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Level-crossing induced spin phenomena in SiC: A theoretical study
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A theoretical approach is proposed to describe the spin dynamics in defect color centers. The method explicitly
considers the spin dynamics in the ground state and excited state of the defect center as well as spin state
dependent transitions involving the ground state, excited state, and an additional intermediate state. The proposed
theory is applied to treat spin-dependent phenomena in silicon carbide, namely, in spin- 3

2 silicon-vacancy centers,
termed VSi or V2 centers. Theoretical predictions of magnetic field dependent photoluminescence intensity and
optically detected magnetic resonance spectra demonstrate an important role of level-crossing phenomena in the
spin dynamics of the ground state and excited state. The results are in good agreement with previously published
experimental data [Phys. Rev. X 6, 031014 (2016)].
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I. INTRODUCTION

Defect color centers are promising objects for various ap-
plications, such as optical detection of magnetic resonance
[1–3], quantum information processing [4,5], nanosensing
[6–11], and nuclear spin hyperpolarization [12–17]. An ex-
ample of a particularly well studied and widely used system of
this kind is given by the negatively charged nitrogen-vacancy
centers, NV – centers, in diamond crystals [1,2]. However,
defect color centers in other crystal systems also hold a great
promise for similar applications, notably, defect centers in
silicon carbide (SiC) and boron nitride [18]. Previous inves-
tigations on such colors centers were very often performed
by means of optically detected magnetic resonance (ODMR)
experiments, which are based on optical initialization and
read out of a spin state, which can be manipulated by a
resonant radio-frequency (rf) field. Alternatively, the intensity
of photoluminescence emitted by a quantum center can also
vary without oscillating magnetic field, by sweeping the static
external magnetic field. The latter effect is based on level-
crossing phenomena and can be used to probe the nanoscale
environment.

This work is focused on spin phenomena in 4H-SiC [19],
specifically, we study silicon-vacancy centers, VSi or V2 cen-
ters [11,20–23]. These are negatively charged paramagnetic
spin- 3

2 defect states. One should note that there is still a debate
on the microscopic structure of the VSi defect. According
to electron-nuclear double resonance experiments, authors of
Ref. [24] have proposed a model of negatively charged silicon
vacancies noncovalently bonded to diamagnetic neutral car-
bon vacancies located at the adjacent site along the SiC c axis.
However, presently a majority of the community accepts the
model of the isolated VSi defect [25]. Defect centers in SiC
are promising candidates for various applications [26–32],
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including coherent control of optically addressable spin qubits
at room temperature, magnetometry, and thermometry. The
aim of this work is to develop a theoretical framework for
describing spin phenomena in such a system, notably, phe-
nomena originating from spin mixing at level crossings. The
complexity of the problem under study comes from two fac-
tors: (i) interplay between the spin dynamics in the excited and
ground state of the color center; (ii) the presence of high-spin
states, specifically, of S = 3

2 states. To solve this problem, we
generalize an approach [33], which we used earlier to describe
optically induced spin polarization formed in NV – centers in
diamonds and in triplet states in molecular crystals. In this
method, we explicitly treat the spin dynamics in the ground
state and excited states; the transitions between the ground and
excited states are introduced using the Lindblad formalism
[34,35], which can be efficiently exploited to describe relax-
ation phenomena in color centers [36–38]. To gain insight into
the spin dynamics, we also look at level crossings (LCs) of
the spin states and determine under what conditions they are
turned into level anticrossings (LACs). As discussed previ-
ously, LACs give rise to pronounced features in the magnetic
field dependence of photoluminescence (PL) of color centers
[39–45] and in ODMR spectra [45]. Hence, this work is dedi-
cated to consideration of level-crossing phenomena in SiC. In
practice, LCs are rarely met, since any perturbation would turn
them into LACs, giving rise to quantum-mechanical mixing
of spin states. For this reason, we look at LACs and their
manifestation in PL and ODMR. We demonstrate that the
proposed theory can be used to model spin-dependent phe-
nomena in defect centers in SiC, giving a good agreement
between calculated and experimental [45] ODMR spectra and
magnetic field dependent PL intensity. When necessary, one
can extend the treatment to consider cross-relaxation phenom-
ena [46,47], which are commonly encountered in NV – centers
[2,3]. In the context of defect color centers, the term “cross
relaxation” stands for coherent polarization exchange between
two different centers under LAC conditions.
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SCHEME 1. Energy level diagram of the silicon-vacancy center
in SiC, having the S = 3

2 electronic ground state and excited state.
Transitions between these two states occur at a rate I due to pho-
toexcitation; transitions from the excited state to the ground state are
also possible via fluorescence, with the fluorescence rate depending
on the spin state of the defect center, i.e., k f l

1 �= k f l
2 . Transitions to

the ground state are also possible via another route: ISC from the
excited state to an intermediate state MS with kisc

1 �= kisc
2 followed

by ISC from this state to the ground state at a rate k
′
isc. Due to

the spin-selective character of the transitions, after a few excitation
cycles the defect center becomes spin-polarized.

II. THEORY

Here we consider the energy level diagram of the VSi color
center, shown in scheme 1. The system undergoes transitions
between the ground state (GS) and excited state (ES) due to
light excitation (inducing reversible transitions occurring at
a rate I); from ES the system goes back to GS via radiative
transitions, giving rise to fluorescence. The rate of these tran-
sitions depends on the spin state of the defect center, being
equal to k f l

1 and k f l
2 for the Sz = ± 1

2 states and Sz = ± 3
2

states, respectively. The transition from ES to GS can also
take another route: inter-system crossing (ISC) to an inter-
mediate state MS followed by ISC to the ground state. We
also assume that the rate of the ISC process from ES to the
intermediate state differs for the Sz = ± 1

2 states and Sz = ± 3
2

states (the corresponding rates are denoted as kisc
1 and kisc

2 ,
respectively) and that from the intermediate state transitions
are possible only to the Sz = ± 1

2 spin states in GS (with
the rate denoted k′

isc). These assumptions are consistent with
literature data [11,27]; similar relations for rates (Sz dependent
fluorescence rates and ISC rates) are known for NV – centers
[2,3]. Due to the difference in the rates, namely k f l

1 �= k f l
2 ,

kisc
1 �= kisc

2 , and k′
isc �= 0, only for the Sz = ± 1

2 states, after
several excitation cycles the VSi defect acquires spin polar-
ization [11,27], that is, the populations of the Sz = ± 3

2 , ± 1
2

states become different in GS and in ES. For the sake of
generality, we also assume that the defect center also has a
magnetic spin- 1

2 nucleus coupled to the unpaired electrons.
In principle, the model of the optical excitation cycle might

also include spin-dependent I rates, i.e., photoexcitation rates.
Furthermore, one might also consider weak transitions from
the MS state to the Sz = ± 3

2 spin states in GS. Such an
extension of the theoretical model presented here is straight-

FIG. 1. Energy levels and LCs in the VSi center shown for GS (a)
and ES (b).

forward. However, with available experimental data we are
unable to determine all relevant rates from comparison with
experimental data. That is, we cannot discriminate which
model is more precise and stick to the model presented in
Fig. 1. Calculations performed assuming k f l

1 = k f l
2 , which

give similar results, are shown in the Supplemental Material
[48] (see, also, Refs. [11,24,33,45,49] therein).

In all cases, we consider the situation where the symmetry
axis of the defect center is directed along the Z axis of the
lab frame, being parallel (or nearly parallel) to the external
magnetic field. As a consequence, the Sz = ± 3

2 states and
Sz = ± 1

2 states are eigenstates of the ES and GS Hamiltonians
not only at zero field, but at all magnetic fields, except for the
ones corresponding to LACs (see discussion below). At LACs,
spin mixing between the Sz = ± 3

2 and Sz = ± 1
2 states occurs.

For modeling spin-dependent phenomena in VSi centers we
use an approach described in our previous paper [33]. First,
we introduce the density matrix and Hamiltonian of the defect
center in a block-diagonal form:

ρSiC =
⎛
⎝ρGS 0 0

0 ρES 0
0 0 ρMS

⎞
⎠,

ĤSiC =
⎛
⎝ĤGS 0 0

0 ĤES + EES1̂ 0
0 0 ĤMS + EMS1̂

⎞
⎠. (1)

Hence, we introduce both matrices in the basis of spin
states |μGS〉, |μES〉, |μMS〉 defined for each electronic state
GS, ES, and MS. If we list these states, the basis becomes
|1GS〉, . . . , |NGS〉, |1ES〉, . . . , |NES〉, |1MS〉, . . . , |N ′

MS〉. Here
Ni is the number of spin states in the corresponding state,
which is equal to N for GS and ES and to N ′ for MS (N ′ �= N
because of the different multiplicity of the electronic states).
The form of the density matrix implies that off-diagonal ele-
ments of the density matrix can be nonzero for the spin states
belonging to the same state GS, ES, or MS, while there are no
coherences between the spin states belonging ES, GS, and MS
(these matrix elements are subject to very fast decoherence).
Hence, for each state (GS, ES, and MS) we introduce its spin
density matrix (ρGS, ρES and ρMS, respectively). For the sake
of simplicity, we also neglect completely the spin dynamics in
the MS state. In this situation, we can omit the actual structure
of the MS quantum states and set N ′ = 2, corresponding to the
two states of the spin- 1

2 nucleus. This assumption is justified
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because in MS there is no LAC-driven spin dynamics (we
lump together the electron spin states of MS).

In the Hamiltonian matrix, see Eq. (1), we introduce the
energy splitting between GS and ES as EES, while the en-
ergy splitting between GS and MS is denoted as EMS. The
spin dynamics in each state is described by the correspond-
ing spin Hamiltonian ĤGS, ĤES, and ĤMS; here, 1̂ is the
unity matrix of the appropriate dimensionality, i.e., the N × N
or N ′ × N ′ matrix. In the numerical solution procedure, the
energies EES and EMS can be omitted (since we are not inter-
ested in the coherences between GS, ES, and MS and their
evolution).

The density matrices ρGS and ρES, see Eq. (1), are in-
troduced in the state basis, which is the direct product of
the quartet basis Q = {| 3

2 〉, | 1
2 〉, |− 1

2 〉, |− 3
2 〉} for the electron

spin states and the Zeeman basis for the nuclear spin states
Z; in the simplest case of a single spin- 1

2 nucleus Z =
{| 1

2 〉, |− 1
2 〉} = {|α〉, |β〉} (here |α〉 and |β〉 are the standard

notations for the “spin-up” and “spin-down” states). For ρMS

the basis is introduced as the nuclear Zeeman basis. The spin
Hamiltonians describe the Zeeman interaction of spins with
the external field B, zero-field splitting (ZFS) of the spin- 3

2
states and electron-nuclear hyperfine coupling (HFC) with the
magnetic nucleus of the color center (extension to K magnetic
nuclei with arbitrary spin is straightforward). In the case B||Z
the Hamiltonians of the quadruplet states are as follows, when
written in h̄ units (here we keep in mind that the E parameters
in the ZFS tensor are zero, owing to the C3v symmetry of the
system):

ĤGS = γeBŜz − γN BÎz + DG
{
Ŝ2

z − 5
4

} + ŜÂ(GS)Î,

ĤES = γeBŜz − γN BÎz + DE
{
Ŝ2

z − 5
4

} + ŜÂ(ES)Î. (2)

Here Ŝ is the electron spin operator of the spin- 3
2 state and

Î is the spin operator of the magnetic nucleus. The first two
terms stand for the electron and nuclear Zeeman interactions
with γe = g(1)

|| μB and γN = gNμN being the corresponding
gyromagnetic ratios, where μB and μN stand for the Bohr
magneton and nuclear magneton, respectively; g(1)

|| and gN

are the corresponding g factors (the subscript || stands for
the g value for the orientation of the defect symmetry axis
along the magnetic field). The D terms stand for the ZFS,
the last terms stand for HFCs with Â(GS/ES) being the HFC
tensor in GS and ES. The D parameter for the two GS and
ES states in 4H-SiC is DG = 1.25 mT and DE = 7.32 mT,
respectively [11,22]. The eigenstates of the ZFS Hamiltonian
are the | 3

2 〉, | 1
2 〉, |− 1

2 〉, |− 3
2 〉 states for both GS and ES. One

should also note that the HFC tensors are generally different
for the two triplet states, being equal to Â(GS) and Â(ES). In
some cases, we also add various perturbation terms, V̂GS and
V̂ES, to the GS and ES Hamiltonians:

V̂GS/ES = g(2)
|| μBŜz

(
Ŝ2

z − 5

4

)
B + g(3)

|| μB
Ŝ3

+ − Ŝ3
−

4i
B

+ g(1)
⊥ μBŜ⊥B̂⊥ + g(2)

⊥ μB

{
Ŝ⊥B̂⊥,

(
Ŝ2

z − 3

4

)}

− i

4
g(3)

⊥ μB({Ŝ2
+, Ŝz}B+ − {Ŝ2

−, Ŝz}B−). (3)

Here Ŝ⊥ = (Ŝx, Ŝy), B⊥ = (Bx, By), Ŝ± = Ŝx ± iŜy, B± =
Bx ± iBy, {Â, B̂} = ÂB̂ + B̂Â stands for the anticommutator of
two operators. The six g factors introduced above are linearly
independent in systems of the C3v symmetry [22]. Typically,
g(1)

|| , g(1)
⊥ ≈ 2, while the other four g factors are much smaller

than unity [11].
The temporal evolution of density matrix of the entire

system is described by the Liouville–von Neumann equation

dρSiC

dt
= −i[ĤSiC, ρSiC] + ˆ̂RρSiC (4)

The superoperator ˆ̂R describes the transitions between dif-
ferent states, here GS, ES, and MS, due to light excitation,
luminescence, and ISC. It can be written in the Lindblad form,
which comprises two terms:

ˆ̂RρSiC = { ˆ̂R1 + ˆ̂R2}ρSiC,

ˆ̂R1ρSiC = −1

2

∑
m,n

{L̂†
mnL̂mnρSiC + ρSiCL̂†

mnL̂mn},

ˆ̂R2ρSiC =
∑
m,n

L̂mnρSiCL̂†
mn. (5)

The ˆ̂R1 and ˆ̂R2 terms stand for escape from a given state and
income to another state, respectively. The operators L̂mn are
defined by introducing the rates kmn of transitions between the
quantum states |m〉 → |n〉. They have the following nonzero
elements:

〈n|L̂mn|m〉 =
√

kmn. (6)

The relevant rates of the processes are indicated in scheme 1.
We explain in detail now to introduce the L̂mn operators in the
Supplemental Material.

To calculate the PL intensity, we first evaluate the steady-
state value of the density matrix ρSiC. To do so, we solve
Eq. (4) setting d

dt ρSiC = 0. To obtain a solution, which is
different from the trivial solution ρSiC = 0, we act as follows.

Since the rank of the (−i ˆ̂HSiC + ˆ̂R) supermatrix is equal
to (M2 − 1) (when ρSiC is an M × M matrix), one of the
equations in the system d

dt ρSiC = 0 is linearly dependent on
the other equations. Therefore, in order to obtain the solution
for ρSiC we replace the last equation in this system by the
expression

∑
i {ρSiC}ii = Tr{ρSiC} = 1, which provides nor-

malization of the density matrix. The new system of linear
equations is straightforward to solve and ρSiC can be ob-
tained [33]. Knowing ρSiC, we can compute all experimental
observables of interest. For instance, the photoluminescence
intensity is given by the following expression:

IPL = k f l
1 Tr

{
P̂ES

1 ρSiC
} + k f l

2 Tr
{
P̂ES

2 ρSiC
}
. (7)

That is, we multiply the luminescence rate from a specific
state by the population of this state. Here P̂ES

1 and P̂ES
2 are

the projector operators onto the |± 1
2 〉 and |± 3

2 〉 spin states
in ES, respectively. In experiments one can also measure
the variation of the PL intensity, applying a weak oscillating
magnetic field �B(t ) = δB cos(ωmodt ) field along the Z axis
and using lock-in detection at the ωmod frequency. In this case,
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instead of the dependence IPL(B) one would measure the field
dependence of d

dB IPL, i.e., of the derivative of IPL.
To calculate the ODMR signal we proceed as follows.

First, we add terms describing the interaction with the cir-
cularly polarized transverse radio-frequency (rf) field, the B1

field:

ĤGS → ĤGS + γeB1(cos[ωr f t]Ŝx + sin[ωr f t]Ŝy),

ĤES → ĤES + γeB1(cos[ωr f t]Ŝx + sin[ωr f t]Ŝy). (8)

Subsequently, we go to the rotating frame, in which the
Hamiltonians are written as follows:

Ĥ′
GS = (γeB − ωr f )Ŝz + γeB1Ŝx − γN BÎz

+ DG
{
Ŝ2

z − 5
4

} + ŜÂ(GS)
sec Î,

Ĥ′
ES = (γeB − ωr f )Ŝz + γeB1Ŝx − γN BÎz

+ DE
{
Ŝ2

z − 5
4

} + ŜÂ(ES)
sec Î. (9)

Here we subtract ωr f Ŝz from the electronic Zeeman term; in
the HFC terms we keep only their secular parts containing the
Ŝz operator: the terms containing the Ŝx,y operators in the ro-
tating frame are multipled by fast oscillating exponents e±iωr f t

and can be omitted. It is important to note that transformation
to the rotating frame is used only for the electron spins. Using
the Hamiltonians from Eq. (9) we calculate the steady-state
value of ρSiC and the PL intensity. The ODMR signal is then
proportional to the variation of PL intensity:

ODMR ∼ IPL(rf/on) − IPL(rf/off ), (10)

where IPL(rf/on) and IPL(rf/off ) is the PL intensity measured
in the presence B1 �= 0 and in the absence B1 = 0 of the rf
field. By plotting the ODMR signal as a function of ωrf we
obtain the ODMR spectrum. When the energy separation of
the corresponding levels coincides with the frequency of the
applied rf field, a spin resonance transition can occur by either
absorbing or emitting an rf photon. These rf-induced spin
transitions can be detected by monitoring variation of the total
PL intensity.

In some cases, for the sake of simplicity, we evaluate the
ODMR signal not from Eq. (10); instead we evaluate the
difference of the populations δPi j of the relevant states |i〉 and
| j〉 involved in the resonant transition. Assuming that the rf
field only slightly perturbs the populations, we calculate the
relative ODMR signal, which is given by the intensity ratio S1

S2
,

for the transitions |− 3
2 〉 ↔ |− 1

2 〉 and | 3
2 〉 ↔ | 1

2 〉 in the ground
state. In turn, the intensities of these transitions are given by
the population differences for the corresponding states:

S1 = Tr
{
P̂GS

−3/2ρSiC − P̂GS
−1/2ρSiC

}
,

S2 = Tr
{
P̂GS

3/2ρSiC − P̂GS
1/2ρSiC

}
. (11)

Here P̂GS
±1/2 and P̂GS

±3/2 are the projector operators on the |± 1
2 〉

and |± 3
2 〉 ground electronic states, respectively.

Finally, we introduce the typical parameters used in the
calculation. The relevant rates, ZFS parameters, and HFC
parameters are listed in Table I. For the HFC we assume
that the paramagnetic defect center is coupled to a single
29Si nucleus (spin- 1

2 nucleus) of the lattice. The HFC tensor
is taken symmetric in most cases and the HFC constant is

TABLE I. Parameters of the VSi center used in calculations.

Transition rates (ns–1) I = 0.01, k′
isc = 0.01,

k f l
2 = 2k f l

1 = 0.1,kisc
1 = 20kisc

2 = 0.2

ZFS parameters (mT) DG = 1.25, DE = 7.32

HFC tensor of 29Si (mT) A(GS)
xx = A(GS)

yy = A(GS)
zz = 0.001;

A(ES)
xx = A(ES)

yy = A(ES)
zz = 0.001

taken the same in GS and ES. We would like to note that
the HFC is taken small; consequently, the main term causing
mixing at LCs (and converting them into LACs) is coming
from misalignment of the defect to the external magnetic field.
We have done so deliberately in order not to complicate the
discussion by interplay of different mechanisms; however,
in the Supplemental Material we present the calculation for
stronger HFC as well. When necessary, using the same the-
ory, one can also consider HFC with 13C nuclei, which are,
however, not present for most defect centers because of their
low natural abundance. Unless otherwise stated, we use the
parameters from Table I; when this is not the case, we add
a clarifying note. The ZFS parameters have been determined
in previous works, while the rates follow from fitting experi-
mental data, presented in Sec. III. The DG and DE values are
positive, in accordance with previous work [11]. As discussed
in the Supplemental Material, variation of the DG and DE

sign gives rise to characteristic changes in PL and ODMR,
which are not consistent with experiments. The transition rates
were chosen to give the best agreement with the experimental
data. We do not want to put a strong emphasis on the rates
determined from fitting, since multiparametric fits are often
not sufficiently accurate. Moreover, the goal of this work is
developing a consistent theory to treat the LAC-driven spin
dynamics and its interplay with transitions between different
spin states, whereas the transition rates should ideally be de-
termined from independent measurements. It is important to
note that for different relation between the rates k f l

1 and k f l
2

and also kisc
1 and kisc

2 the field dependence of the PL intensity
and the shape of the ODMR spectrum vary substantially:
LAC-derived features come up as peaks or dips, depending
on the precise values of the rates. The parameters given in
Table I provide the proper appearance of all these features,
which is consistent with available experimental data [45]. The
rates that we use are in reasonable agreement with previously
reported values [49]. In the Supplemental Material we provide
additional comments on the choice of the relevant parameters.

III. RESULTS AND DISCUSSION

A. LAC analysis

To gain understanding of the spin phenomena, it is useful
to support numerical calculations by the analysis of level
crossings. When the defect center is oriented nearly parallel (a
small misalignment of the two axes is taken into account) to
the external field, there are LCs in both GS and ES, occurring
at well-defined magnetic fields; see Fig. 1. In each case, there
are two LCs, which we name GSLCs and ESLCs. Additional
terms would turn these LCs into LACs, as discussed below.
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To obtain the LC field positions, we proceed as follows.
We omit all terms in the Hamiltonian, except for the electron
Zeeman interaction and ZFS interaction. In this situation, the
eigenproblem of the Hamiltonian can be solved analytically;
at all fields the eigenstates are the states with a specific
Sz value, which is ± 1

2 or ± 3
2 . From the solution, one can

obtain [22] that at D > 0 there is a crossing between the
levels corresponding to the |− 3

2 〉 and |− 1
2 〉 states, which oc-

curs when ωe = γeB = 2D (�Sz = 1, hereafter LC-1), and to
the |− 3

2 〉 and | 1
2 〉 states, which occurs when ωe = γeB = D

(�Sz = 2, hereafter LC-2). In the case under study, we obtain
four LC positions, see Fig. 1, corresponding to GSLC-1 at
B = 2DG/γe ≈ 2.5 mT, GSLC-2 at B = DG/γe ≈ 1.25 mT
[see Fig. 1(a)], to ESLC-1 at B = 2DE/γe ≈ 14.64 mT, and
to ESLC-2 at B = DE/γe ≈ 7.32 mT [see Fig. 1(b)]. If we
introduce HFC with the spin- 1

2 magnetic nucleus, each LC of
the electron spin states will split into four LCs, corresponding
to different nuclear spin states. In the main paper, we consider
only the case of small HFC, so that this splitting (which is
not observed in any of the experiments reported up to date) is
negligibly small.

Various perturbations cause mixing of states and turn the
LCs discussed above into LACs: the crossings are avoided
due to the presence of the perturbation terms, which mix the
states. The minimal splitting of the states at the LAC is equal
to 2|Vmn|, where Vmn = 〈m|V̂ |n〉 is the corresponding matrix
element of V̂ between the unperturbed states |m〉 and |n〉. The
perturbation term becomes relevant when Vmn is greater than
or comparable to the splitting δEmn between the unperturbed
energy levels: this condition defines the width of the LAC
region. What is important in the context of the present work,
at the LAC the states |m〉 and |n〉 are no longer the eigenstates
of the Hamiltonian. As a consequence, their populations be-
come mixed. In the case of the VSi center, the crossing states
are characterized by different Sz values and have different
populations due to the properties of the optical cycle of the
color center, as discussed in scheme 1. Excitation from the
different states also gives rise to different PL intensity. Upon
spin mixing at LACs, the populations are redistributed giving
rise increase or reduction of the PL intensity. Hence, LACs
are expected to give rise to features, such as peaks or dips, in
the IPL(B) curve, as shown below.

A detailed analysis of the role of different perturbations,
which turn LCs into LACs, is presented in the Supplemental
Material. In this analysis, we calculate the relevant Vmn matrix
elements for different perturbation terms and compare the
results of the LAC analysis with numerical results.

Below we consider in detail a single case, which is relevant
for the VSi centers. Let us assume that the Z axis of the ZFS
tensor is not perfectly aligned along the external magnetic
field. In this case, a perturbation term emerges, which can
turn LCs into LACs. The perturbation term can be written as
follows:

V̂ (1)
⊥ = γeBθ Ŝx (12)

Here θ is the angle between the Z axis of the ZFS tensor and
the external magnetic field (we assume that the B vector lies
in the XZ plane); this angle is taken small, hence sin θ ≈ θ .
One should note that the full Zeeman Hamiltonian comprises

additional terms [11]

V̂ (2)
|| = g(2)

|| μBŜz
(
Ŝ2

z − 5
4

)
B and

V̂ (2)
⊥ = g(2)

⊥ μBBθ
{
Ŝx,

(
Ŝ2

z − 3
4

)}
,

which emerge due to nonequivalence of the Z axis and the
perpendicular X , Y axes, and terms

V̂ (3)
|| = g(3)

|| μB
Ŝ3

+ − Ŝ3
−

4i
B and

V̂ (3)
⊥ = − i

4
g(3)

⊥ μBBθ{(Ŝ2
+ − Ŝ2

−), Ŝz},
which are coming from the trigonal pyramid symmetry of the
defect center. The term V̂ (2)

‖ does not cause any mixing of the

electronic spin states, moreover g(2)
|| ≈ 0. The term V̂ (3)

|| causes

mixing of only the states | 3
2 〉 and |− 3

2 〉 and due to the small
value of g(3)

|| (see the Supplemental Material) slightly shifts the
position of the relevant LCs. We neglect this term for the sake
of simplicity. The term V̂ (2)

⊥ gives rise to the same effect as
the perturbation V̂ (1)

⊥ . However, because of the small value of
g(2)

⊥ (see the Supplemental Material), the corresponding matrix
element is negligible. The term V̂ (3)

⊥ is small but nevertheless
gives rise to the spin mixing in the first-order perturbation
theory, between the states |− 3

2 〉 and | 1
2 〉. In the calculation

g(3)
⊥ is taken equal to 0.2 (as explained in the Supplemental

Material). Hence, the misalignment term is given by V̂⊥ =
V̂ (1)

⊥ + V̂ (2)
⊥ + V̂ (3)

⊥ . The perturbation terms V̂ (1)
⊥ and V̂ (2)

⊥ cause
mixing between the states |− 3

2 〉 and |− 1
2 〉 (GSLAC-1 and

ESLAC-1), whereas the V̂ (3)
⊥ term mixes the states |− 3

2 〉 and
| 1

2 〉 (GSLAC-2 and ESLAC-2). The mixing matrix elements
calculated in the first-order perturbation theory are equal to〈

−3

2

∣∣∣∣V̂ (1)
⊥

∣∣∣∣−1

2

〉
≈

√
3Dθ,

〈
−3

2

∣∣∣∣V̂ (2)
⊥

∣∣∣∣−1

2

〉
≈

√
3κDθ, (13)

〈−3/2|V̂ (3)
⊥ | − 1/2〉 ≈ −i

√
3δDθ.

Here κ = g(2)
⊥

g(1)
||

and δ = g(3)
⊥

g(1)
||

. These perturbations turn the

GSLC-1,2 and ESLC-1,2 into the GSLAC-1,2 and ESLAC-
1,2, respectively; see Figs. 2(a) and 2(b). In turn, these LACs
give rise to features in the field dependence of the PL in-
tensity; see Fig. 2(c). The discussion of the precise choice
of parameters, specifically g factors, is presented in the Sup-
plemental Material; the misalignment angle is always taken
θ = 5◦.

B. Comparison with experimental data

In this subsection, we provide a comparison of the-
oretical results with available experimental data [45] on
field-dependent PL and ODMR of the VSi centers.

The PL intensity plotted as a function of the external
magnetic field is shown in Fig. 3. To ease comparison with
experimental data, we plot not the IPL(B) function, as shown
in Fig. 2, but the derivative d

dB IPL. Under such conditions,
each peak or dip in the field dependence is turned into a sharp
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FIG. 2. GSLACs (subplot a) and ESLACs (subplot b) in
the VSi center. The LCs at γeB = DE,G and γeB = 2DE,G

are turned into LACs by perturbation terms, in this
example, by V̂⊥ = g(1)

⊥ μBŜ⊥B̂⊥ + g(2)
⊥ μB{Ŝ⊥B̂⊥, (Ŝ2

z − 3
4 )} −

i
4 g(3)

⊥ μB({Ŝ2
+, Ŝz}B+ − {Ŝ2

−, Ŝz}B−). The LACs give rise to features
in the field dependence of photoluminescence IPL(B), (normalized
to 1), see (subplot c).

feature with a positive component and a negative component
(positive-negative feature for a peak and negative-positive
feature for a dip). In the field dependence, we can clearly
identify the lines originating from the GSLAC-1 and GSLAC-
2, whereas the lines from the ESLAC-1 and ESLAC-2 are
considerably weaker. Specifically, when the derivative d

dB IPL

is plotted instead of IPL, the smooth ESLAC features, in partic-
ular, the ESLAC-1 feature, become barely visible. The relative
ratio of the GSLAC and ESLAC lines strongly depends on the
relative values of the rates introduced in scheme 1. The type of
the feature, i.e., peak or dip, depends on the relation between
k f l

1 and k f l
2 and also between kisc

1 and kisc
2 (the features can

only show up when k f l
1 �= k f l

2 or kisc
1 �= kisc

2 ). The calculated
field dependence is in good agreement with the experimental

FIG. 3. Photoluminescence intensity IPL as a function of the
static magnetic field B, applied nearly parallel to the c-axis of the VSi

center: experimental data (a) and simulation (b). Experimental data
were recorded using lock-in detection; in the calculation we show
the derivative of IPL, i.e., d

dB IPL, normalized to the maximum value.
Features in the field dependence are assigned to the relevant LACs in
GS and ES.

FIG. 4. ODMR spectrum, calculated for zero external magnetic
field; the two components correspond to transitions between the ZFS
states in GS and ES. The ODMR intensity is normalized to 1 for each
transition.

curve: the positions of the features are properly reproduced,
as well as their relative intensities and widths.

In addition to the field dependence of PL, we performed
calculation of ODMR-related phenomena. First, we consider
the case where the external static magnetic field is zero. In this
situation, by using the method outlined above, we calculated
ODMR spectra, see Fig. 4, with the same parameters as in
Fig. 3. In the ODMR spectrum obtained at zero field there
are two pronounced features, corresponding to the transitions
between the ZFS states with different absolute values of Sz,
i.e., with |Sz| = 1

2 and |Sz| = 3
2 . In ES as well as in GS these

states are populated differently due to the Sz dependent tran-
sitions between GS, ES, and MS. The rf-driven transitions
between these states alter the state populations, affecting the
PL intensity. In the spectrum, see Fig. 4, we can see two lines
at ωr f /2π ≈ 70 MHz and ωr f /2π ≈ 410 MHz, correspond-
ing to the rf-driven transitions between the ZFS states in GS
and ES, respectively. The feature at 70 MHz is significantly
narrower than that at 410 MHz. Such an appearance of the
ODMR spectrum is in accordance with experimental spectra
[45], which are not shown here.

Second, we calculated the ODMR spectrum under the con-
ditions where ωr f is fixed, but the magnetic field is swept.
The ODMR spectrum is then given by the relative change
of PL intensity obtained upon application of the external rf
field, which is plotted against the magnetic field strength B.
An experimental curve is shown in Fig. 5(a) and the calcu-
lated dependence is presented in Fig. 5(b). In the simulation,
four features emerge, which correspond to the four relevant
LACs, GSLAC-1,2 and ESLAC-1,2. Two features are narrow,
namely, GSLAC-2 and ESLAC-2, and two features are broad,
namely, GSLAC-1 and ESLAC-1. The calculated curve is in
good agreement with experimental data [45]. In experimental
and theoretical ODMR spectra one can clearly see the features
originating from GSLAC-1 and ESLAC-1 (the former is nar-
rower and the latter is broader), while the features associated
with GSLAC-2 and ESLAC-2 are barely visible.

IV. SUMMARY AND CONCLUSIONS

In this work, we present a theoretical formalism, which is
capable of describing spin-dependent phenomena related to
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FIG. 5. Normalized relative ODMR signal as a function of the
static magnetic field B applied nearly parallel to the c axis of the
VSi center: experimental data (a) and simulation (b). Features in
the field dependence are assigned to the relevant LACs in GS and
ES.

color centers in 4H-SiC. Here we focus on the silicon-vacancy
centers, VSi or V2 centers, having spin- 3

2 ground state and
excited state, which can be polarized by light excitation. Our
theoretical method explicitly treats the spin dynamics in both
states as well as spin-dependent transitions between the GS,
ES, and MS states: this is done by using Lindblad-type su-
peroperators. We demonstrate that the proposed approach can
be used to simulate a number of spin-dependent phenomena,
namely, magnetic field dependent PL intensity and ODMR

signals, i.e., radio-frequency driven PL changes. Particular
focus was put on spin level mixing, which is highly sensitive
to external magnetic field and temperature. In the field depen-
dence of the PL intensity sharp peaks and dips are present,
which can be assigned to level anticrossing phenomena in
ES and GS. We calculate zero-field ODMR spectra obtained
by sweeping the frequency of the applied rf field and also
the relative changes in the PL intensity, obtained upon vari-
ation of the external static magnetic field. In the latter case,
features associated with the GSLACs and ESLACs become
visible again. Theoretical results are in good agreement with
previously reported experimental data [45]. The precise shape
of LAC-derived features as well as their phase (peak or dip)
were found to depend on the individual rates of the transitions
between GS, ES, and MS. The fitting parameters obtained
are physically reasonable; nonetheless, for determining them
precisely it is desirable to have more experimental data for
comparison.

We anticipate that the proposed method can be utilized
to describe spin-dependent phenomena in other defect color
centers having high spin state. One more application of the
present theoretical approach is the analysis of light-induced
nuclear spin polarization: such polarization can be observed,
for instance, in diamond crystals containing NV – centers
and utilized for dramatic enhancement of weak NMR signals
[12–17].
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