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We investigated the magnetoelastic properties of the quasi-one-dimensional spin- 1
2 frustrated magnet

LiCuVO4. Longitudinal-magnetostriction experiments were performed at 1.5 K in high magnetic fields of up
to 60 T applied along the b axis, i.e., the spin-chain direction. The magnetostriction data qualitatively resemble
the magnetization results, and saturate at Hsat ≈ 54 T, with a relative change in sample length of �L/L ≈
1.8 × 10−4. Remarkably, both the magnetostriction and the magnetization evolve gradually between Hc3 ≈ 48 T
and Hsat, indicating that the two quantities consistently detect the spin-nematic phase just below the saturation.
Numerical analyses for a weakly coupled spin-chain model reveal that the observed magnetostriction can overall
be understood within an exchange-striction mechanism. Small deviations found may indicate nontrivial changes
in local correlations associated with the field-induced phase transitions.
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I. INTRODUCTION

One-dimensional (1D) quantum-spin magnets with com-
peting interactions have been intensively studied for decades
to search for unconventional quantum phases that result from
the interplay between strong quantum fluctuations and mag-
netic frustration. As 1D systems generally allow a simpler
theoretical treatment compared with higher-dimensional ones,
they provide an ideal platform for studying quantum phases
through a close comparison between experimental and theo-
retical approaches. One example is the spin-nematic phase,
a magnetic analog of the nematic liquid-crystal phase, where
the spin-rotational symmetry is spontaneously broken while
translational and time-reversal symmetries are preserved. This
new type of quantum phase has been discussed in a vari-
ety of 1D spin models, including spin- 1

2 [1–4] and spin-1
[5,6] chains. In the spin- 1

2 case, magnon bound states (bi-
magnons) arise from a competition between ferromagnetic
nearest-neighbor J1 < 0 and antiferromagnetic next-nearest-
neighbor J2 > 0 interactions, and play a crucial role in the
formation of the spin-nematic phase. Upon condensation, bi-
magnons form a Tomonaga-Luttinger liquid (TLL), which
shows dominant spin density wave (SDW) or nematic quasi-
long-range correlations at low and high fields, respectively.

One well-studied spin-nematic candidate is the orthorhom-
bic inverse spinel LiCuVO4, where magnetic Cu2+ ions form
spin- 1

2 chains with two dominant exchange interactions, J1

and J2, along the crystallographic b axis (Fig. 1) [7–10].
Weak interchain interactions (such as J5 < 0) lead to a three-
dimensional (3D) magnetic long-range order below Tc ≈
2.3 K with an incommensurate planar spiral structure lying

in the ab plane [11,12]. This spiral structure, which induces
ferroelectricity through magnetoelectric coupling, has spurred
additional interest in LiCuVO4 in terms of multiferroicity
[13–16].

When applying magnetic fields, a phase transition to an
incommensurate collinear SDW phase takes place at Hc2 ≈
7.5 T [17–19]. Such a SDW phase is expected to appear when
the SDW correlations of a bimagnon TLL are stabilized by
interchain interactions [20,21]. This picture has been corrobo-
rated by neutron-scattering [22], nuclear magnetic resonance
(NMR) [23], and spin Seebeck effect [24] experiments. With
further increasing magnetic field, the SDW correlations are
weakened in favor of the nematic correlations, and as a result,
a 3D nematic long-range order is stabilized just below the sat-
uration field, as theoretically discussed in Refs. [20,21,25,26].
Remarkably, high-field magnetization [27], NMR [28], mag-
netocaloric effect (MCE), and ultrasound [29] measurements
have reported evidence of this 3D spin-nematic state between
Hc3 and Hsat, which are about 40 and 45 T for the magnetic
field applied along the c axis, and about 48 and 53 T along the
a and b axes.

While a large number of experiments have been per-
formed on LiCuVO4, there have been only few studies
on its magnetoelastic properties. Mourigal et al. have pro-
posed that the magnetostriction is negligible in LiCuVO4

based on specific-heat and neutron-scattering experiments,
and that the multiferroicity arises from a purely electronic
spin-supercurrent mechanism [15]. In contrast, recent thermal
expansion and magnetostriction experiments in low magnetic
fields of up to 9 T by Grams et al. revealed a sizable magne-
toelastic coupling in LiCuVO4 [30].
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In this paper, we report longitudinal magnetostriction mea-
surements of LiCuVO4 at 1.5 K in high magnetic fields
of up to 60 T applied along the b axis, i.e., the 1D spin-
chain direction. The observed magnetostriction is as large as
�L/L ≈ 1.8 × 10−4 at high fields, indicating that LiCuVO4

has a sizable magnetoelastic coupling as reported previously
[29,30]. The magnetostriction data qualitatively resemble the
magnetization reported in Ref. [28]. In particular, both quan-
tities evolve gradually between Hc3 and Hsat, indicating that
the magnetostriction can also probe the 3D spin-nematic
state appearing just below the saturation. Furthermore, we
analyze the magnetostriction data of LiCuVO4 within an
exchange-striction model with exchange interactions mod-
ified linearly by the distance between the involved spins.
The density matrix renormalization group (DMRG) and exact
diagonalization (ED) analyses for the J1-J2(-J5) spin-chain
model show an overall agreement with our experimental re-
sults. Small deviations found may indicate nontrivial changes
in local correlations associated with field-induced phase
transitions. A more refined treatment of the interchain cou-
pling or introduction of additional interactions, such as a
Dzyaloshinskii-Moriya (DM) term, is needed to explain the
magnetoelastic properties of LiCuVO4 in general detail.

II. METHODS

Longitudinal-magnetostriction measurements were per-
formed by the optical fiber Bragg grating (FBG) method [31]
in pulsed magnetic fields of up to 60 T with a whole pulse
duration of 25 ms at the HLD-EMFL in Dresden. The relative
length change �L/L was obtained from the Bragg wavelength
shift of the FBG. A high-quality LiCuVO4 single crystal with
a size of 1.9 × 2.0 × 0.65 mm3 was used in this study, which
is the same one previously used in the magnetocaloric effect
and ultrasound experiments by Gen et al. [29]. Magnetic field
was applied along the orthorhombic b axis, which is the spin-
chain direction (H ‖ �L/L ‖ b axis). Note that the magnetic
field was applied along the c axis in Ref. [29].

Numerical analyses were conducted for the J1-J2-J5 model
that describes magnetic interactions in the ab plane [Fig. 1(b)].
We use the ratio J1 : J2 : J5 = −0.42 : 1 : −0.11 as obtained
from neutron-scattering experiments reported in Ref. [9]. For
the Landé g-factor, we take the value g = 2.095 along the
b axis from Ref. [32]. We then set J2 = 4.0 meV so that

FIG. 1. (a) Crystal structure of LiCuVO4 (b) Two Cu2O chains
exist in the ab plane with three main exchange interactions J1, J2, and
J5. The lattice constants a and b are 5.662 and 5.809 Å, respectively
[7].

FIG. 2. (a) Longitudinal magnetostriction �L/L of LiCuVO4

and the normalized magnetization M/Msat from Ref. [28] as a
function of magnetic field (H ‖ �L/L ‖ b axis). (b) Longitudinal
magnetostriction �L/L of LiCuVO4 and its derivative in the vicinity
of the saturation field. The critical fields Hc2, Hc3, and Hsat are
estimated as 11, 48, and 54 T, respectively.

the theoretical saturation field is adjusted to 48 T, at which
the experimental magnetization curve is the steepest; see Ap-
pendix B. This value is quite close to J2 = 3.8 meV reported
in Ref. [9]. DMRG calculations were performed for the pure
1D J1-J2 model with up to 168 spins. We computed the
lowest-energy state in each subspace characterized by the
magnetization M and obtained the ground-state energy and
local correlation functions as functions of M (see Appendix A
for details). The effects of the interchain coupling J5 on the
ground-state energy were taken into account in a mean-field
manner following Ref. [33]. As a complementary analysis, ED
calculations based on TITPACK version 2 [34] were performed
directly for the J1-J2-J5 model with up to 28 spins on the
2D plane. Both the DMRG and ED results show an overall
agreement with the experimental magnetization, as shown in
Appendix B.

III. RESULTS AND DISCUSSION

A. Magnetostriction measurements and exchange-striction
mechanism

Figure 2(a) shows the longitudinal magnetostriction �L/L
of LiCuVO4 in magnetic fields of up to 60 T (H ‖ �L/L ‖
b axis) with the normalized magnetization M/Msat taken
from Ref. [28]. Note that the LiCuVO4 sample used in
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magnetization measurements was from the same batch as that
used in the present magnetostriction study. The magnetostric-
tion data qualitatively resemble the magnetization up to the
saturation, except that no transition was detected at around
11 T (labeled as Hc2 in the magnetization). A spiral-plane flop
transition has been reported at Hc1 ≈ 3 T [27], which is not
observed in the pulsed-field magnetization and magnetostric-
tion experiments. At saturation, the observed magnetostriction
is as large as �L/L ≈ 1.8 × 10−4, indicating a sizable mag-
netoelastic coupling in LiCuVO4 as also reported recently
[29,30].

To highlight the anomaly in high magnetic fields, the
derivative of the longitudinal magnetostriction d (�L/L)/dH
is shown in Fig. 2(b). Notably, the magnetostriction still grows
above 48 T (Hc3), at which a clear peak in d (�L/L)/dH
is observed, and it saturates around 54 T (Hsat). Similar be-
havior has also been observed in magnetization and NMR
experiments, as reported previously in Refs. [27,28]; in these
works, evidence for the existence of a 3D spin-nematic phase
between Hc3 and Hsat was given. The observed similarity
indicates that the magnetostriction can consistently detect the
3D spin-nematic phase as well.

To understand the microscopic origin of the magnetostric-
tion, we adopt the following exchange-striction model for a
1D frustrated J1-J2 spin-chain system [35,36],

Hes =
∑

n=1,2

∑
j

(Jn − fnε)S j · S j+n

+ N1Dk′

2
ε2 − gμBH

∑
j

Sz
j, (1)

where ε = �L/L, fn is the magnetoelastic coupling coeffi-
cient, k′ is the elastic constant per Cu2+ ion, and N1D is the
number of Cu2+ ions in the chain. For a fixed field H or
a fixed magnetization M, the equilibrium value of ε can be
determined from minimizing the expectation value of Hes over
ε. To compare with the experimental data, we set ε to zero for
M = 0, obtaining

ε(M ) = 1

k′
∑

n=1,2

fn
(〈S j · S j+n〉M − 〈S j · S j+n〉M=0

)
, (2)

where 〈· · · 〉M denotes the expectation value at the magnetiza-
tion M and · · · indicates the spatial average (i.e., the average
over j). This expression indicates that the magnetostriction
ε = �L/L is a useful probe to detect local spin correlations
〈S j · S j+n〉M , although there are unknown coefficients fn. For
the sake of simplicity, we have neglected the contribution of
the interchain coupling J5; by including it, the change in the
local spin correlation on the J5 bond will be added to Eq. (2)
with a coefficient 2 f5/k′.

As Eq. (2) is similar to the expression of the spin-
interaction energy Eint (i.e., the expectation value of the
Heisenberg interaction part of the Hamiltonian), it is interest-
ing to compare Eint with the measured �L/L. Exploiting the
thermodynamic relation ∂Eint

∂M = H , the spin-interaction energy
relative to the zero-field case can be obtained from the mag-
netization data (M vs H) via

�Eint(M ) ≡ Eint(M ) − Eint(0) =
∫ M

0
H (M ′)dM ′. (3)

FIG. 3. (a) Magnetostriction �L/L and the spin-interaction en-
ergy �Eint of LiCuVO4 at 1.5 K vs magnetic field. Both quantities are
normalized to 1 at saturation. The spin-interaction energy is obtained
from the magnetization reported in Ref. [28] through relation (3).
(b) Logarithmic plot of �L/L and �Eint vs M. Dashed lines show
power-law fits ∝M p with p = 1.32 for �L/L and p = 1.55 for �Eint

(fit range is 0.4 � M/Msat � 0.7).

�L/L and �Eint are shown in Fig. 3, where both quantities
are normalized to 1 at saturation. As seen in Fig. 3(a), the two
curves exhibit an overall similar field dependence. A small
deviation is found in the intermediate SDW phase between
Hc2 and Hc3. This indicates that the exchange-striction model,
Eqs. (1) and (2), is a good approximation to describe the
magnetoelastic properties of LiCuVO4. We note that both
�L/L and �Eint show a kink around Hc3; the kink in �Eint

is consistent with the theoretical picture of Ref. [25].
To analyze further the slightly different behavior of �L/L

and �Eint, we plot them as a function of M/Msat in logarithmic
scales in Fig. 3(b). Our motivation for this plot stems from
the fact that the power-law relation �L/L ∝ M p has been
observed in a variety of magnetic materials: with p = 2 in
conventional antiferromagnets, p = 1 in spin-dimer systems
[37,38], and p = 1.3 in the distorted kagome-lattice magnet
volborthite, Cu3V2O7(OH)2 · 2H2O [36]. Here, p = 2 can be
understood from a classical canted antiferromagnetic order,
in which Si = S(sin θ cos q · ri, sin θ sin q · ri, cos θ ), with θ

and q being the canting angle and the propagation vector,
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FIG. 4. Comparison of the spin-interaction energy �Eint per spin
extracted from the experimental data with the DMRG results with
and without the interchain coupling J5.

respectively. This gives

Si · S j = S2(sin2 θ cos q · ri j + cos2 θ )

= (S2 − m2) cos q · ri j + m2, (4)

with m = Sz
i = S cos θ and ri j = ri − r j . p = 1 in spin-dimer

systems is also comprehensible from the fact that the mag-
netization M and the change in the intradimer correlations
〈Si · S j〉M are both proportional to the number of triplons.
The unusual power p = 1.3 in volborthite could thus be
interpreted as a result of strong quantum fluctuations in a
low-dimensional frustrated magnet. As shown in Fig. 3(b), our
data fit well to the relations �L/L ∝ M1.32 and �Eint ∝ M1.55

in the SDW phase. We will use these power-law relations as a
guide to compare the experimental and numerical results. The
exponents p = 1.32 and 1.55 are significantly different from
that of conventional antiferromagnets; the former agrees with
that for volborthite. This indicates a crucial role of quantum
fluctuations in LiCuVO4 due to its quasi-1D nature.

B. Comparison with numerical results

In Fig. 4, we compare the spin-interaction energy �Eint per
spin extracted from the experimental data with the DMRG
results with and without the interchain coupling J5. Here,
the DMRG calculations were carried out for the pure 1D
J1-J2 model to obtain the spin-interaction energy without
J5. The energy including J5 was obtained in a mean-field
manner, i.e., by simply adding 2J5(M/2Msat )2 to the en-
ergy per spin of the pure 1D model [33]. The DMRG
results modified by J5 show a very good agreement with
the experiment even without normalization for the vertical
axis. The agreement is expected since �Eint is related to
the magnetization via Eq. (3), and we have adjusted the
value of J2 in such a way that the DMRG result modified
by J5 can best reproduce the experimental magnetization
(Appendix B).

In Fig. 5, we compare the experimental magnetostriction
data with the DMRG results of the local spin correlations

FIG. 5. Comparison of the magnetostriction results with the
DMRG analyses on the local spin correlations 〈Si · S j〉M −
〈Si · S j〉M=0 on the J1 and J2 bonds and the spin-interaction energy
�Eint. Here, all the quantities are normalized between 0 and 1, which
correspond to the zero-field case and the saturation, respectively.

〈Si · S j〉M − 〈Si · S j〉M=0 on the J1 and J2 bonds and the
spin-interaction energy �Eint. Here, all the quantities are nor-
malized between 0 and 1, which correspond to the zero-field
case and the saturation, respectively. We calculated the local
spin correlations in the finite chains with up to 168 spins and
eliminated the finite-size and boundary effects from the data
in order to obtain the estimates of 〈Si · S j〉M on the J1 and
J2 bonds in the thermodynamic limit. (See Appendix A for
details of the analysis.) We also present the DMRG and ED
results of the local spin correlations 〈Si · S j〉M on the J1 and
J2 bonds without normalization in Fig. 6.

Notably, in Fig. 5, the normalized spin correlations on
the J1 and J2 bonds show quite similar behavior. This is
remarkable as J1 and J2 are ferromagnetic and antiferromag-
netic, respectively, and the correlations have opposite signs
at low fields, as seen in Fig. 6. While we do not have a
physical explanation for this behavior, it has the convenient
consequence that any linear combination of the two local
correlations shows similar behavior if normalized. Indeed, in
Fig. 5, the DMRG data for the spin-interaction energy �Eint

also behave similarly to the local spin correlations although it
contains the small mean-field contribution of the interchain
coupling J5. In contrast, the experimental magnetostriction
data, �L/L, which is also expected to be described by the
local spin correlations on the J1 and J2 bonds according to
Eq. (2), show a clear deviation in the SDW phase between
Hc2 and Hc3. This deviation cannot be explained even if we
include a small contribution of the correlation on the J5 bond,
as we explain in the following. The calculated data in Fig. 6
are described well by the relation

〈Si · S j〉M − 〈Si · S j〉M=0 ∝ M p, (5)

with p = 1.82, 1.74, and 2 for the J1, J2, and J5 bonds, re-
spectively. Note that the relation with p = 2 for the J5 bond
is automatically satisfied in the mean-field treatment of J5,
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FIG. 6. Local spin correlations 〈Si · S j〉M on the J1, J2, and J5

bonds calculated using DMRG and ED. Solid lines show the scaling
[Eq. (5)] with p = 1.82, 1.74, and 2 for the J1, J2, and J5 bonds,
respectively [39]. In the ED results, symbols with small, medium,
and large sizes correspond to the cases of 20, 24, and 28 spins,
respectively [screw boundary conditions [40] with (Lx, Ly ) = (5, 4),
(6,4), and (7,4) as described in Appendix B].

and it is confirmed well in the ED result for the 2D model. A
linear combination of the correlations (Fig. 6) cannot lead to
the scaling of the magnetostriction �L/L ∼ M1.32 in the SDW
phase [Fig. 3(b)] as long as the contribution of the correlation
on the J5 bond is so small that the mean-field treatment is
valid. Furthermore, such a linear combination cannot explain
the kinklike features of the magnetostriction around the field-
induced transition points Hc2 and Hc3 (Fig. 5).

The above consideration indicates a missing contribution in
the magnetostriction. Such a contribution should be sensitive
to the field-induced phase transitions as observed experimen-
tally. A more refined treatment of the interchain coupling J5

beyond the mean-field approximation might be required. It
would also be important to investigate the effects of additional
terms such as exchange anisotropy and DM interactions in
the spin Hamiltonian and in the exchange-striction mechanism
described by Eqs. (1) and (2).

IV. SUMMARY

We studied the magnetoelastic properties of the quasi-
one-dimensional spin- 1

2 frustrated magnet LiCuVO4 using
magnetostriction experiments and numerical analyses. Mag-
netostriction measurements of LiCuVO4 in high magnetic
fields up to 60 T applied along the b axis (1D spin-chain
direction) show a monotonous increase of �L/L reaching
a sizable value �L/L ≈ 1.8 × 10−4 at the saturation field
Hsat ≈ 54 T. Both the magnetostriction and the magnetization
[28] evolve in a similar way between Hc3 ≈ 48 T and Hsat ≈
54 T, which indicates that both quantities consistently detect
the 3D spin-nematic phase just below saturation. Our results
were discussed within the exchange-striction mechanism. The
DMRG and ED analyses on the local spin correlations and

spin-interaction energies for the J1-J2(-J5) spin-chain model
show a good agreement with the experimental observations.
Small deviations found may indicate nontrivial changes in
local correlations associated with field-induced phase tran-
sitions. A more refined treatment of the interchain coupling
or additional interactions such as DM interactions would be
needed to explain the magnetoelastic properties of LiCuVO4

in more detail. As our results reveal the importance of the
magnetoelastic coupling, it would be interesting to reconsider
the contribution of the lattice to the multiferroic properties of
LiCuVO4, which is under debate [15,30].
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APPENDIX A: DMRG CALCULATIONS

We performed DMRG calculations for the pure 1D J1-J2

Heisenberg model with the Hamiltonian given by

H1D = J1

∑
j

S j · S j+1 + J2

∑
j

S j · S j+2. (A1)

We set J1 : J2 = −0.42 : 1 as explained in Sec. II. The number
of spins was up to N1D = 168 and open boundary conditions
were imposed.

Using DMRG, we calculated the lowest-energy state in
each subspace characterized by the z component of the to-
tal spin, Sz

tot = ∑
j Sz

j . We then computed the lowest energy
E1D

int (m) and the local spin correlations 〈S j · S j+n〉(o)
m (n =

1, 2), where m = Sz
tot/N1D and 〈· · · 〉(o)

m denotes the expectation
value with respect to the lowest-energy state in the subspace
with Sz

tot = N1Dm in the system under the open boundary
conditions. Note that m relates to the magnetization M in the
main text as M = NgμBm, where N is the number of Cu2+

ions. The number of density matrix eigenstates kept in DMRG
that is required for achieving a sufficient accuracy depends on
N1D and Sz

tot. In our calculation, we kept up to 600 states in
the most severe case and the truncation error (the sum of the
density matrix weights of discarded states averaged over the
last sweep) was at most 6 × 10−7. We thereby confirmed that
the calculation was accurate enough for our argument.

The magnetization, which will be discussed in
Appendix B, was obtained from the data of E1D

int (m) by finding
m that minimizes E1D

int (m) − hN1Dm for each h = gμBH .
We found that Sz

tot appearing in the magnetization curve
was all even except for the single case of Sz

tot = 1. This
observation indicates the formation of bound magnon pairs
for Sz

tot � 2. We note that this is consistent with the known
result that the J1-J2 Heisenberg chain with J1 < 0, J2 > 0,
and J1/J2 � −1 exhibits the Haldane dimer phase for m = 0
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FIG. 7. (a) Local spin correlations 〈S j · S j+n〉(o)
m (n = 1, 2) for

N1D = 168 and m = 48/168. Open and solid symbols respectively
represent the DMRG data and fits using Eqs. (A2) and (A3). Solid
lines connecting the fits are guides to the eye. (b) The DMRG data
of 〈S j · S j+n〉(o)

m for m = 0. The data for N1D = 96 are shown to
demonstrate oscillations with a four-site period. We observed similar
four-site period oscillations also for N1D = 120 and 168. Dashed
lines connecting the data points are guides to the eye.

and the bimagnon TLL phase for 0 < m < 1/2, while the
range of the vector-chiral phase in between them, if any,
is too narrow to be detected in the numerical calculation
[2,3,41,42]. We consider only the states with even Sz

tot in the
following analysis of the local spin correlations.

In Fig. 7, we present the DMRG data of the local spin
correlations 〈S j · S j+n〉(o)

m (n = 1, 2). Since the translational
symmetry is broken by the open boundary conditions, the lo-
cal spin correlations contain sizable contributions of boundary
oscillation. We then found that, as shown in Fig. 7(a), the local
spin correlations for Sz

tot = N1Dm � 2 were reproduced by the
formulas

〈S j · S j+1〉(o)
m = c1 + c′

1
(−1) j cos [Q( j + 1/2)]

[ f (2 j + 1)]K , (A2)

〈S j · S j+2〉(o)
m = c2 − c′

2
(−1) j sin [Q( j + 1)]

[ f (2 j + 2)]K , (A3)

0 0.2 0.4

−0.4

−0.2

0

0.2c1
c2

m

N1D = 96
N1D = 120
N1D = 168

c1  c2

FIG. 8. Uniform parts of the local spin correlations, c1 and c2, as
functions of m. These were obtained from the fitting of the DMRG
data of 〈S j · S j+n〉(o)

m for N1D = 96, 120, and 168 with Eqs. (A2) and
(A3) as shown in Fig. 7(a).

with

f (x) = 2(N1D + 1)

π
sin

(
π |x|

2(N1D + 1)

)
, (A4)

that were derived as the expressions of the local energy den-
sity of the bimagnon TLL under open boundary conditions
[2,43,44]. The wave number Q relates to m via the density of
bimagnons ρ as

Q = 2πN1D

N1D + 1

(
ρ − 1

2

)
, (A5)

ρ = 1

2

(
1

2
− m

)
. (A6)

We performed the least-squares fitting of the DMRG data
of 〈S j · S j+n〉(o)

m (n = 1, 2) for N1D/4 + 1 � j � 3N1D/4 − n
with Eqs. (A2) and (A3) by taking cn, c′

n, and K as fit pa-
rameters. We thereby determined the uniform parts of the
correlations c1 and c2 and employed them as the estimates of
the local spin correlations 〈Si · S j〉M on the J1 and J2 bonds
discussed in the main text [45].

For Sz
tot = 0, where the system is in the Haldane-dimer

phase [42], the local spin correlations are not described by
formulas (A2) and (A3). Instead, we found that the correla-
tions oscillated with a four-site period as shown in Fig. 7(b).
We hence took the average of the correlations at four bonds
around the center of the chain as the estimates of the uniform
parts of the correlations.

Figure 8 shows the uniform parts c1 and c2 of the local
spin correlations for N1D = 96, 120, 168 as functions of m.
The data exhibit a smooth behavior and the dependence on
the system size N1D is negligibly small. We thus used the
data of c1 and c2 for N1D = 168 as the estimates of the local
spin correlations 〈Si · S j〉M on the J1 and J2 bonds in the
thermodynamic limit.

APPENDIX B: MAGNETIZATION

The magnetization was calculated using the DMRG
and ED methods for the J1-J2-J5 spin-chain model with

014411-6
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FIG. 9. Comparison of the magnetization data of LiCuVO4 from
Ref. [28] with the DMRG and ED results for the J1-J2-J5 spin-chain
model. Numerical results are presented for the cases with and without
the interchain coupling J5 to highlight its effect. In the DMRG result,
J5 is treated in a mean-field manner via a shift of the magnetic
field by 4J5(M/2Msat )/gμB for each data point. For a ferromag-
netic interchain coupling J5 < 0, this treatment results in a small
region near the saturation in which M/Msat is multivalued, as seen
in the figure; this should be regarded as an artifact of the mean-field
treatment.

J1 : J2 : J5 = −0.42 : 1 : −0.11, J2 = 4.0 meV, and g =
2.095. The model can conveniently be defined on an ap-
proximate rectangular lattice with the primitive vectors u =
(b/2, 0) and v = (0, a). The J1, J2, and J5 interactions connect
spins separated by the vectors u, 2u, and ±u + v, respectively.
The DMRG calculations were performed for the pure 1D
J1-J2 model with N1D = 168 spins, and the interchain cou-
pling J5 was taken into account in a mean-field manner [33].
Namely, at fixed m = Sz

tot
N1D

, the ground-state spin-interaction
energy per spin E1D

int (m)/N1D is modified by an additive cor-
rection of 2J5m2. Correspondingly, in the magnetization (m

vs h = gμBH = 1
N1D

∂E1D
int (m)
∂m ), h is modified by an additive

correction of 4J5m. In contrast, the ED calculations were
performed directly for the 2D model with 28 spins. To reduce
the finite-size effects in ED, we adopted a screw boundary
condition [40], in which spins separated by Lxu + v and Lyv
with (Lx, Ly) = (7, 4) were identified.

In Fig. 9, the measured magnetization [28] and the DMRG
and ED results are shown together. Here, the numerical results
are presented for the cases with and without the interchain
coupling J5 to highlight its effect. We find a good agreement
between the experimental data and the numerical results with
J5 coupling, which supports the present model. Furthermore,
the agreement between the DMRG and ED results demon-
strates the effectiveness of the mean-field treatment of J5 in
the DMRG calculations.
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