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Micromagnetic instabilities in spin-transfer switching of perpendicular magnetic tunnel junctions

Nahuel Statuto ,1 Jamileh Beik Mohammadi,2 and Andrew D. Kent 1

1Center for Quantum Phenomena, Department of Physics, New York University, New York, New York 10003, USA
2Department of Physics, Loyola University New Orleans, New Orleans, Louisiana 70118, USA

(Received 8 September 2020; revised 20 October 2020; accepted 19 November 2020; published 7 January 2021)

Micromagnetic instabilities and nonuniform magnetization states play a significant role in spin-transfer
induced switching of nanometer scale magnetic elements. Here we model domain wall mediated switching
dynamics in perpendicularly magnetized magnetic tunnel junction nanopillars. We show that domain wall surface
tension always leads to magnetization oscillations and instabilities associated with the disk shape of the junction.
A collective coordinate model is developed that captures aspects of these instabilities and illustrates their physical
origin. Model results are compared to those of micromagnetic simulations. The switching dynamics are found
to be very sensitive to the domain wall position and phase, which characterizes the angle of the magnetization in
the disk plane. This sensitivity is reduced in the presence of spin torques, and the spin current needed to displace
a domain wall can be far less than the threshold current for switching from a uniformly magnetized state. A
prediction of this model is conductance oscillations of increasing frequency during the switching process.
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I. INTRODUCTION

Spin-transfer torque magnetization switching has been ex-
tensively studied since it was first predicted theoretically [1–3]
and demonstrated experimentally in spin-valve nanopillars
[4]. The magnetic anisotropy of the free layer plays an im-
portant role in setting the switching current; materials with
a uniaxial anisotropy exhibit far more efficient spin-transfer
switching [5]. This has led to research on the easy axis
perpendicular to the plane free layers. Advances include the
demonstration of spin-transfer switching in perpendicularly
magnetized spin-valve nanopillars [6,7] and perpendicularly
magnetized magnetic tunnel junctions [8,9]. When the free
layer is in the shape of a disk there is axial symmetry that
simplifies the analysis of the magnetization dynamics. Thus,
recent research has focused on understanding the magnetiza-
tion switching mechanisms in this high-symmetry situation
[10–12]. Perpendicular magnetic tunnel junctions nanopillars
(pMTJs) are also under intense development for applications
as magnetic random access memory (MRAM) [13–16].

Such junctions consist of thin ferromagnetic metallic
layers, one with a magnetization free to reorient and the
other with a fixed magnetization direction separated by a
thin insulating barrier. The junction-stable magnetic states
are layers magnetized parallel (P state) or antiparallel (AP
state) and have conductances that differ by a factor of 2
(or more) with CoFeB electrodes and an MgO insulating
barrier [17–19]. Current flow through the junction leads to
spin-transfer torques on the free layer magnetization that can
switch it between magnetic states. In the macrospin limit—
where the switching between these states is by coherent spin
rotation—there are analytic models that characterize the ther-
mally activated switching [14,20,21] and spin-transfer driven
switching [5,22,23].

However, experiments suggest that the magnetization re-
verses nonuniformly, and the reversal process appears to be
reversed domain nucleation and expansion by domain wall
(DW) motion [10–12]. This is confirmed by micromagnetic
modeling, which shows that the assumption of a coherent
magnetization reversal does not capture the switching dynam-
ics above a critical diameter set by the exchange interaction
strength, magnetic anisotropy, and magnetization [24–26]
dc = (16/π )

√
A/Keff , where A is the exchange constant

and Keff (d ) = Kp − μ0M2[3Nzz(d ) − 1]/4 is the diameter-
dependent effective anisotropy. Here Kp is the perpendicular
magnetic anisotropy, μ0 the permeability of free space, M is
the magnetization, and Nzz(d ) is the demagnetization coeffi-
cient perpendicular to the plane of the free layer that depends
on the element’s diameter d and its thickness [20]. For state-
of-the-art pMTJs the critical diameter dc can be just 10 to
30 nm, as the exchange constant of the thin CoFeB free layer
can be much less than the bulk value [27]. As the diame-
ter increases beyond dc for fixed-current overdrive j/ jc—the
current j divided by the threshold current for magnetization
switching jc—the switching time increases and the average
magnetization is a nonmonotonic function of time [25].

The micromagnetic simulation in Fig. 1 illustrates this
reversal process. The free layer’s spatially averaged perpen-
dicular (z axis) component of magnetization is plotted versus
time along with magnetization images at various times in
the reversal process. The reversal starts with the formation
of a reversed region in the center of the free layer which
then experiences a drift instability, leading to a domain wall
that traverses the element [25,26]. There are then magneti-
zation oscillations of increasing frequency as the reversed
domain expands to complete the reversal. This behavior ap-
pears generic to reversed domain expansion by domain wall
motion in a disk.
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FIG. 1. Time evolution of the spatially averaged normalized z-
axis disk magnetization during a nucleation process with j/ jc = 1.23
and d/dc = 1.95 (r1 = 15 nm). The other material parameters can
be found in Appendix 5. Snapshots show the disk magnetization
at different times indicated in the curve by red dots. The inset is a
schematic of the tunnel junction nanopillar.

This paper addresses the origin of the magnetization oscil-
lations in the switching process, both with an analytic model
and micromagnetic simulations. A model for the collective
coordinates of a domain wall in a disk is developed and
its solutions are illustrated. The origin of the magnetization
oscillations is shown to be Walker breakdown associated with
domain wall surface tension, which produces an effective
force on the domain wall that varies with its position. Micro-
magnetic simulations are used to test the model and determine
features of the collective coordinate model that are preserved
as more spin degrees of freedom are considered. We also
discuss the implications of these micromagnetic instabilities
on magnetic tunnel junction characteristics and propose ex-
periments to observe this phenomena.

The structure of the paper is as follows. Section II intro-
duces the analytic model and its solutions for magnetization
relaxation from different initial states. Section III presents
micromagnetic simulations that are compared to the analytic
model. In Sec. IV, the effect of a spin current is studied. In
Sec. V, some of the experimental consequences of the model
are described. The main results are then summarized. The Ap-
pendices include more details on the derivation of the analytic
model (Appendix Secs. 1–3) and micromagnetic simulations
(Appendix Secs. 4–5).

II. ANALYTIC MODEL

The starting point for our analysis is the Landau-Lifshitz-
Gilbert (LLG) equation with a spin-torque term:

ṁ = −γμ0m × Heff + αm × ṁ + aI m × (m × p), (1)

where m is a unit vector in the direction of magnetization of
the free layer, γ is the gyromagnetic ratio, μ0 is the permeabil-
ity of free space, and Heff is the effective field. The effective
field is the variational derivative of the energy density U
with respect to the magnetization μ0Heff = −(1/M )δU/(δm),
where M is the magnetization of the free layer. The second
term on the right is the damping term, where α is the Gilbert
damping constant (α � 1). The last term on the right-hand
side is the spin-transfer torque, p is the direction of the spin
polarization, and aI is proportional to the spin current aI =
h̄P j/(2eMt ), where j is the current density, h̄ is the reduced

r1
r
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FIG. 2. (a) Schematic of a reversed domain in a thin disk of
radius r1. The domain boundary–the red line–is characterized by its
position from the center of the disk q and the angle of the mag-
netization from the boundary normal φ. The curvature of the DW
is represented by radius r2. (b) Energy of the DW as a function of
position in the disk normalized to its energy U0 at q = 0, its energy
at the center of the disk.

Planck’s constant, P is the spin polarization of the current, and
t is the thickness of the free layer.

The magnetization texture can be written in cylindrical co-
ordinates with the origin at the center of the arc characterizing
the DW (i.e., radius r2 in Fig. 2(a)):

mz(r) = − tanh[(r − r2)/�],
mr (r) = cos φ/ cosh[(r − r2)/�],
mθ (r) = sin φ/ cosh[(r − r2)/�], (2)

where r is measured from the center of this same circle. �

characterizes the width of the domain wall; the full width of
the domain wall is typically taken to be π� [28].

The magnetic energy density is given by

U = A
[
(∇mx )2 + (∇my)2 + (∇mz )2] − Keffm

2
z , (3)

where A is the exchange constant of the material and Keff

is the effective perpendicular magnetic anisotropy, the
difference between the perpendicular uniaxial anisotropy and
demagnetizing energy (i.e., dipole-dipole interactions are
described by an average demagnetization field) [20]. The first
term on the right hand side of Eq. (3) is thus the exchange
energy and the second term is the magnetic anisotropy energy.
Energy minimization gives � = 2

√
A/Keff . The total energy

U is obtained by substituting the expressions for m in Eqs. (2)
into Eq. (3) and integrating it over the volume of the disk (see
Appendix 1):

U =
[
σDW + �μ0HN M

2
cos2 φ

]
t
, (4)

where 
 is the length of the domain wall. The first term on the
right in Eq. (4), σDW, is the energy associated with a Bloch
wall (φ = π/2) per unit wall area, σDW = 4

√
AKeff . The next

term is the added energy density associated with a Néel wall
(φ = 0). HN is the applied field normal to the DW that would
transform a Bloch wall into a Néel wall, HN ≈ tM/(t + π�)
(for 
 � �). We do not include a term in the energy
associated with the curvature of the DW (characterized by
radius r2) as this term only becomes significant when the
DW curvature is of order of its width. Under these conditions
the DW exits the sample and the model assumptions for the
domain wall energy no longer hold (see Appendix 2). The
energy of the domain wall is plotted versus q in Fig. 2(b). It
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FIG. 3. Domain wall dynamics in the (q, φ) model starting at t =
0 in a Bloch configuration (φ = π/2) with q/r1 = 0.06. The upper
panel shows q and the lower panel shows the phase, restricted to
[0, 2π ], as a function of time. There is no spin-polarized current or
applied magnetic field.

is thus clear that the shape of element leads to a conservative
force on the domain wall Fq = −∂U/∂q that tends to expel
the DW from the disk.

We derive an equation for the collective coordinates and
the generalized velocities of the DW in the disk from Eq. (1)
following the approach outlined in Ref. [29] (see Appendix 1
for further details). The DW coordinates (q, φ) satisfy a Thiele
equation, similar to that of a DW moving under the influence
of spin-transfer torque in a nanowire [11,29–31]:

φ̇ − α

�
q̇ + γ

2t
M

∂U
∂q

= 0, (5)

−q̇/� − αφ̇ + γμ0HN

4
sin 2φ − πaI

2
= 0, (6)

where an overdot indicates a derivative with respect to time.
The last term in Eq. (5) is proportional to the conservative
force Fq associated with the free layer’s shape denoted a
Laplace pressure [32] or a domain wall tension. Again, aI

is proportional to the current and the last term in Eq. (6)
is the spin-transfer torque on the domain wall due to the
spin-polarized current from the reference layer. Eq. (5) in-
dicates that the Laplace pressure tends to cause spins in the
domain wall to precess, while a spin torque couples directly
to the domain wall displacement [Eq. (6)]. The wall velocity
is related to HN and the spin-transfer torque with maximum
domain wall velocity (for φ = π/4 and no spin torque) given
by: vmax = �γμ0HN/4.

We illustrate the DW relaxation dynamics in Fig. 3. A
Bloch wall (φ = π/2) is started at a position just to the
right of the center of the disk, i.e., q � 0, and moves to the
right (average q increasing) with its position oscillating as a
function of time. The domain wall phase φ runs, indicating
precession of the spins in the DW. This behavior corresponds
to DW motion in the Walker breakdown limit, i.e., when
φ̇ �= 0 the domain wall position oscillates and moves at an
average velocity less than vmax. In the absence of a spin current
and in zero magnetic field the condition for Walker breakdown
is (see Appendix 1)

1

2t
M

∂U

∂q
� σDW

2Mt


d


dq
> α

μ0HN

4
. (7)

FIG. 4. Domain wall dynamics in the (q, φ) model starting from
q/r1 = 0.06 and different initial DW phases: Néel (φ = 0) and Bloch
(φ = π/2) and an intermediate phase, φ = π/4. Again, the applied
field and spin current are zero.

(d
/dq)/
 diverges as the domain wall reaches the element
boundary q � ±r1. Thus, the domain wall position always
oscillates in a magnetization reversal process that occurs by
reversed domain expansion in a disk, with an oscillation
frequency that increases as the domain wall approaches the
element boundary. This is the characteristic seen in the mi-
cromagnetic modeling in Fig. 1 for mz < 0, showing that the
collective coordinate model captures elements of the physics
of magnetization reversal that occurs by DW propagation.

Interestingly, the model further predicts nontrivial DW
dynamics and magnetic relaxation that depends sensitively
on the initial DW phase φ. Figure 4 shows DW dynamics
for the same initial position and different initial phases, and
plots the average z-magnetization mz and the total magnetic
energy versus time. The oscillation frequency and amplitude
vary significantly with time. This behavior is in contrast to
that of DW motion in a nanowire [30]. Surprisingly, the final
state changes with initial φ, for φ = 0 and φ = π/2 the mag-
netizaton relaxes to mz = −1, a down magnetized domain.
Whereas for φ = π/4 the magnetization relaxes to mz = +1,
an up magnetized domain, even from an initial state mz < 0.
Further, the relaxation time scale changes significantly with
the phase. This illustrates the important role of the DW phase
in the dynamics.

To explore this further a DW relaxation phase diagram was
computed from the analytic model. The final state (magneti-
zation up or magnetization down) is computed as a function of
q and φ. The results are shown in Fig. 5. The blue color repre-
sents magnetization relaxation to a down state (mz = −1) and
the red color represents magnetization relaxation to an up state
(mz = +1). The intricate pattern highlights the sensitivity to
the the initial DW position and phase. It is straightforward
to include the effect of an applied field which modifies the
pattern as discussed in Appendix 3.

III. MICROMAGNETIC MODEL

A basic question is to what extent this simple collective
coordinate model with two degrees of freedom (q, φ) captures
the DW dynamics in a ferromagnetic disk. The full problem
is much more complex and can include variations in the DW
curvature (i.e., that the DW is not rigid), its width as well as
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FIG. 5. Relaxation phase diagram showing the final magnetiza-
tion state as a function of the initial conditions for the analytic model.
Red represents a final state with magnetization up. Blue represents
magnetization down.

nonlocal magnetic dipole interactions that are not considered
in this simple model. For this reason, we performed micro-
magnetic simulations and compared them to our collective
coordinate model.

Micromagnetic simulations were performed using the open
source MUMAX3 code [33]. We model the magnetic disk
using the same parameters as in the analytic model (see
Appendix 5), and the initial states are two magnetically-
opposed domains with a DW at the same position as in
Fig. 2(a). Figure 6 shows the micromagnetic simulations for
the same initial conditions as those in Fig. 4. The central panel
shows the time evolution of the normalized disk magnetiza-
tion mz for reversed domains starting at the same position,
q/r1 = 0.06 with mz < 0, and at three different initial domain
wall phases. For Néel and Bloch configurations, φ = 0 and
π/2 respectively, the system relaxes towards the down mag-
netic state whereas for an intermediate angle φ = π/4, the
orange curve, the up magnetic domain expands, resulting in
switching of the disk magnetization. The top two panels show
snapshots of the magnetization at different times for the initial
Néel configuration and the initial intermediate, φ = π/4, con-
figuration; the upper panel shows a relaxation process and the
lower panel shows a case in which the magnetization switches.
Moreover, the bottom panel shows the time evolution of the
phase in the initial Bloch configuration, which was calculated
from the magnetization vector images. The phase, as in Fig. 4,
oscillates from 0 to 2π , indicating that the DW spins are
oscillating as a function of the time and their frequency is
increasing as the domain is expelled from the edge of the disk.
The same behavior is obtained no matter the initial phase:
the magnetization oscillates, the magnetic domain breathes,
and the domain wall moves back and forward, indicating that
the system is in the Walker breakdown regime as seen in our
analytic model.

While there are differences in the timescales, the overall
domain dynamics is captured by our analytic model. Impor-
tantly, they confirm that there are oscillations in the DW
position and the phase runs, as in our analytic model. The
micromagnetic simulations also corroborate the very sensitive

Switch:

Relaxation:

t=0.0ns 0.1ns 1.6ns 5.2ns 8.0ns

t=0.0ns 0.1ns 0.8ns 1.4ns 2.5ns

=0

= /4

FIG. 6. Time evolution of mz for the same initial DW position
but different initial phases φ. We simulate a CoFeB disk with radius
15 nm and thickness 2.3 nm with q/r1 = 0.06 nm, with no spin
current or applied magnetic field. Starting from both Néel (φ = 0)
and a Bloch DW (φ = π/2) the disk relaxes to down state. Whereas,
for an initial phase of φ = π/4, the magnetization relaxes into
an up state for the same initial DW position. The bottom panel
shows the time evolution of the Bloch DW’s phase, which oscillates
with an increasing frequency as the domain is expelled to the edge
of the disk. In the relaxation panels, starting from a Néel DW (φ =
0), the disk relaxes to down state. Whereas in the panels labeled
switch the initial phase is φ = π/4 and relaxation is to an up state
for the same initial DW position. White arrows indicate the direction
of the DW displacement.

dependence of domain dynamics on the initial conditions as
the DW approaches the center of the disk.

To examine this in more detail, the relaxation dynamics
were computed for a wide range of initial conditions, and the
results again used to construct a relaxation phase diagram.
Figure 7(a) shows this micromagnetic (q, φ) phase diagram
where we use the same color scale as that in Fig. 5 and blue,
orange, and green dots represent the initial conditions for the
curves in Fig. 6.

This pattern is compared to that of the collective coordi-
nate model in Fig. 7(b). The collective coordinate model is
more intricate, with many red/blue boundaries, showing a
stronger dependence on initial conditions. Nonetheless, there
are similarities. There is a blue region for small values of q
where the domain relaxes, and a red region in which switching
is observed. In addition, the switching pattern is not mirror
symmetric with respect to the initial phase. We attribute the
asymmetry toward negative angles to the sense of gyroscopic
motion. Depending on the initial phase, the DW will oppose
or favor the rotation of the magnetic domain, resulting in
switching if the initial state favors the rotation.
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FIG. 7. (a) Relaxation phase diagram as a function of q and φ

with no spin current or field applied. We simulate a disk of radius
15 nm for different initial domain sizes and different initial DW
phases. The color scale indicates the normalized magnetization of
the final state, where blue represents relaxation to a down domain
and red that the magnetization switches. The blue, orange and green
dots (q/r1 = 0.06 and φ = 0, π/4, and π/2) show the parame-
ters used in Fig. 6. (b) Relaxation phase diagram for the (q, φ)
model. An asymmetry can be observed between positive and negative
angles.

IV. DYNAMICS DRIVEN BY SPIN-POLARIZED CURRENT

We now consider the influence of a spin current from a
perpendicularly magnetized polarizing layer p = ẑ on the DW
dynamics. The spin-current threshold, ac, needed to obtain a
complete switch starting from a uniform state is related to the
material parameters and can be derived from Eq. (1) to be
ac = αγμ0Hk , where Hk is the perpendicular anisotropy field
of the disk, μ0 Hk = 2Keff/M. Our micromagnetic modeling
shows that, for parameters typical of state-of-the-art magnetic
tunnel junctions (see Appendix 5), there is reversal by forma-
tion of a single domain wall for 1 < d/dc < 2 [25].

In our analysis of the magnetic dynamics we consider that
a single DW has already formed in the disk and model its
relaxation as in previous sections, but now in the presence
of a spin-polarized current. Figure 8(a) shows a (q, φ) phase
diagram calculated with micromagnetic simulations for the
same parameters used in Fig. 7 with a spin current, aI/ac =
0.1. As in the relaxation phase diagram, the final state seems
to be sensitive to initial parameters. However, even in the
presence of a small current (relative to the threshold current
ac), the parameters region resulting in a switched final state

FIG. 8. (a) Relaxation phase diagram as a function of q and φ

for a spin current aI/ac = 0.05, i.e., 5% of the threshold current for
switching starting from a uniform magnetization state. We simulate a
15 nm radius disk for different initial DW positions and phases. The
color scale is the same as in Fig. 7. (b) Relaxation phase diagram for
the parameters q and φ calculated with the (q, φ) model for aI/ac =
0.07.

(red region) becomes bigger. This behavior is also captured by
the analytic model in Fig. 8(b), where the effect of the current
is more evident. A small spin current, aI/ac = 0.07, increases
the region with a switched final state (red region). A current
of aI/ac = 0.15 eliminates the sensitivity to initial conditions
and, for q/r1 � 0.4, the dynamics results in switching.

To more fully characterize the effect of spin current, we
calculate the current needed for switching for different initial
conditions. Figure 9 shows the current needed to switch the
disk’s magnetization as a function of the size of the initial
domain for three fixed initial phases φ = 0, π/4, and − π/2
(horizontal lines in Fig. 7(b)). We calculate the minimum
current needed to switch the magnetization, which for some
initial conditions is zero since the horizontal lines in Fig. 7(b)
cross a red area. For each initial phase there is a threshold
for the size of the domain that separates the two different
behaviors as a function of the current. For larger q/r1, the
switching current increases monotonically when the size of
the domain is reduced, whereas for bigger domains, small
q/r1, regions can be found that switch without current, which
correspond with the red regions in Fig. 7(b). Similar behavior
for the minimum current needed to switch the magnetization
was observed in micromagnetic simulations that are shown in
Appendix Sec. 5.
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FIG. 9. Switching current as a function of the initial position of
the DW for three different initial phases. Each point indicates the
minimum current required for magnetization switching.

V. EXPERIMENTAL CONSEQUENCES

The reversal mode and the micromagnetic instabilities will
influence a pMTJ’s electrical response to voltage pulses. This
is because the junction conductance is related to the position
of the DW. To a good approximation (neglecting the finite area
of the DW) the junction conductance depends on the area of
the reversed domain:

G = gPA↑ + gAPA↓, (8)

where gP and gAP are the specific junction conductances when
magnetized in the parallel and antiparallel to the reference
layer, respectively [units of 1/�m2]. As the area of the disk
(again, neglecting the finite area of the wall) is A = A↑ + A↓:

G = (gAP − gP)A↓ + gPA. (9)

The last term gPA is independent of time and, since we are
interested in the time dependence of the conductance, we do
not need to consider it further.

This shows that the conductance is proportional to area A↓.
This area is in turn directly related to the normalized per-
pendicular magnetization of the disk, A↓ = A(mz/2 + 1/2).
Therefore, a measurement of the conductance versus time
during switching would show the same behavior as mz versus
time, e.g., that shown in Figs. 3 and 6. We note that our
model does not include noise, such as thermal fluctuations,
which are present in experiments. Noise is expected to blur the
relaxation boundaries in the phase diagrams (e.g., in Figs. 5,
7, and 8). However, we predict that conductance oscillations
will be a feature of single-shot time resolved studies (which do
not represent the ensemble average magnetization response,
only single-switching events) and perhaps be more prevalent
in experiments conducted at low temperatures, such as like
those in Ref. [34].

Direct imaging experiments may also be possible, but are
challenging at the length and time scales involved in these
processes [35]. Single-shot time resolved electrical studies
would seem to be a promising means of observing these insta-
bilities. The key model prediction is conductance oscillations
that vary in frequency, increasing as the reversal proceeds to
completion. In addition the model predicts that, once a DW is

nucleated, lower spin currents can be used to displace it and
reverse the magnetization.

VI. SUMMARY

In summary, we have considered the DW mediated mag-
netization switching of a disk in the presence of spin-transfer
torques; a geometry highly relevant to state of the art mag-
netic random access memory based perpendicular magnetized
magnetic tunnel junctions. The results show a great sensitivity
to initial conditions and, in particular, to the DW phase. An
analytical model shows that DW surface tension leads to DW
motion in the Walker breakdown limit. Key features of a sim-
ple collective coordinate model are found in micromagnetic
simulations, including sensitivity to initial conditions and DW
oscillations in the reversal process. These effects should be
observable in experiments through measurements of tunnel
junction conductance versus time. However, noise or other
factors may modify the dynamics in real tunnel junctions. For
example, noise can reduce the sensitivity to initial conditions,
and DW pinning associated with spatial variations in material
parameters (e.g., anisotropy, magnetization, etc.) will also
effect the dynamics. These effects can be included in more
realistic models that build on this research.
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APPENDIX

1. Collective coordinate model

An equation for the collective coordinates, ξ j and the gen-
eralized velocities ξ̇ j , of a domain wall in a disk can be derived
from Eq. (1) following the approach outlined in Ref. [29],

Gi j ξ̇ j + Fi − �i j ξ̇ j + Sφ = 0, (A1)

where

Gi j (ξ ) = J
∫

�

m ·
(

∂m
∂ξi

× ∂m
∂ξ j

)
dV , (A2)

Fi(ξ ) = −
∫

�

∂U

∂ξi
dV = −∂U

∂ξi
, (A3)

�i j (ξ ) = αJ
∫

�

(
∂m
∂ξi

)
·
(

∂m
∂ξ j

)
dV, (A4)

Si(ξ ) = aI J
∫

�

(
∂m
∂ξi

)
· (m × p)dV, (A5)

where � is the region occupied by the ferromagnet, J is
the angular momentum density, J = M/γ , and U is the total
energy of the system. The spin polarization is chosen to be
perpendicular to the plane of the disk, p = ẑ, in what follows.
Substituting the magnetization texture of Eq. (2) into Eqs.
(A2–A5) and integrating gives the coefficients in Eq. (A1) and
resulting Eqs. (5) and (6) in the main text.
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To solve Eqs. (5) and (6) numerically, we rewrite them in
the form

dy
dt

= F(y, t ), (A6)

that is, we want the differential equations in a form in which
there are no explicit time derivatives on the right hand side.

We thus rewrite Eqs. (5) and (6) as follows:

(1 + α2)φ̇ = −γ

2t
M

∂U
∂q

+ α
[γμ0HN

4
sin 2φ − πaI

2

]
, (A7)

(1 + α2)q̇/� = γμ0HN

4
sin 2φ − πaI

2
+ α

γ

2t
M

∂U
∂q

. (A8)

To make the equations simpler we redefine the time as fol-
lows: t̃ = t/(1 + α2) and

dφ

dt̃
= (1 + α2)

dφ

dt
. (A9)

If we now write derivatives with respect to t̃ as φ′ and q′, the
equations of motion become

φ′ = −γ

2t
M

∂U
∂q

+ α
[γμ0HN

4
sin 2φ − πaI

2

]
, (A10)

q′/� = γμ0HN

4
sin 2φ − πaI

2
+ α

γ

2t
M

∂U
∂q

. (A11)

Walker breakdown corresponds to φ′ �= 0. The first term on
the right-hand side of Eq. (A11) indicates that the domain wall
position q oscillates when φ′ �= 0. The condition for Walker
breakdown, Eq. (7) in the main text, follows from Eq. (A10)
with aI = 0.

Eq. (A11) shows that, in the absence of a spin torque
(aI = 0) and for magnetic fields less than the Walker break-
down field, the wall velocity is set by the phase φ. The
maximum velocity occurs when φ = π/4 and is vmax =
�γμ0HN/4. This is the maximum velocity before Walker
breakdown and we can write Eq. (A11) as

q′

�
= vmax sin 2φ

�
− aIπ/2 + α

γ

2t
M

∂U
∂q

. (A12)

2. Domain wall curvature

As noted in Sec. II, there is a term in the energy density
associated with the curvature of the DW. This term comes
from the exchange energy, the first term on the right-hand side
of Eq. (3). Including this term, Eq. (A13) becomes

U =
[
σDW + �μ0HN M

2
cos2 φ + 2�A

r2
2

]
t
. (A13)

This term leads to an infinite energy when q = ±r1, i.e., when
the domain wall is at the boundary of the element. However,
this energy only becomes important when the the DW is
within its width � of the edge of this disk. In this case, the
DW energy can decrease as the wall exits the disk. As a result,
the DW energy is always finite, and we can neglect this energy
term in our analysis.

FIG. 10. Relaxation phase diagram showing the final magneti-
zation state as a function of the initial conditions for the analytic
model in the presence of an applied field. (a) Field in the −z direction
and (b) field in the +z direction. In both cases the applied field
magnitude is half the coercive field H = Hc/2 and the spin current
is zero. Red represents a final state with magnetization up, and blue
magnetization down.

3. Applied Field

It is straightforward to include applied magnetic fields in
the model. An applied field H in the z direction leads to the
following set of equations of motion:

φ′ = −γμ0H − γ

2t
M

∂U
∂q

+ α
[γμ0HN

4
sin 2φ − πaI

2

]
,

(A14)

q′/� = γμ0HN

4
sin 2φ − πaI

2
+ α

[
γ

2t
M

∂U
∂q

+ γμ0H

]
.

(A15)

Figure 10 shows the effect of the magnetic field on the final
magnetization state as a function of the DW’s initial condi-
tions (q, φ). Figure 10(a) shows the results for a field applied
in the negative z direction and Fig. 10(b) shows the same
diagram for a field applied in the opposite direction. In both
cases the magnitude of the field is half the coercive field,
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FIG. 11. Switching current as a function of the initial position
of the DW for φ = 0 (Bloch DW) computed in micromagnetics.
Each point indicates the minimum current required for magnetization
switching.

H = Hc/2, where Hc is defined as a field that just renders the
metastable magnetic state (q = r1 or q = −r1) unstable.

4. Spin-polarized current with micromagnetics

We also determined the current required for magnetization
switching from different initial states with micromagnet-
ics. Figure 11 shows the current needed to switch the
disk’s magnetization as a function of the initial DW po-
sition for φ = 0. The behavior is qualitatively similar to
that shown for the (q, φ) model in Fig. 9. The current is
small for small q, and increases as q increases. The switch-
ing current is also a nonmonotonic function of the DW’s
position q.

5. Material parameters

The parameters used in both the analytical model and
the micromagnetic simulations were: saturation magnetiza-
tion, M = 1.209 × 106 A/m, damping constant α = 0.03,
uniaxial anisotropy constant Kp = 1.12 × 106 J/m3, exchange
constant A = 4 × 10−12 J/m3, a disk diameter of 30 nm
with thickness t = 2.3 nm, and demagnetization coeffecient
(3Nzz − 1)/2 ≈ 0.74 [20]. We performed micromagnetic sim-
ulations using the open source MUMAX3 code [33] with a
graphics card with 2048 processing cores. We considered
the effects of Oersted fields but not finite temperature. For a
perpendicular magnetic tunnel junction, the zero-temperature
critical current density [5] is related to material’s parameters
as follows: jc = 2eαμ0MHkt/(h̄P), where α is the damping
parameter, e the charge of the electron, Hk is the effective
perpendicular anisotropy field that depends on the size of
the junction [20], t is the thickness of the disk, and P is the
current polarization coefficient. For material parameters we
used jc = 9.23 × 1010 A/m2. We note that the characteris-
tic field μ0HN = 0.3 T and the Walker breakdown field is
μ0HW = αμ0HN/4 = 2 mT.

6. DW length and reversed domain area

The following are some useful mathematical relations to
compute the length of the DW and reversed domain area given
the DW position. The angle between the disk’s radius vector
r1 and DW position q in Fig. 2(a) ϑ (0 � ϑ � π ) is

ϑ = arcsin

(
sgn q · 1 − (q/r1)2

1 + (q/r1)2

)
. (A16)

In terms of ϑ , the length of the domain wall is 
 = 2r1(π/2 −
ϑ ) tan ϑ and the area of the up magnetized domain is

A↑/(πr2
1 ) = ϑ

π
+

(
1

2
− ϑ

π

)
tan2 ϑ − tan ϑ

π
. (A17)
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