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Theory of three-magnon interaction in a vortex-state magnetic nanodot
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We use vector Hamiltonian formalism (VHF) to study theoretically three-magnon parametric interaction (or
three-wave splitting) in a magnetic disk existing in a magnetic vortex ground state. The three-wave splitting in
a disk is found to obey two selection rules: (i) conservation of the total azimuthal number of the interacting
spin-wave modes, and (ii) inequality of the radial numbers of the resultant modes, if the directly excited original
mode is radially symmetric (i.e., if the azimuthal number of the directly excited mode is m = 0). The selection
rule (ii), however, is relaxed in sufficiently small magnetic disks, due to the influence of the vortex core. We
also found that the efficiency of the three-wave splitting of the directly excited mode strongly depends on the
azimuthal and radial mode numbers of the resultant modes. This property becomes qualitatively important in
the case when several different splitting channels (several pairs of resultant modes) approximately satisfy the
resonance condition for the splitting. The good agreement of the VHF analytic calculations with the experiment
and micromagnetic simulations proves the capability of the VHF formalism to predict the actual experimentally
realized splitting channels, and the magnitude of the driving field thresholds for the three-wave splitting.
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I. INTRODUCTION

The intrinsic nonlinearity of magnetization dynamics in
ferromagnetic materials leads to a wide variety of nonlin-
ear phenomena, which can be observed in experiment and
utilized in practice [1–3]. At relatively low driving field pow-
ers the observed nonlinear magnetization dynamics can be,
often, interpreted as an interaction of multiple linear spin-
wave (SW) eigenmodes (or magnons), i.e., as multimagnon
interaction processes [4–6]. The most important among these
interaction processes are the lowest-order three-magnon and
four-magnon interactions, even though there are cases when
higher-order processes can become important as well [7].
Three-magnon processes cause the so-called first-order Suhl
instability of uniform magnetization precession [8–10], and
nonlinear decay of propagating SWs [11,12]. Four-magnon
processes, some of which are always allowed, are responsible
for the nonlinear shift of the SW frequency, the foldover effect
[7,13,14], the phase mechanism of the parametric resonance
saturation [5,15], and the formation of SW envelope solitons
[16–18].

Nonlinear SW interaction has been studied for a long time
in bulk samples and in thin ferromagnetic films [8–11,19].
However, in magnetic nanostructures the properties of the
multimagnon interaction could differ substantially from the
properties of similar processes in the bulk magnetic sam-
ples. First, the quantization of the frequencies and wave
vectors of the SW eigenmodes due to the spatial confinement
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in nanostructures makes the exact fulfillment of the reso-
nance conditions for a particular magnon interaction process
difficult to achieve. Thus, instead of resonant nonlinear pro-
cesses, common for bulk magnetic materials, the nonresonant
processes are often realized in finite-size magnetic nanos-
tructures [20,21]. In particular, the discreteness of the SW
spectrum manifests itself in the appearance of specific fea-
tures of the nonlinear ferromagnetic resonance [20,21], in
the strong frequency-dependent nonlinear enhancement of the
SW damping [22], in the possibility of the excitation of sta-
ble large-angle magnetization precession [23], etc. Second, a
spatial nonuniformity of the magnetization ground state (e.g.,
vortex ground state) and the corresponding specific structure
of the linear SW modes result in the selection rules for the
three-magnon and higher-order processes, which are specific
for a magnetic nanostructure having a particular shape and a
particular magnetic ground state [24,25].

In our recent paper [25], we observed experimentally the
three-magnon splitting of a directly excited dipolar SW mode
in a vortex-state magnetic disk. The application of a suffi-
ciently large microwave magnetic field with an out-of-plane
polarization leads to the splitting of a directly exited radial SW
mode into a pair of azimuthal SW modes. This experiment
allowed us to observe the dynamic SW modes of a mag-
netic vortex with unusually high azimuthal numbers. These
magnon modes resemble the “whispering-gallery modes” [26]
previously studied in other physical systems, and may be
interesting for applications with whispering-gallery modes of
other natures (e.g., photonic) in various hybrid structures.

In our current work, we study theoretically the three-
magnon splitting process in a magnetic nanodot existing in
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FIG. 1. (a) Sketch of a circular magnetic dot in a vortex ground
state (b) Calculated SW spectrum of a permalloy dot having diameter
2R = 5.1 μm and thickness t = 50 nm: solid lines are guides to
the eye and dashed lines show possible splitting channels, which
are close to the three-magnon splitting resonance condition at the
excitation frequency of 8.3 GHz. (c) Spatial profiles of directly
excited and split SW modes at the excitation frequency of 8.3 GHz.
Profiles are obtained using numerical calculations (see text), where
the magnitude and relative phase of the magnetization oscillations
are coded using intensity and color scale, respectively.

a vortex ground state. The main goal of this study is to
formulate the selection rules for three-magnon splitting, i.e.,
to find out which splitting processes are allowed and which
ones are not. Our second goal is to derive expressions for the
coefficients of the three-magnon interaction (often referred to
as the “three-magnon coefficients”). A quantitative knowledge
of these coefficients is important not only for the calculation
of the power thresholds of the three-magnon splitting pro-
cesses, but also for the determination of the actual splitting
channels which will be observed in an experiment. Indeed, the
SW spectrum of a vortex-state disk with a micrometer-sized
diameter is quite dense, as is clear from the example shown
in Fig. 1(b). Consequently, the resonance condition for the
splitting (energy conservation rule ω0 = ω1 + ω2) could be
approximately (to the accuracy of the frequency linewidth of
the initially excited SW mode) satisfied for several pairs of
the resultant (split) SW modes simultaneously [see arrows
in Fig. 1(b)]. In such a case, the actual splitting channel is
chosen as a channel having the largest three-magnon coeffi-
cient among all the possible channels which approximately
satisfy the three-magnon resonance condition. Additionally,
a quantitative knowledge of the three-magnon coefficients
could be important when designing experiments on stimulated
splitting, switching between the splitting channels, etc.

The paper is organized as follows. In Sec. II, we briefly
describe the basics of the vector Hamiltonian formalism for
nonlinear SW interaction [27,28]. The selection rules and
the general expression for the three-magnon coefficients are

derived in Sec. III. Results of the numerical simulations of the
three-magnon splitting process and a comparison of the vector
Hamiltonian formalism (VHF) analytical results to the experi-
mental and micromagnetic simulation results are presented in
Sec. IV. Finally, in Sec. V we present a summary of our work.

II. BASIC EQUATIONS OF VECTORIAL
HAMILTONIAN FORMALISM

Nonlinear interaction between SW modes is commonly
studied theoretically within the Hamiltonian approach for
magnetization dynamics. The main point of the Hamiltonian
approach is the representation of the components of dynam-
ical magnetization in the form of canonical variables, and
the consequent transformation of the total magnetic energy
of a system into a Hamiltonian function expanded on a power
series of canonical variables. In almost all the previous pa-
pers based on the Hamiltonian approach to magnetization
dynamics the authors used the scalar canonical variables a,
a∗, which are related to the components of the magnetization
vector by a classical analog of the first Holstein-Primakoff
transformation [4]. This “scalar Hamiltonian approach” was
successfully used for the investigation of nonlinear SW in-
teractions in bulk magnetic samples, thin magnetic films (see,
e.g., Ref. [5] and references therein), and even some examples
of magnetic nanostructures [24,29]. Using the approach of an
“effective SW tensor” [10], it became possible to derive rather
general expressions for the nonlinear SW coefficients de-
scribing a wide variety of spin-wave self-interactions [30,31],
which greatly simplify calculation of nonlinear coefficients.
However, formalism from Refs. [30,31] could be straightfor-
wardly applied only to the magnetization dynamics in the
ferromagnetic samples existing in the saturated (quasiuni-
form) ground state and having spin-wave eigenmodes similar
to plane waves.

In modern nanomagnetism one often has to deal with
magnetic nanostructures that exist in a spatially nonuniform
(e.g., vortex) ground state and/or have non-plane-wave-like
SW eigenmodes. In such a case scalar Hamiltonian formalism
encounters serious difficulties. First is the need to introduce
a local coordinate system having a z axis in the direction of
static magnetization [32], which could be not an easy task
for a complex static magnetization profile. Second is that
the standard scheme of the scalar Hamiltonian formalism—
conversion of the magnetization to canonical variables a(r, t )
and a∗(r, t ), expansion of the canonical variables into a se-
ries of complete basis functions (usually, plane waves, but
could be any other basis), and subsequent diagonalization
of quadratic part of the Hamiltonian using u-v Bogoliubov
transformations—relies on the assumption that the ellipticity
of the excited SW modes is spatially uniform, i.e., that the pro-
file of an SW mode can be expressed as m(r) = m f (r). This
is, however, is not always the case even in simple geometries
[33]. An attempt to account for a different spatial distribution
of dynamic magnetization components into a Hamiltonian
was done in Ref. [34], although this has never been done
for nonlinear interactions in magnetization dynamics. These
points, together with the need to start consideration from the
very beginning for each new static magnetization distribu-
tion or set of SW eigenmodes, make application of a scalar
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Hamiltonian formalism to nonlinear magnetization dynamics
in magnetic nanostructures very cumbersome, despite there
being no fundamental limitations.

The viable alternative is to use a recently developed vecto-
rial Hamiltonian formalism [27], which can easily deal with
the spatial nonuniformity of both static and dynamic mag-
netization. We will use this vectorial Hamiltonian formalism
in our current work. The main novel feature of the vecto-
rial Hamiltonian approach is the mapping of a dynamics of
a constant-amplitude three-dimensional magnetization vector
on a unit sphere |M(r, t )|/Ms = 1 to the dynamics of a two-
dimensional vector of dynamic magnetization on a plane disk.
This mapping is analogous to the Lambert azimuthal equal-
area projection [35], and is given by the following vectorial
equation:

M(r, t )

Ms
=

(
1 − |s(r, t )|2

2

)
μ(r) +

√
1 − |s(r, t )|2

4
s(r, t ).

(1)
Here μ(r) = M0(r)/Ms is the spatial distribution of the
normalized static magnetization, Ms is the saturation magne-
tization, and s(r, t ) is the normalized dynamic magnetization,
which is perpendicular to the static one, s⊥μ. The dynamic
magnetization can be expanded in a series of linear SW eigen-
modes sν of the system:

s(r, t ) =
∑

ν

(cν (t )sν (r) + c.c.), (2)

where cν are the complex amplitudes of the SW eigenmodes.
The spatial profiles sν and the frequencies ων of the SW linear
eigenmodes are the solution of the linearized Landau-Lifshitz
equation [36]:

−iωνsν = μ × �̂ · sν, (3)

with the operator �̂ given by

�̂ = γ BÎ + ωMN̂, (4)

where B is the projection of the static internal magnetic field
on the direction of static magnetization, Î is the unit matrix,
ωM = γμ0Ms, and N̂ is the tensor describing magnetic self-
interactions, such as exchange, magnetodipolar, anisotropy,
etc. (explicit expressions are given below). The solution of
Eq. (3) gives the SW spatial profiles of SW eigenmodes to
the accuracy of an arbitrary multiplier. Therefore, within the
vector Hamiltonian formalism the mode profiles should be
normalized as follows:

i

Vd

∫
s∗
ν · μ × sνdr = 1, (5)

where the integration goes over all the sample volume Vd . This
normalization ensures that the quadratic part of the normal-
ized magnetic energy assumes a standard Hamiltonian form in
terms of the SW mode amplitudes: H(2) = (1/2)

∑
ν |cν |2ων

(we use here a common definition of an SW Hamiltonian
H = γ E/(MsVd ) which is measured in the units of frequency
[30], where E is the total magnetic energy).

The three-wave term of the SW Hamiltonian function can
be expressed as

H(3) = − ωM

2Vd

∫
(|s|2μ) · N̂ · sdr. (6)

Using the eigenmode expansion (2) we can represent
Eq. (6) in the standard form:

H(3) = 1

3

∑
123

(U123c1c2c3 + c.c.)

+
∑
123

(V12,3c1c2c∗
3 + c.c.). (7)

In our current work we are interested only in the second
term of the above equation, as this term describes a splitting
of a SW mode “3” into a pair of SW modes “1” and “2”, and
the reverse mode confluence process, denoted by the short
notation 3 → (1 + 2). The first term describes the so-called
explosive instability of SW modes (nucleation or annihilation
of three SW modes in vacuum) which can never be resonant
in an equilibrium magnetic medium.

The coefficient of the three-wave splitting or confluence
interaction can be expressed as

V12,3 = − ωM

2Vd

∫
((s2 · s∗

3 )μ · N̂ · s1

+ (s1 · s∗
3 )μ · N̂ · s2 + (s1 · s2)μ · N̂ · s∗

3 )dr. (8)

This last equation is convenient to use for both analytical and
numerical analysis of three-wave interaction in magnetism. It
should be noted that the SW mode profiles sν determining
through (8) the magnitude of the three-wave interaction coef-
ficient could be obtained not only by analytical or numerical
solution of Eq. (3), but also by other methods, e.g., using
direct micromagnetic simulations.

III. SELECTION RULES AND THREE-MAGNON
INTERACTION EFFICIENCY

We consider nonlinear SW interaction in a thin cylindrical
magnetic dot of thickness h and radius R (h � R), a sketch
of which is shown in Fig. 1(a). The dot exists in a vortex
ground state. In the polar coordinate system (r, φ, z), dis-
tribution of static magnetization of the dot is expressed as
μ = (0, χ sin θ (r), p cos θ (r)), where p and χ are the vortex
polarity and chirality, respectively. For definiteness, below we
use χ = p = +1. The function θ (r) describes the profile of
the vortex core [37], and it is equal to θ (r) = π/2 away from
the vortex core and θ (0) = 0 at the core center.

The SW spectrum of a vortex-state dot consists of a gy-
rotropic mode and a set of magnetostatic modes [38]. These
magnetostatic modes in the case of a thin dot have a form
of waves traveling along the azimuthal direction (around
the vortex core) and are characterized by their radial index
n = 0, 1, 2, . . . (the number of nodes in the radial direction)
and azimuthal index m = 0,±1,±2, . . ., which describes the
phase shift accumulation during one turn around the core (in
2π units). The spatial profiles of several of the magnetostatic
modes are shown in Fig. 1(c). Of course, there are also SW
modes having a nonuniform thickness profile and character-
ized by the thickness index l > 0. In our case of a thin dot,
these modes have much larger frequencies, and will not be
considered. However, the analysis of the nonlinear interaction
between these higher-order thickness SW modes can be done
in the same manner as for the modes that are uniform along
the thickness direction.
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A. Case of a large dot

First, let us consider the case of a relatively large dot
with a radius much larger than the size of the vortex core.
As the size of the vortex core is typically of the order of
10–20 nm, this approximation holds for dots with radii of
several hundreds of nanometers and more. In this case, one
can completely neglect the presence of the vortex core, and
approximate the static magnetization distribution as μ = eφ .
Also, the gyrotropic mode can be disregarded, as it is local-
ized in the vicinity of the core and has a frequency that is
much lower than the frequencies of all the other modes. The
profiles of the magnetostatic SW modes are derived as sν =
(sν,r (r), 0, sν,z(r))eimνφ . It is important to note that in a large
dot SW modes with opposite azimuthal indices +m and −m
are degenerate in frequency and have the same radial profiles;
i.e., s(n,m),r (r) = s(n,−m),r (r) and s(n,m),z(r) = s(n,−m),z(r). The
only exceptions are the modes with m = ±1, for which this
degeneracy is lifted due to the hybridization with the gy-
rotropic mode [39], leading to a nonzero frequency splitting,
and a small difference in their profiles even in a relatively large
vortex-state dot.

The above-described general expressions for the SW spa-
tial profiles and the distributions of static magnetization are
sufficient to analyze the three-magnon interaction. As it is
clear from Eq. (8), the contributions of different magnetic in-
teractions to the three-magnon coefficients are additive, which
allows us to consider the exchange contribution V (ex)

12,3 and the

dipolar contribution V (dip)
12,3 separately. The total three-magnon-

interaction efficiency is simply the sum of these contributions:
V12,3 = V (ex)

12,3 + V (dip)
12,3 .

Exchange contribution. The tensor operator of nonuniform
exchange is given by N̂ex = −λ2Î∇2, where λ is the exchange
length of the magnetic material [10,36]. Note that this ex-
pression should be applied to magnetization components in
the Cartesian coordinate system. Since we use polar mag-
netization components, the coordinate system transformation
should be applied, which yields the following operator written
in polar coordinates:

N̂
pol
ex = −λ2

⎡
⎣Î∇2 + 1

r2

⎛
⎝−1 −∂φ 0

∂φ −1 0
0 0 0

⎞
⎠

⎤
⎦ . (9)

Using this expression in Eq. (8), we obtain the following
exchange contribution to the three-wave interaction coeffi-
cient:

V (ex)
12,3 = iωMλ2

R2

∫ R

0

dr

r
[m1s2,z(s1,rs∗

3,z − s1,zs
∗
3,r )

+ m2s1,z(s2,rs∗
3,z − s2,zs

∗
3,r )]�(m1 + m2 − m3).

(10)

Here, � is the Kronecker delta, which gives the first selection
rule: m3 = m1 + m2. This is, in fact, the conservation of the
total azimuthal number in the three-wave splitting process
which reflects the conservation of the angular momentum.
In a general case, this is the only restriction imposed on the
vortex-state dot dynamic modes which can be involved in the
three-wave interaction (splitting).

In the case of splitting of radial modes characterized by
m3 = 0 (or reverse confluence process into a mode with m3 =
0), which is the case realized in our experiment, the azimuthal
numbers of the split modes are opposite, m1 = −m2 = m, and
Eq. (10) is simplified to

V (ex)
12,3 = imωMλ2

R2

∫ R

0

dr

r
(s1,rs2,z − s1,zs2,r )s∗

3,z. (11)

From this expression it is clear that if the split modes have
the same radial index n, i.e., they have the same profiles sr (r)
and sz(r), the efficiency of the three-wave interaction is zero:
V12,3 = 0. Thus, the splitting of the m3 = 0 mode obeys an
additional selection rule, requiring that the radial indices of
the resultant (split) modes are different: n1 �= n2. The only
exception is the case when m = ±1 modes, since these modes
have different spatial profiles due to their hybridization with
the gyrotropic mode. However, in a sufficiently large dot this
difference is small, leading to a relatively small exchange
contribution to the three-wave interaction efficiency.

It should be noted that in a uniformly magnetized sample
the exchange interaction does not contribute at all to the
three-wave interaction efficiency. However, a nonuniformity
of the static magnetization distribution relaxes this restriction,
and the exchange contribution to the three-wave coefficients
becomes nonzero. For vortex-state dots, this contribution is
proportional to (λ/R)2 and, typically, is significantly smaller
than the dipolar contribution, calculated below.

Dipolar contribution. The tensor operator describing the
magnetodipolar interaction is expressed via the magnetostatic
Green’s function Ĝ:

N̂dip · s =
∫

Ĝ(r, r′) · s(r′)dr′. (12)

For a thin dot having a spatially uniform distribution of both
the static and dynamic magnetization across the dot thick-
ness, it follows that Grz = Gzr = Gφz = Gzφ = 0 [40]. From
Eq. (8), it is clear that the only component which contributes
to three-wave interaction efficiency in the approximation of a
relatively large dot is the off-diagonal component Gφr , since
μ · Ĝ · s = Gφrsr . This component can be expressed as [40]

Gφr (r, r′) = i

2πr

∑
m

eim(φ−φ′ )
∫

dk
f (kh)

k
J ′

m(kr′)Jm(kr),

(13)

where the function f (x) = 1 − (1 − e−|x|)/|x|, and J ′
m(kr) =

dJm(kr)/dr = (k/2)(Jm−1(kr) − Jm+1(kr)) is the derivative
of a Bessel function of the first kind, Jm. Using this expres-
sion, one can find the dipolar contribution to the three-wave
interaction efficiency, which, in a general case, is equal to

V (dip)
12,3 = − iωM

R2

∫
dr

∫
r′dr′

∫
dk

f (kh)

k

×[
m1J ′

m1
(kr′)Jm1 (kr)s1,r (r′)(s2(r) · s∗

3(r))

+m2J ′
m2

(kr′)Jm2 (kr)s2,r (r′)(s1(r) · s∗
3(r))

−m3J ′
m3

(kr′)Jm3 (kr)s∗
3,r (r′)(s1(r) · s2(r))

]
×�(m1 + m2 − m3). (14)
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Here for brevity, we use the notation s(r) = (sr (r), 0, sz(r)),
which describes the radially dependent part of the mode pro-
file. Similar to the exchange contribution, in a general case,
the only selection rule is the one imposed on the azimuthal
indices of the SW modes, and it requires conservation of the
total azimuthal number.

For the splitting of the azimuthally symmetric mode (m3 =
0 and, consequently, m1 = −m2 = m), Eq. (14) can be signif-
icantly simplified to

V (dip)
12,3 = − imωM

2R2

∫
dr

∫
r′dr′

∫
dk f (kh)

×(Jm−1(kr′) − Jm+1(kr′))Jm(kr)

×[s1,r (r′)s2(r) · s∗
3(r) − s2,r (r′)s1(r) · s∗

3(r)].

(15)

From the last term in the above expression it is clear that, if
s1(r) = s2(r), the three-wave interaction efficiency is equal to
zero. As a consequence, the dipolar contribution results in the
same selection rule as the exchange one: if m3 = 0, then n1 �=
n2. As before, the only exception is for the modes with |m| =
1, which are not degenerate due to the hybridization with the
gyrotropic mode. However, in a large dot, the difference in
mode profiles caused by the hybridization and, consequently,
the contribution to the three-wave coefficient are small, so
that the splitting process (n3, 0) → (n, 1) + (n,−1) would be
hard to observe in experiment.

In summary, we can conclude that in the case of a rela-
tively large vortex-state dot the three-wave splitting process
into frequency-degenerate modes is impossible. If a directly
excited mode is not radially symmetric, m3 �= 0, then the
resultant (split) modes differ by the modulus of azimuthal
number, |m1| �= |m2|, as it follows from the conservation of
azimuthal number. At the same time, in this case there are
no restrictions on the radial numbers of the modes involved
in the splitting process. If a directly excited mode is radially
symmetric, m3 = 0, then the split modes should differ by the
radial number, n1 �= n2, while there are no restrictions on the
relation between the radial number of directly excited mode
and the radial numbers of the split modes.

B. Effect of the vortex core

Let us now consider how the presence of the vortex core
affects the three-wave interaction efficiency. For this study,
we have to use the full expressions for the spatial distribution
of the static magnetization μ = [0, sin θ (r), cos θ (r)], and for
the SW mode spatial profiles, which can be expressed as
s = [sr (r),−sξ (r) cos θ (r), sξ (r) sin θ (r)]eimφ . Here, ξ is the
local coordinate axis which is perpendicular to both μ and
er . Using these expressions, one can calculate the three-wave
interaction efficiency in the same manner as presented above.

In this general case, the expressions for the splitting effi-
ciency are too cumbersome, even for the case m3 = 0, and we
do not present them here. Simultaneously, we would like to
point out, first, that the selection rule for the azimuthal indices
m3 = m1 + m2 is not changed by the influence of the vortex
core. Indeed, this rule comes from the integration exp[i(m1 +
m2 − m3)φ] over the azimuthal coordinate, and the vortex
core does not introduce any additional dependence of the

static or dynamic magnetization on the azimuthal coordinate
φ. Second, our calculations show that the effect of the vortex
core relaxes the selection rule n1 �= n2 for m3 = 0. The corre-
sponding contribution to the three-wave interaction efficiency
is found to be proportional to sin [2θ (r)]|s1|2s3,ξ , which dif-
fers from zero only in the vicinity of the vortex core. Since the
magnetostatic modes of a vortex-state dot have zero amplitude
at the core center and a small amplitude in its vicinity (except
for the modes m = ±1, for which the amplitudes could be
larger due to hybridization with the gyrotropic mode), the
core contribution to the three-wave coefficient is weak, and
could become important only in very small dots. In such small
dots, however, the SW modes with opposite azimuthal indices
are no longer degenerate. Due to the influence of static stray
fields of the vortex core, all modes with the same radial index
and opposite azimuthal index have different spatial profiles
and frequencies, not only the modes with |m| = 1 [41,42].
Also, in a small dot, one may expect three-wave interaction
processes involving the gyrotropic mode. The selection rule
for such processes results from the fact that the gyrotropic
mode exhibits azimuthal dependence characterized by the in-
dex m = ±1 (the sign depends on the vortex core polarity).

Thus, we conclude that in the case of a vortex-state mag-
netic dot in a zero external field the three-wave splitting
process cannot go into degenerate modes; the resultant (split)
modes should differ either by the modulus of the azimuthal
number or by radial number, or they are not frequency degen-
erated due to the effect of the vortex core.

IV. NUMERICAL CALCULATIONS AND COMPARISON
WITH EXPERIMENT AND SIMULATIONS

In the following, we present results of the numeri-
cal calculations of a three-wave interaction efficiency, and
the thresholds for the splitting processes in a vortex-state
magnetic dot using the above-discussed theoretical formal-
ism. The calculations were made for a circular permalloy
(Ni81Fe19) dot of thickness h = 50 nm and diameter 2R =
5.1 μm, which was used in the experiment in Ref. [25]. The
material parameters of the permalloy are saturation magne-
tization, Ms = 810 kA/m; gyromagnetic ratio, γ = 1.86 ×
1011 rad/(s T); exchange constant, A = 1.3 × 10−11 J/m; and
Gilbert damping constant, αG = 0.008.

Analytical or semianalytical theories of the magnetostatic
modes of a vortex-state magnetic dot were developed only
for the case of a dominant exchange interaction, when the
dipolar interaction can be treated as a perturbation [43,44]. For
our experimental case of a relatively large dot, these theories
are not directly applicable for the calculation of the eigen-
frequencies and spatial profiles of the SW modes. Therefore,
we used instead a numerical projection method [45]. Also, we
assumed that in the calculations of both the SW spectrum and
the nonlinear coefficients we can safely neglect the effect of
the vortex core, since the size of the core is two orders of
magnitude smaller than the disk diameter.

The calculated spectrum of the SW modes with ra-
dial indices n = 0, 1, 2 is shown in Fig. 1(b). Higher-order
thickness modes (with thickness index l = 1, 2, 3, . . .), which
were disregarded in the theoretical analysis above, have
frequencies above 10 GHz and, obviously, do not affect
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FIG. 2. Three-wave interaction efficiency of the radial mode
(2,0) with different pairs of azimuthal SW modes.

dynamics in the studied frequency range. One can see that
the SW spectrum is rather dense; i.e., the frequency sepa-
ration between the modes with different azimuthal numbers
is relatively small, especially for large |m|. Therefore, there
exist many different splitting possibilities for any directly ex-
cited primary SW mode. Furthermore, this number of possible
splitting channels increases even more with the increase of the
excitation frequency.

As an example, we consider the splitting of the second
radial mode (2,0), which has an eigenfrequency of f(2,0) =
ω(2,0)/(2π ) = 8.68 GHz and can be resonantly excited by an
out-of-plane microwave magnetic field bz with a frequency
close to the mode eigenfrequency. Analysis of this partic-
ular mode (as well as modes with higher radial index) is
interesting because, depending on the excitation frequency,
the resonance condition for three-wave splitting could be ap-
proximately satisfied for different pairs of split SW modes
simultaneously—in our case, pairs of modes having the radial
number n = 0, 1, 2 (see examples below). In such a case,
dependence of three-magnon coefficients affects nonlinear
dynamics not only quantitatively but also qualitatively.

We performed calculation of the three-wave interaction
efficiency for all the possible splitting channels, and the results
are presented in Fig. 2. It is clear that the three-wave coef-
ficient V12,3 demonstrates a significant dependence on both
the azimuthal and radial numbers of the split modes. For the
split modes having small and moderate azimuthal numbers the
largest three-magnon coefficient corresponds to the splitting
into (0,±m) and (2,∓m) modes. This could be understood as
follows. In an infinite sample three-magnon splitting obeys the
rule of momentum (or wave-vector) conservation: k3 = k1 +
k2. Spatial confinement of a finite-size sample breaks this rule.
In particular, for a vortex-state dot only the conservation of an
angular momentum (i.e., azimuthal index) remains valid. At
the same time, the largest three-magnon interaction efficiency
is expected for the modes, which approximately satisfy the
conservation of the total momentum. Although there is no
simple general relation between the total momentum and the
mode radial indices, the radial component of the momentum
is proportional to the radial index. Thus, it is natural to ex-
pect the maximum interaction efficiency for the modes which

FIG. 3. (a) Detuning from the resonance condition of a three-
wave splitting and (b) the threshold of the splitting of the SW mode
(2,0) excited at the frequency of fp = 8.3 GHz for different splitting
channels.

satisfy the conservation of the radial index: n3 = n1 + n2.
In our case the channel (2, 0) → (2,±m) + (0,∓m) is the
only one which satisfies this relation. At a sufficiently large
azimuthal index SW modes become more concentrated at
the disk periphery (“whispering-gallery magnons”), and the
lower is the radial mode number, the more pronounced is
this concentration. Consequently, there is a change in the
effective volume occupied by the mode, which affects the
three-magnon interaction efficiency. As a result, the largest
three-magnon coefficient for m ∈ [21, 30] is observed for a
different splitting channel: n1 = 0 and n2 = 1. With further
increase of the index m the most efficient channel is changed
many times, but, overall, the interaction efficiency decreases
because of the smaller volume occupied by the split modes.

This significant dependence of three-wave interaction effi-
ciency on the azimuthal and radial numbers of the split modes,
naturally, should strongly affect the nonlinear dynamics of the
SW modes that is realized in experiment. To illustrate this, we
set the driving frequency to fp = 8.3 GHz, which efficiently
excites the radial mode (2,0) (a little bit off resonance). It is
important to stress that the directly excited mode oscillates,
naturally, at the frequency of the driving signal. Therefore,
when considering the resonance condition for the three-wave
splitting, one should use the driving frequency in the de-
termination of the detuning from the resonance condition,
δ f = fp − ( f1 + f2). Here, f1,2 are the eigenfrequencies of
the possible split modes which satisfy the above-established
selection rules.

The dependence of the detuning δ f on the azimuthal num-
ber of the split modes is shown in Fig. 3(a) for three possible
(m-dependent) splitting channels which all satisfy the selec-
tion rules. One can find that the resonance condition for the
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splitting is approximately satisfied for several splitting possi-
bilities, namely, (2, 0) → (0, 2) + (1,−2), (2, 0) → (0, 5) +
(2,−5), and (2, 0) → (1, 17) + (2,−17), and channels with
opposite sign of the azimuthal index, which are degenerate
with these ones [e.g., (2, 0) → (0,−2) + (1, 2)]. However,
the three-magnon interaction efficiency for these channels
differs significantly. The largest efficiency is exhibited by
the channel (2, 0) → (0, 5) + (2,−5), V12,3/2π = 5.13 GHz,
while for other possibilities it is equal to V12,3/2π =
2.35 GHz and V12,3/2π = 1.38 GHz.

Three-wave splitting is a threshold process, and it starts
when the amplitude of the directly excited mode driven by
a microwave field exceeds a certain threshold [5,8]. In the
general case of a nonresonant splitting, the threshold for a
particular splitting process is determined by the three-wave
interaction coefficient, the detuning from the resonance con-
dition, and the damping rates of the split modes [see Eqs. (A3)
and (A4) in the Appendix]. As one can see from Fig. 3(b), in
our case, the splitting threshold is the lowest for the splitting
into modes (0, 5) + (2,−5), which corresponds to the largest
three-wave coefficient among the channels close to the res-
onance condition for the splitting. Therefore, in experiment,
this splitting process should be realized.

It is important to note that, even in the case when other
channels formally have the thresholds which are close to the
lowest one, the realization of these other channels splitting
would be practically impossible by a simple increase of the
microwave driving field. This happens because as soon as the
splitting into the modes having the lowest threshold begins,
the nonlinear interaction between the SW modes decreases
the “effective pumping” for the other modes, and observation
of other splitting channels would require a much higher am-
plitude of the driving field than it formally follows from the
calculated thresholds for these channels [5].

Our theoretical conclusions are confirmed by the exper-
imental data. At the excitation frequency of 8.3 GHz, we
observed splitting of the mode (2,0) into the modes with
azimuthal number m = ±5 and radial numbers n1 = 0 and
n2 = 2 [25]. Note, that the splitting processes into modes
(n1, m) + (n2,−m) and (n1,−m) + (n2, m) are degenerate,
and are characterized by the same threshold (except for the
small dots in which the effect of the vortex core is relevant).
Therefore, splitting into one or the other pair of modes is
a random process driven by thermal fluctuations. Hence, in
the experiment, we observed standing patterns of azimuthal
modes which are a superposition of modes with opposite
azimuthal numbers.

Let us now consider how a variation of the excitation
frequency affects the splitting process. For this reason, we
repeat the same calculations, but for the excitation frequency
of fp = 9 GHz. In this case, the directly excited mode still
is the mode (2,0). The resonance condition for the splitting
is approximately satisfied for the modes (0, 3) + (2,−3) and
(1, 8) + (2,−8) [Fig. 4(a)]. However, the relation between the
three-magnon coefficients and the SW damping rates results
in a significantly lower threshold for the splitting (2, 0) →
(1, 8) + (2,−8) [Fig. 4(b)], which, in full accordance with the
theoretical calculations, was actually observed in experiment.
The change of the excitation frequency to 8.9 GHz results
in the splitting into modes (1, 9) + (2,−9). Thus, we can

FIG. 4. (a) Detuning from the three-wave splitting resonance
condition and (b) threshold of the splitting of the SW mode (2,0)
excited at the frequency of fp = 9 GHz corresponding to different
splitting channels.

conclude that a variation of the excitation frequency is an
efficient way to select the splitting channel. Note that not
only the azimuthal mode number of the split modes can be
changed, but also the radial mode numbers.

Experimentally, it is not an easy task to determine the
threshold field bth

z because the exact power arriving at the
microwave antenna is unknown. Thus, to make a quantitative
verification of our theoretical calculations, we performed a
set of micromagnetic simulations using the MUMAX3 soft-
ware [46]. Material parameters used in the simulations are
the same as mentioned above, and the cell size was set to
10 × 10 × 50 nm3. In order to obtain the threshold fields
for a given excitation frequency fp, the microwave field was
applied at some field magnitude above threshold and then
slowly decreased over the duration of 1 μs. The temporal
evolution of the split modes was extracted by performing a
short-time Fourier transform of the total magnetic energy.
The approximate threshold fields were then obtained from
the field values at which the secondary modes disappeared.
After this, the mode profiles were obtained by an addi-
tional simulation with a fixed microwave field just above
threshold.

Results of the micromagnetic simulations are presented
in Table I and are compared to the results of the theoretical
calculations. For all the considered excitation frequencies,
the pair of split modes is the same in theoretical predictions
and in micromagnetic simulations, and coincides with the
experimental data [25]. Theoretically calculated values of the
splitting threshold bth show a reasonable correspondence to re-
sults of the micromagnetic simulations. A mismatch is evident
only for the excitation frequency of 8.9 GHz. The observed
quantitative discrepancies are, most likely, related to the high

014413-7



ROMAN VERBA et al. PHYSICAL REVIEW B 103, 014413 (2021)

TABLE I. Channel and threshold of three-magnon splitting at
different excitation frequencies. Split modes are the same in theoret-
ical calculations and micromagnetic simulations, and coincide with
experimental data [25].

fp Direct Split bth, bth,
(GHz) mode modes theory (mT) simulations (mT)

6.1 (0,0) (0, ±12) + (1,∓12) 1.12 1.26
7.2 (1,0) (0, ±4) + (1,∓4) 2.75 3.4
8.3 (2,0) (0,±5) + (2, ∓5) 2.95 2.62
8.9 (2,0) (1,±9) + (2, ∓9) 0.93 1.8
9.0 (2,0) (1,±8) + (2, ∓8) 1.45 2.1

sensitivity of the threshold to the SW mode eigenfrequencies
[see Eq. (A3)], the calculation of which exhibits a limited
precision due to the model approximations, finite number of
used basis functions, and numerical errors. Nevertheless, our
relatively simple calculations provide a good understanding of
the process of three-wave splitting of directly excited modes
in vortex-state magnetic dots, and allow us to perform plan-
ning of further experiments on the nonlinear magnetization
dynamics in vortex-state magnetic dots.

V. SUMMARY

In summary, we have investigated the process of three-
wave splitting of a directly excited SW mode in a vortex-state
magnetic disk. Using the vector Hamiltonian formalism for
nonlinear SW dynamics, we derived expressions for the coef-
ficients of the three-wave interactions between the SW modes
of a vortex-state magnetic dot. A qualitative analysis of these
expressions yields that the three-wave splitting process always
obeys one selection rule: conservation of the total azimuthal
mode numbers, m1 + m2 = m3. Additionally, if the directly
excited mode is radially symmetric (i.e., m = 0), the resultant
(split) modes must not have the same radial mode number:
n1 �= n2. The second rule is relaxed in small magnetic disks
due to the influence of the vortex core, which is also re-
sponsible for the lifting of the degeneracy of modes with
opposite azimuthal indices. Thus, the three-wave splitting in
an unbiased (zero-external-bias magnetic field) vortex-state
dot goes always into a pair of frequency-nondegenerate SW
modes.

The efficiency of the three-wave interactions shows a sig-
nificant dependence on both the azimuthal and the radial
numbers of the split modes. If several split channels are simul-
taneously close to the fulfillment of the resonance condition
for the three-wave splitting, this dependence of the three-
magnon coefficients becomes crucial for the determination
of which splitting channel will be, actually, realized in an
experiment. The presented theory allows one to predict the
splitting channel, and gives a good estimation for the splitting
threshold. Furthermore, it opens a possibility for the investiga-
tion and quantitative simulation of more complex three-wave
scattering processes, e.g., scattering taking place at excitation
powers substantially exceeding the threshold or the stimulated
scattering processes.
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APPENDIX: THRESHOLD OF NONRESONANT
THREE-MAGNON SPLITTING

Here, we derive an expression for the three-wave splitting
threshold in a general case. In this expression, we take into
account (i) a detuning from the resonance condition which
appears due to the discreteness of the SW spectrum, and (ii)
different damping rates of the resultant (split) modes, which
are expected due to the different frequencies of the SW modes
and, possibly, different averaged precession ellipticities of the
modes. The expressions for the three-wave splitting threshold
in particular cases that take into account either point (i) or (ii)
separately are well known and can be found in the literature
[5].

The threshold for three-wave splitting can be derived from
the dynamic equations for the complex mode amplitudes cν ,
in which it is sufficient to retain only the linear terms [5]:

dc1

dt
+ iω1c1 + �1c1 = iV12,3c∗

2c3,

dc∗
2

dt
− iω2c∗

2 + �2c∗
2 = −iV ∗

12,3c1c∗
3. (A1)

Here ω1,2 are the eigenfrequencies of the split modes and
�1,2 are their damping rates which can be calculated using SW
profiles numerically found within the formalism presented in
Ref. [47]. The directly driven SW mode oscillates at the fre-
quency ωp of the driving microwave field, c3 = C3e−iωpt . The
solutions for the split SW modes are searched in the standard
form: c1 = C1e−iω̃1t+αt , c∗

2 = C∗
2 eiω̃2t+αt . In general, the oscil-

lation frequencies ω̃1,2 are unknown and are not equal to the
mode eigenfrequencies, but satisfy the relation ωp = ω̃1 + ω̃2.
The parameter α is the growth increment, which is negative
below the threshold and positive above the threshold (which
means an exponential increase of the split-mode amplitudes
from a thermal level). Exactly at the threshold, it is equal to
α = 0 which yields the following characteristic equation:

[−i(ω̃1 − ω1) + �1][i(ω̃2 − ω2) + �2] = |V12,3C3|2. (A2)

From the requirement of a zero imaginary part of the left-hand
part (as it stands for the right-hand one), one finds the relation
between the oscillation frequencies of split modes, (ω̃1 −
ω1)/�1 = (ω̃2 − ω2)/�2, using which the threshold value of
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the directly driven SW mode amplitude is found in the form

|V12,3C3|2 = �1�2

(
1 + δω2

(�1 + �2)2

)
, (A3)

where δω = ωp − (ω1 + ω2) is the detuning from the reso-
nance condition. The amplitude of the directly excited mode is

related to the driving microwave field by the usual expression:

C3 = γ bz〈s3,z〉
2
√

(ωp − ω3)2 + �2
3

, (A4)

where 〈sz〉 is the averaged out-of-plane dynamic component
of the SW mode s3.
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