
cδ, (19a)

h12 = J1

∑
δ=± a

2 − c
4 ,± b

2 + c
4

seik·δ
[

1

4
(cδ + 1)

]
, (19b)

p11 = J2

∑
δ=a,b

2s cos k · δ

[
1

4
(cδ − 1)

]
, (19c)

p12 = J1

∑
δ=± a

2 − c
4 ,± b

2 + c
4

seik·δ
[

1

4
(cδ − 1)

]
, (19d)

where we defined

cδ ≡ cos q̃ · δ =
{−J1/4J2, δ ∈ NN,

2
( J1

4J2

)2 − 1, δ ∈ NNN.

The boson canonical commutation relation is preserved
by the diagonalization V †

k H(k)Vk = �k, �k = Vk�k, where
V †

k JVk = J ≡ Diag(1, 1,−1,−1). Diagonalizing JH(k) then
gives the spin wave spectrum � = (λ1, λ2,−λ1,−λ2), with

λ1,2 =
√

(h11 ± |h12|)2 − (p11 ∓ |q12|)2. (20)

The spin wave spectrum (20) along the (110) direction is
shown in Fig. 10(a). One observes that the spectrum is gapless
at

q = (0, 0, 0), ±2π

a
(q, q, 0),

and

±2π

a
(1 − q, 1 − q, 0), (21)

and the momenta that are related to q by a C4 rotation along
(001) or translation by reciprocal lattice vectors.

We then derive an expression for the dynamical structure
factor, which is the Fourier transform of spin-spin correlation
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FIG. 10. (a) Spin wave spectrum (red lines) and the structure
factor simulation for J1 = 1.42565J2 > 0. Both along the (110) di-
rection. (b) Angular averaged structure factor for J1 = 1.42565J2 >

0.

function. One obtains

S (k, ω)

=
3∑

i, j=1

(δi j − (k̂)i(k̂) j )
1∑

μ,ν=0

〈
mi

μ(−k,−ω)m j
ν (k, ω)

〉

= 2sμ2
B

4∑
e=1

δ(ω − Jλk−̃q,e)[V †
k−̃qK†

1 g†PkgK1Vk−̃q]e,e

+ δ(ω − Jλk+̃q,e)
[
V †

k+̃qKT
1 g†PkgK∗

1 Vk+̃q
]

e,e

+ δ(ω − Jλk,e)[V †
k K†

2 g†PkgK2Vk]e,e, (22)

where we defined projector Pk = 13×3 − k̂k̂
T

. The derivation
and the notation for K1,2 and g can be found in the Supplemen-
tal Material [41]. From Eq. (22), it is clear that the structure
factor intensity at one k receives contributions from three mo-
menta: k ± q̃ and k. The simulated structure factor according
to Eq. (22) is shown in Fig. 10(a) for a specific (1,1,0) direc-

tion, and in Fig. 10(b) for the angular averaged result. One
of the main features at low energy is the vanishing intensity
at 
 and |q| = 2

√
2π

a 0.384, where the spin wave spectrum
is gapless, and one would naively expect a strong intensity
peak at zero energy due to singular BdG Hamiltonian at these
momenta. Physically the “missing” intensity is a consequence
of the destructive interference of the two sublattices at 
 and q
that leads to vanishing contribution to the structure factor. The
same interference pattern is also true for the static structure
factor. The perfect cancellation is really a consequence of the
(undistorted) J1-J2 Heisenberg model. On the other hand, the
persistence of high intensities at 
 and q from the neutron
experiment suggests this cancellation is partially lifted in the
real material due to other effects not captured by the J1-J2

Heisenberg model.

E. Free-energy analysis

The classical ground state of the J1-J2 Heisenberg model
has a global SO(3) symmetry due to the freedom in choosing
the spiral plane. Since the lattice only has discrete symmetries,
it is likely that this continuous symmetry is lifted due to other
effects, such as spin-orbit coupling and fluctuations, and it
is the goal of this section to address this issue energetically
from a symmetry point of view. Specifically, we will examine
the symmetry constraints on the free energy. We first write
down the spiral order parameter. Assuming the spiral plane is
spanned by two orthogonal vectors u and v, the order param-
eter can be chosen as the Fourier transform of the magnetic
order, which can be written as

d = eiθ (r)(lu + imv), (23)

where θ (r) determines the direction of the spins in the spiral
plane. While it is a constant in the spiral phase, spatial fluc-
tuation of θ must be considered near the incommensurate-to
commensurate (IC-C) transition. Note we have introduced l
and m to account for either perfect circular (l = m, no net
magnetization), elliptical (m 
= l > 0) or linear (m = 0) po-
larization, which correspond to zero, low and high magnetic
fields, respectively.

We first look at the zero-field case, l = m. Following Lee
and Balents [2], we seek to write down the free energy for the
order parameter to quadratic order using symmetry consider-
ations. Of the symmetry generators T1,2,3, S4z, C2y, and P, the
little group of the wave vector q̃ contains P, T1,2,3, S2

4z, and
S3

4zC2y : (x, y, z) → (y − 1/2, x − 1/2, 3/2 − z). Under these
symmetries, the order parameter transforms as

P : d → eiπ q̃d∗, (24a)

S2
4z : d → Diag(−1,−1, 1)d∗, (24b)

T1,2 : d → d, (24c)

T3 : d → e−2iπ q̃d, (24d)

S3
4zC2y : d →

⎛⎝ 1
1

1

⎞⎠ei2π q̃d, (24e)

where the last symmetry operation can be composed with T3 to
get T3S3

4zC2y : d → (dy, dx, dz ). From this, one can write down
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a free-energy density that is quadratic in d:

f (d ) = c0|d|2 + c1(d∗
1 d2 + c.c.) + c2d∗

3 d3. (25)

By minimizing this free energy one finds there are three
choices for the spiral plane depending on the value of c1 and
c2 [2]: The normal of the order plane can be along either (001),
(11̄0), or (110).

The result above applies to a generally incommensu-
rate wave vector q̃ at zero magnetic field. As the field is
switched on, the spiral order ceases to be circularly polar-
ized, and the unequal components l 
= m allow for nonzero
net magnetization. As a consequence, some of the symme-
try transformations in (24) are no longer valid and need to
be modified. Nevertheless, we assume that all the symmetry
transformations in (24) remain approximately valid at small
field. Under these assumptions, we proceed to an explana-
tion of the IC-C transition at 3 T. The commensurate phase
has a three-unit cell order with corresponding wave vector
q = 2π ( 1

3 , 1
3 , 0). In this phase, another term can be added to

the free-energy density:

fC = f (d ) − c̃6[(d · d )3 + c.c.]. (26)

The development of unequal l and m can be further modeled
phenomenologically by fourth-order terms in the free energy
such as β2|d · d|2 + χ1H2(d∗ · d ) + χ2|H · d|2, which we do
not discuss here but instead refer to Ref. [61].

In the following, we show that the IC-C transition can
be described phenomenologically by a sine-Gordon model.
For given J1 and J2, assume q is the (generally incommen-
surate) ground-state spiral wave vector, while k is a nearby
commensurate wave vector. Assume q = k + δk + ∇θ , where
∇θ denotes the spatial fluctuation of the order parameter. The
classical energy can be expanded around k:

λ = λ0 + 2δ · ∇θ + κxy

2
[(∂xθ )2 + (∂yθ )2] + κz

2
(∂zθ )2, (27)

where λ0 = − J2
1

4J2
− 2J2, and the rigidity for θ is

κxy = − a2

16J2

(
J2

1 − 16J2
2

)
, κz = c2J2

1

32J2
. (28)

importantly, a term linear in the gradient of θ exists, with
coefficient δ = κxyδk. A full theory for θ then appears as

F [θ ] = A
∫

d3x

[
κ

2
(∇θ )2 + 2δ · ∇θ − c6 cos 6θ

]
, (29)

where the last term comes from Eq. (26) with c6 ∼ (l2 −
m2)3c6. This is the sine-Gordon model that has been analyzed
in numerous works; see, e.g., Ref. [61]. The basic physics is
that the soliton number N of the lowest-energy solution to the
free-energy functional (29) distinguishes commensurate phase
(N = 0) and incommensurate phase (N = ±1); the C-IC tran-
sition then is determined by the energetics of N = 0 and N 
=
0 configurations, with critical relation κ2c6/4κδk = π2/32
(κ2c6/4κδk < π2/32 gives the incommensurate phase). Since
the elliptic polarization is induced by magnetic field, fol-
lowing Ref. [61] we conclude that the coefficient c6 ∝ (l2 −
m2)3 ∝ H6, and that increasing the magnetic field will in-
evitably induce an IC-C transition.

FIG. 11. Proposed powder-averaged, low-temperature (H , T ) di-
agram of LiYbO2 extracted from a combination of specific heat (Cp)
measurements and elastic neutron powder diffraction data. At high
temperature, LiYbO2 is in the paramagnetic (PM) phase. Below ap-
proximately 10 K, specific heat shows a broad feature where roughly
half of the magnetic entropy of Rln(2) is released and signifies
the onset of short-range magnetic correlations. A sharp anomaly at
1.13 K at 0, 3, and 5 T and 1.40 K at 9 T in specific heat measure-
ments shows where long-range magnetic order sets in. Combining
specific heat data with neutron powder diffraction data suggests
that the temperature regime between 0.45 K and 1.13 K consists
of a helical magnetic structure with disordered phasing between the
two interpenetrating Yb sublattices. The system undergoes a lock-in
phase transition from an incommensurate helical structure at zero
field to a commensurate structure at 3 T.

V. DISCUSSION

LiYbO2 shows a rich magnetic phase diagram (see Fig. 11)
with inherent similarities to the A-site transition metal spinels
and the J1-J2 diamond lattice model, indicating that the under-
lying physics of both systems arises from the same bipartite
frustration. The J1-J2 model on the ideal diamond lattice with
J2/|J1| > 1/8, produces frustrated spiral order with wave vec-
tors directed along the high-symmetry directions of the lattice
[e.g., (q, q, q), (q, q, 0), (0, 0, q)] and simliar spiral order also
appears in tetragonaly elongated diamond lattice of LiYbO2

near |J1| � 4J2. Spiral wave vectors in the distorted case are,
however, limited to (q,±q, 0), and tetragonal distortion lifts
the degeneracy of the spiral spin liquid surface predicted for
the perfect diamond lattice [1–3].

Curiously, in zero field, the long-range helical ground state
forms through two successive magnetic transitions on cooling.
An intermediate state formed on cooling below TN1 is best fit
by modeling a spiral state on each Yb site but with disordered
relative phasing between the two spirals. This apparent frus-
tration in the relative phase between magnetic sublattices and
the formation of a partially ordered state is also likely reflected
in the departure of the relative phasing between Yb ions within
the fully ordered state (below TN2) from the predictions of the
Heisenberg J1-J2 model. Specifically, the model predicts that
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moments rotate along all A-to-B sublattice bonds equivalently
(i.e., the angle difference between every NN spin is 111◦),
while the experimental data suggests that moments rotate in a
staggered fashion, where the first A-to-B sublattice bond is 34◦
and the second is 172◦. This generates a magnetic structure in
which pairs of spins between the A and B sublattices are nearly
aligned antiparallel.

While CEF data suggest the presence of two Yb envi-
ronments in the lattice, this is not readily apparent in the
average structural data, suggesting that the distortion respon-
sible for this is reasonably subtle. Given the large distortion
required for the model to produce the experimentally observed
phasing between Yb moments, the possible origin for the
phase difference instead lies in the presence of anisotropic
exchange interactions in LiYbO2. We note however that, as-
suming spiral order with a single wave vector q, including
Ising type of anisotropy at NN and NNN level does not help in
explaining the disagreement between theory and experiment
(further details in Supplemental Materials [41]). Resolving
the possibility of other anisotropic terms in the Hamiltonian
as well as the precise nature of the anomalous state between
0.45 K < T < 1.13 K will require future single crystal studies.

The incommensurate helical structure in LiYbO2 evolves
into a commensurate helical structure when μ0H = 3 T is ap-
plied. A similar type of “lock-in” IC-C phase transition occurs
in the A-site spinels, originating from magnetic anisotropy
on top of the J1-J2 model [2]. Anisotropy accounts for the
change from an incommensurate (q,±q, 0) helical phase to
a commensurate one in MnSc2S4 [2,30,31] and CoCr2O4

[62–64] with decreasing temperature. In LiYbO2, however,
the field-driven “lock-in” phase transition is captured within
the sine-Gordon model in Eq. (26) without the need to perturb
the Heisenberg J1-J2 model.

In fact, a considerable amount of the zero-field magnetic
behavior of LiYbO2 is captured at the ideal Heisenberg J1-J2

limit. The doubly degenerate ordering wave vector (q,±q, 0)
predicted by the model is reproduced in the fits to elastic
neutron diffraction data, and the theory predicts that the spiral
structure’s ordering plane should be along (0,0,1), (1,1,0), or
(1, 1̄, 0). Experimental fits in Fig. 6 and Table III rule out the
(0,0,1) ordering plane and the remaining planes of (a, b, 0)
can not be distinguished with the present powder data. Future
single crystal neutron experiments could reveal if the ordering
plane aligns with the energy minimization in the (1,1,0) or
(1, 1̄, 0) planes.

Additionally, the extracted value of |J1|/J2 = 1.426 from
the J1-J2 model makes intuitive sense within the chemical
lattice. It is unsurprising that the two magnetic interactions
would be comparable in strength due to their relative superex-
change pathways. In comparison, materials such as KRuO4

[65] and KOsO4 [66,67] share the same I41/amd magnetic
sublattice comprised of Ru and Os ions, but break the oxygen-
based superexchange connection along J2. In these systems,
magnetic order resides in the J2 = 0 limit of the Heisenberg
J1-J2 model, where moments order within a Neél antiferro-
magnetic state and an unfrustrated J1 [65–67].

Calculations of low-energy spin excitations with the pa-
rameters obtained from the J1-J2 model largely reproduce
the low-energy INS spectrum in Figs. 7 and 10 with
J2 ≈ 1/3 meV and J1 ≈ 0.475 meV. One difference appears in

the spectral weight at the 
 and |q| = 2
√

2π
a × 0.384 positions,

where a cancellation of the simulated structure factor intensity
occurs due to destructive interference of the two sublattices
at these momenta. This cancellation does not occur in the
experimental data due to the difference in phasing between
Yb moments relative to the predictions of the J1-J2 model.

Despite this minor deviation, rooted in the relative phas-
ing between the Yb sublattices, our work establishes that
LiYbO2 contains a tetragonally elongated diamond lattice
largely captured by the Heisenberg J1-J2 model. To the best
of our knowledge, reports of diamond lattices decorated with
trivalent lanthanide ions are rare, and, based on our results,
we expect that an ideal diamond lattice decorated with Yb3+

moments may reside close to the ideal Heisenberg limit. Such
an ideal cubic Ln-ion diamond lattice would be a promising
platform for manifesting (quantum) spiral spin liquid states,
similar to transition metal spinels, while potentially avoid-
ing the complications of extended exchange interactions born
from d-electron systems.

VI. CONCLUSIONS

LiYbO2 provides an interesting material manifestation of
localized f -electron moments decorating a frustrated dia-
mondlike lattice. Long-range incommensurate spiral magnetic
order of k = (0.384,±0.384, 0) forms in the ground state,
which seemingly manifests through a two-step ordering pro-
cess via a partially ordered intermediate state. On applying
an external magnetic field, magnetic order becomes com-
mensurate with the lattice with k = (1/3,±1/3, 0) through
a “lock-in” phase transition. Remarkably, the majority of this
behavior in LiYbO2 can be captured in the Heisenberg J1-J2

limit where the magnetic Yb3+ ions are split into two interpen-
etrating A-B sublattices. This model was explicitly rederived
and tuned for LiYbO2, and it is directly related to a physical
elongation of the diamond lattice Heisenberg J1-J2 model.
Differences in the relative phasing of A-B sublattices between
the Heisenberg model and the observed magnetic structure
suggest additional interactions and quantum effects may be
present in LiYbO2. This is possibly related to the observation
of crystal field splittings suggesting two Yb environments. Ex-
ploring these as well as the nature of the intermediate ordered
state are promising future steps in single-crystal studies.
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