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Atomistic studies of temporal characteristics of polarization relaxation in ferroelectrics
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Polarization relaxation fundamentally determines the speed, energy consumption, and functionality of fer-
roelectric materials and devices, which is considered as the core aspect of ferroelectric-based applications
and attracts considerable attention. The relaxation time, describing the temporal characteristics of polarization
relaxation, has been reported to vary from subpicoseconds to hundreds of nanoseconds in ferroelectrics, and the
microscopic picture is still an open question. In this paper, starting from atomistic models for ferroelectrics, a
generalized Langevin equation is proposed to describe the dynamical behaviors of polarization at the mesoscale
or macroscale. On one hand, through the artificial construction of adiabatic processes, it is derived that the
relaxation time is connected with the lifetimes of the phonon modes involved in a many-body ferroelectric
system, bridging the thermodynamics of polarization with the dissipation behavior of the phonon modes at the
microscale. On the other hand, the relaxation time is then linked to the kinetic coefficient used in the time-
dependent Ginzburg-Landau equation, for the polarization evolution on the meso- or macroscale. Furthermore,
based on driven Brownian motion, we propose a theoretical model of the dependence of the polarization
switching time with an applied external electric field on a ferroelectric monodomain system. The prediction
of the switching time is found to agree well with the dynamical simulation data, which verifies the applicability
and reliability of the physical picture of the relaxation time clarified in the current work. Our discussion of
the physical picture of the polarization relaxation time provides useful ideas for the development of multiscale
modeling method for ferroelectrics.
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I. INTRODUCTION

The observed polarization of a ferroelectric material is the
result of free energy minimization under a specific external
environment. With sudden changes in the environment of a
ferroelectric material, a dynamic process is present, where the
polarization evolves towards a new equilibrium state, which is
the so-called polarization relaxation. Polarization relaxation
fundamentally determines the speed, energy consumption,
and functionality of ferroelectric materials and devices, and is
considered the core aspect of ferroelectric-based applications.
Much academic attention and continuous research work have
been devoted to the responses of ferroelectric polarization
under the stimulation of electrical, mechanical, thermal, and
optical loading [1–5].

The temporal characteristics of polarization relaxation are
usually described by the relaxation time τ of polarization dur-
ing the dynamic process [6]. For ferroelectric materials, the
relaxation time is reported to cover a wide order of magnitude,
from subpicoseconds to hundreds of nanoseconds [7–15]. In
addition, the estimations of relaxation time obtained with
theoretical models and experimental measurements, and even
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with different theoretical calculations, can differ vastly. The
causes of the related issues can generally be attributed to
two aspects. On one hand, many possible factors could be
responsible for macroscopic polarization, including electric
dipoles (called “dipole” in the rest of the paper), domain walls,
and space charges, so polarization relaxation is the synergistic
effect of the relaxation of dipoles, domain walls, and space
charges, which covers a wide range of timescales [16–18]. On
the other hand, theoretical models or experimental measure-
ments for studying polarization relaxation rely on different
collective representations of macroscopic polarization. For ex-
ample, the polarization relaxation process is carried out by the
dynamics of positive and negative ions in molecular dynamics
(MD) simulations [19–23] and by local mode relaxation in the
effective Hamiltonian method [24–26]. In addition, the phase
field model (PFM) of ferroelectrics describes polarization
relaxation by a transport equation, i.e., the time-dependent
Ginzburg-Landau (TDGL) equation. The temporal evolution
of polarization is fully governed by the kinetic coefficient L,
whose value has been of enormous interest [27,28]. In this
regard, the prediction of relaxation time relying on differ-
ent theoretical methods employed [23,26,28] yields confusing
discrepancies. To clarify abovementioned inconsistencies, a
well-defined theoretical framework bridging models of polar-
ization relaxation on various length scales is required [29–33].
Here, the physical picture of the polarization relaxation time τ
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is one of the key issues and is the primary focus of the current
paper.

The widely considered polarization switching in ferro-
electric materials, a typical kind of relaxation process, is an
excellent example for discussing the physical picture of re-
laxation time. Polarization switching dynamics induced by
an applied external field (either electric field or mechanical
strain) are implemented by the reversals of microscopic lo-
cal domains. During this process, microdomains go over an
energy barrier Fm [e.g., which is suppressed by applying a
reversed external electric field E as shown in Fig. 1(d)] under
thermal assistance. In the case of a smaller E , i.e., E < Ecrit

with Ecrit being the thermodynamic coercive field [34], where
Fm is suppressed mildly while still larger than the thermal
energy kBT (i.e., Fm(E ) > kBT ), the polarization switching
is treated as a quasiequilibrium process, so the characteristic
relaxation time τ can be described by the Arrhenius law (or
classical nucleation theory) well [34–36], i.e.,

τ−1 ∝ ωA exp(−Fm(E )/kBT ), (1)

where ωA is the fluctuation frequency near the bottom of the
potential well. In fact, most experimental data are obtained
under this small field condition E < Ecrit [34], and theoretical
predictions are usually based on the principle of the Arrhenius
law. However, in the case of the application of a high reversed
field E (i.e., E � Ecrit), where Fm is significantly suppressed
and is comparable to or smaller than kBT (i.e., Fm � kBT ), the
polarization switching is then a nonequilibrium process that
can be treated as driven Brownian motion inside a stochastic
medium. Therefore, τ is determined by the damping constant
γ arising from the many-body effects of the thermal fluctua-
tions of ions inside the ferroelectric materials as [37]

τ−1 ∝ γ (E − Ecrit ). (2)

Brownian motion is a quite common mechanism of the phase
transport process with low activation energies [38] (i.e., Fm �
kBT ), such as kink diffusion along dislocation lines [39], mi-
gration of dislocation loop [40], and solute diffusion [41,42].
Some studies [43–46] also report on the issues of homo-
geneous polarization switching under the application of a
large electric field. Interestingly, there are not many studies
on ultrafast polarization switching with respect to the driven
Brownian motion mechanism under a high field E � Ecrit; in
particular, microdynamic insight into the damping constant
for polarization evolution due to the many-body effects arising
from thermal fluctuations of ions inside ferroelectric materials
is lacking. Based on the physical picture of polarization relax-
ation time proposed in the current work, we aim to discuss this
interesting issue.

In this paper, we use atomistic simulations based on core-
shell interatomic potentials [47] to study the polarization
relaxation process in a defect-free BaTiO3 (BTO) ferro-
electric monodomain system. This paper is organized as
follows: A theoretical model of the temporal characteristics of
polarization relaxation is proposed in Sec. II, bridging the
microdynamics and thermodynamics. In Sec. III, the tem-
perature dependence of the polarization relaxation time in
different ferroelectric phases of BTO is estimated by perform-
ing molecular dynamics (MD) simulations of the intrinsic
polarization dynamics during artificially designed adiabatic

processes. In Sec. IV, we link the relaxation time with the
kinetic coefficient used in phenomenological models, e.g., the
TDGL equation, governing the meso- or macroscale polariza-
tion evolution behavior. Then, following the role of driven
Brownian motion, a theoretical model of the polarization
switching time under an applied large electric field is de-
rived for comparison with dynamical simulation results, based
on which we discuss the applicability and reliability of the
physical picture of relaxation time proposed in Sec. II. The
conclusion is drawn in Sec. V.

II. THEORETICAL MODEL

For a neutral ferroelectric system including numbers of
positive and negative ions, the intrinsic lattice dynamics are
governed by a many-body Hamiltonian H

H =
∑

i

p2
i

2mi
+ U ({ri}) + Henv. (3)

Here, pi, ri, and mi are the atomic momentum, coordinates,
and mass, respectively. U ({ri}) describes the many-body inter-
atomic interactions, and Henv represents the external actions,
such as the thermostat and applied external field. When this
ferroelectric system stays in a thermodynamic equilibrium
state, the lattice dynamics can be equivalently represented by
the thermal distribution of intrinsic phonon modes [48]

H = E0 +
∑

k

nk h̄ωk + H′, (4)

where E0 is the static state energy at T = 0 K, ωk is the
vibrational frequency of the phonon modes |k〉, nk is the
occupation number, and H′ represents the phonon-phonon
interactions. In this case, the phase space associated with the
lattice dynamics of the system of interest is constructed by the
complete base of the eigenvectors of the phonon modes {|k〉}.
According to statistical thermodynamics, the time-dependent
polarization P(t ) is a thermodynamic observable (or ensemble
average) of the polarization operator P̂(t ) = ∑

qir̂i(t ) (qi is
the Born effective charge of the ith ion) over the phase space,
as P(t ) = ∑

k〈k|P̂(t )|k〉.
Following the projection operator approach [49,50], the

many-body system H of Eq. (4) can also be described in
space with |P〉 as the base, which is the eigenvector of P̂, and
|P〉 = ∑

k |k〉 〈k|P〉. A generalized Langevin equation (GLE)
can then be used to describe the stochastic evolution behavior
of the observed polarization P(t ), i.e.,

m∗P̈ = −∂PF (P) − m∗γ Ṗ + f (t ), (5)

where F (P) is a conserved potential field [51], so the term
−∂PF (P) = −∂F/∂P acts like the conserved generalized
force for P(t ); f (t ) is a Gaussian-type random force field, and
−m∗γ Ṗ represents the dissipation, with m∗ and γ representing
the effective mass and the dissipation coefficient, respectively.
Note that the GLE of Eq. (5) can be treated as a coarse-
grained equation for polarization evolution, similar to that
in recently developed dynamical phase-field model (d-PFM)
[28]. As thoroughly addressed in Ref. [51], the action of the
thermal motion of ions, i.e., lattice dynamics, is considered
coarse grained in the provision of the generalized potential
force field for polarization evolution. In addition, Eq. (5) is
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reduced to the phenomenological equation of motion by Tani
[52] if f (t ) = 0 and −∂PF = −m∗χ (∂F/∂P), and is further
reformed to the original transport equation by Landau and
Khalatnikov [53] by neglecting the term m∗P̈. In this regard,
Eq. (5) is in fact a macro- or mesoscale evolution equation,
using a finite number of quantities defined in phase space to
represent a large number of microdynamic degrees of free-
dom involved, so all the terms intrinsically have a many-body
nature. Therefore, determining the microdynamic source of
the mesoscale parameter γ , as well as others in Eq. (5), can
help us to obtain deep insight into the thermodynamics of the
ferroelectric phase transition, which is considered a key step in
the development of a multiscale modeling scheme in materials
science [29].

According to Eq. (5), γ could be measured as the damp-
ing constant of polarization during an adiabatic relaxation
process. Therefore, we analyze macroscopic polarization re-
laxation behavior based on Eq. (5) and microscale dynamical
behaviors of ions in ferroelectric systems to discuss the phys-
ical picture of γ .

An adiabatic process based on Eq. (5) can be designed by
detaching the system from its noisy environment by setting
f (t ) = 0 in Eq. (5) and initializing the system at an excited
state denoted by P0 at the moment of t = 0 near its equilibrium
state PA, as shown in Fig. 1(d). We assume that F (P) can be
expanded harmonically near PA as

F (P) = F (PA) + m∗ω2
A(P − PA)2 (6)

with ωA being the characteristic fluctuation frequency. There-
fore, the system adiabatically relaxes towards PA like a
damped oscillator over time, and P(t ) is determined by

m∗P̈ + m∗γ Ṗ + m∗ω2
A(P − PA) = 0. (7)

In the case of the underdamped condition, i.e., γ < 2ωA, the
time-dependent trajectory of P(t ) is given by

P(t ) = PA + (P0 − PA)e−t/2τ cos(ω′t + φ), (8)

where φ is a phase angle, τ = γ −1 is the defined polariza-
tion relaxation time, ω′ is a modified frequency, and ω′ =√

ω2
A − γ 2/4. In particular, ω′ ≈ ωA in the limit of γ 	 2ωA,

under which the energy reduction rate is thus written as

F (t ) − FA = (F0 − FA)e−t/τ , (9)

where F (t ) = F (P), FA = F (PA), and F0 = F (P0).
Let us discuss the microdynamics insight into the adiabatic

process mentioned above. Before the adiabatic relaxation pro-
cess, the ensemble of phonon modes {|k〉} in the ferroelectric
system described by Eq. (4) has an equilibrium distribution
represented by the occupation number {nk}, which is regarded
as the phase coordinate in the phonon phase space constructed
by {|k〉}. At the moment of t = 0, artificially “moving” the
polarization P away from its equilibrium state PA to an ex-
cited state P0 increases the “potential energy” of P by �F =
F0 − FA > 0, which is also equivalent to bringing all the phase
space coordinates from {nPA

k } denoted by PA to {nP0
k } denoted

by P0. In this case, the subsequent adiabatic relaxation process
in terms of P(t ) from P0 to PA is in fact moving the many-body
system from {nP0

k } towards {nPA
k } due to the phonon-phonon

interaction in the phase space constructed by the eigenvectors

{|k〉} of the phonon modes. Note that the time evolution of
nk (t ) = nP(t )

k is as follows

nk (t ) = nPA
k + (

nP0
k − nPA

k

)
e−t/τk . (10)

Here, nP(t )
k = 〈P|n̂k (t )|k〉 denotes the projection of (n̂k |k〉) on

|P〉, and τk is the lifetime of phonon mode |k〉.
According to statistical thermodynamics, the total energy

of the ensemble of phonon modes is fixed during an adiabatic
process; thus, the heat dissipation rate Q̇ is equivalent to the
reduction rate of free energy Ḟ , which is associated with
polarization in the current system shown in Eq. (6) [51]; i.e.,
Q̇ = −Ḟ . In the phonon system, the heat dissipation rate Q̇ is
determined by the entropy production rate as

Q̇ =
∑

k

TkṠk =
∑

k

ṅk h̄ωk, (11)

where Tk and Sk are the temperature and entropy for the
specific phonon mode |k〉; i.e., Tk = nk h̄ωk/kB and Sk =
kB(ln nk + 1), respectively. Note that the total amount of heat
production Q is equal to the free energy reduction F0 − FA for
the whole adiabatic process from P0 to PA; i.e., Q = F0 − FA.
In addition, at any arbitrary moment t during the adiabatic
relaxation process, the accumulated heat production Q(t ) is
equal to the reduction in free energy, i.e., Q(t ) = F0 − F (t ),
which is then derived as∫ ∞

t Q̇(t ′)dt ′

Q
= F (t ) − FA

F0 − FA
= e−t/τ . (12)

Combining Eqs. (10), (11), and (12), we have

e−t/τ = 〈e−t/τk 〉 ⇒ τ = 〈τk〉. (13)

Here, the detailed deduction can be seen in Sec. SI of
the Supplemental Material [54]. Equation (13) is the bridge
connecting the microscale dynamics based on lattice dynam-
ics and the mesoscale or macroscale polarization evolution,
where polarization relaxation is implemented through mo-
mentum and energy transfer between the phonon modes in
a many-body system due to the intrinsic anharmonic effects
arising from phonon-phonon collisions. In the following, tak-
ing BTO as an example, we perform MD simulations to
generate the adiabatic trajectories of polarization and then
calculate the intrinsic relaxation time τ following Eq. (8).

III. SIMULATIONS OF THE POLARIZATION
RELAXATION TIME

We take BTO as an example to investigate the temporal
characteristics of polarization relaxation. BTO is a typical
ferroelectric material, presenting a tetragonal (T) phase with
spontaneous polarization along the z direction with Pz =
λ(≈ 0.2 C/m2) at room temperature (300 K) [55]. The land-
scape of the Helmholtz free energy F (P) for a monodomain
structure of BTO is calculated beforehand, which helps us to
describe the selection of initial states and the design of the
adiabatic relaxation process for our later simulations for the
evaluation of the polarization relaxation time. In the current
paper, the F (P) of BTO (containing 16×16×16 unit cells)
at 300 K is calculated using the thermodynamic integration
approach in MD simulations under the constraint of fixed po-
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FIG. 1. Free energy of bulk BaTiO3 at room temperature. (a) The free energy landscape F (P) with 16×16×16 unit cells using thermody-
namic integration based on the first-principles-derived effective Hamiltonian method [57], as well as the free energy profile along the (b) 〈100〉
and (c) 〈001〉 directions. Here, Fm = 1.26 eV (∼0.3 meV per unit cell [57]) is the migration energy, PA = (0, 0, 1)λ represents the equilibrium
state with λ ≈ 0.2(C/m2), and P0 is an excited state near PA. (d) Schematics of a bias double well model of relaxation in phase space denoted
by the polarization P.

larization based on a first-principle-derived effective Hamilto-
nian for BTO [56–58]. In addition, the free energy landscape
calculation is performed with a fixed strain tensor so that
only two equivalent minima are expected along the sponta-
neous polarization direction, e.g., 〈001〉 or the z direction,
as shown in Fig. 1. Section SII of the Supplemental Mate-
rial [54] provides more detailed information about the free
energy calculation. Figures 1(a), 1(b), and 1(c) plot the free
energy landscape of BTO at room temperature on the {010}
plane and the projection along the 〈100〉 and 〈001〉 directions,
respectively. It is found that F (P) has a local minimum at
Px = 0 along the 〈100〉 direction and a typical double well
structure along 〈001〉 with two minima at Pz = ±λ denoting
two symmetrical global equilibrium states, as well as a local
maximum Pz = 0. Moreover, the energy barrier of the phase
transition between these two minima of Pz = ±λ is found to
be approximately 1.26 eV (∼0.3 meV per unit cell), which is
consistent with other calculation results [57].

To investigate the temporal characteristics of polarization
relaxation from a microdynamic point of view through the
designed adiabatic processes, MD simulations based on the
core-shell model [47] are performed in the current paper,
which can correctly reproduce the sequence of the phase
transition of BTO (see Fig. S1 in the Supplemental Mate-
rial [54]). Furthermore, the power spectra of the trajectory
P(t ) show three response frequency bands located at approx-
imately 8 THz, 70 THz, and 200 THz, corresponding to the

responses of the total polarization, dipoles in a unit cell, and
core-shell interaction, respectively. A significant difference in
the power spectra along the polar and nonpolar directions is
found in the lowest frequency band (i.e., ∼8 THz for the
total polarization responses), based on which the relaxation
time is estimated (see Fig. S2 in the Supplemental Material
[54]). Here, the polar and nonpolar directions are defined
as the directions with and without spontaneous polarization,
respectively, in a specific phase.

In the MD, all the thermodynamic quantities rely on the
atomic configuration {ri, ṙi}, including the polarization, tem-
perature, and the initial states we need here. However, the
implementation of the initial states by an atomic configura-
tion {ri, ṙi} in MD simulations is quite a challenging task.
First, the initial state P0 is a state located at the free energy
landscape, so the variances of the atomic displacements and
momenta based on the atomic configuration {ri, ṙi} should be
set to follow the Maxwell-Boltzmann distribution denoted by
the background temperature, e.g., T = 300 K. Second, based
on the configuration {ri, ṙi}, the calculated total polarization
should be equal to the preset polarization, which exhibits a
small deviation from its equilibrium value. Considering the
numerical implementation, two typical kinds of initial states
in the T phase of BTO are adopted for the adiabatic pro-
cesses in our simulations, as shown in Fig. 1, i.e., Case I with
PI

0 = (0, 0, 1 + �)λ and Case II with PII
0 = (�, 0, 1 + �)λ,

with PA = (0, 0, 1)λ and � 	 1 denoting a small deviation.
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FIG. 2. The relaxation processes of polarization in BaTiO3 at 300 K. The time dependence of the observed (a) Pz(t ) and (b) Px (t ) and Py(t )
and (c) the corresponding power spectra in Case I. (d), (e), and (f) show the same relaxation details for Case II.

Here, Case I is used to investigate the relaxation behavior
along the polar direction, and Case II is used to investigate
the relaxation behaviors along the nonpolar directions, as well
as the coupling between the polar and nonpolar directions.
Readers can refer to Sec. SIV in the Supplemental Material
[54] to obtain more detailed information.

In the MD simulations for an adiabatic process, the simula-
tion box of BTO is set to be 12×12×12 unit cells containing
8640 atoms. The many-body system is first initialized in
an excited state denoted by P0 (slightly deviating from the
equilibrium state denoted by PA, as shown in the schematic
in Fig. 1) by giving an atomic configuration {ri, ṙi} to meet
the requirements listed above. Detaching from the thermostat,
the system then relaxes to collect the phase space trajectory
under a microcanonical ensemble (NVE), from which the
time-dependent P(t ) is estimated to obtain the value of τ

following Eq. (8). Here, each relaxation case is independently
repeated at least six times with different initial states to limit
the statistical error.

Figure 2 plots the relaxations of Pz(t ), Px(t ), and Py(t ) at
room temperature in Cases I and II, respectively. For Case I,
where the system relaxes from PI

0 towards PA, Pz(t ) reveals a
well-defined underdamped behavior with a relaxation time of
τ = 0.05 ps, as shown in Fig. 2(a), while Px(t ) and Py(t ) show
the commonly seen thermal fluctuations around their mean
values of zero in Fig. 2(b). This indicates that the system basi-
cally relaxes along the 〈001〉 direction, and the relaxation of Pz

is independent of Px and Py. The corresponding power spectra
of Pz(t ), Px(t ), and Py(t ) during adiabatic relaxation processes
of Case I are shown in Fig. 2(c). Significant differences are
seen between the relaxations of Pz(t ), Px(t ), and Py(t ) in

the low-frequency band. On the other hand, for Case II, the
relaxation behavior of Px(t ) is quite significant as shown in
Fig. 2(e), with a relaxation time of τ = 1.17 ps, because there
is a deviation from equilibrium for the polarization along the
〈100〉 direction. In addition, the temporal evolution behaviors
of Pz(t ) and Py(t ) are close to those in Case I. Figure 2(f) plots
the corresponding power spectra of the adiabatic relaxation
processes of Case II. Note that the power spectra of Px(t ) at all
three frequency bands are significantly stimulated, especially
the shift in the peak at the lowest frequency band, while the
power spectra of Pz(t ) and Py(t ) remain nearly unchanged.
Moreover, we focus on the lowest response frequency bands
of Px(t ) and Pz(t ), ∼8 THz (see Fig. S2 in the Supplemental
Material [54]), to determine the reliability of the estimation
of the polarization relaxation time τ . In principle, τ corre-
sponds to the full width at half maximum (FWHM) 
 of the
spectral lines as τ = (2
)−1. It is found that (see Fig. S3
in the Supplemental Material [54]) 
x ∼ 1.25 THz for Px(t )
and that 
z ∼ 5.0 THz for Pz(t ), respectively, therefore, τx ∼
0.4 ps and τz = 0.10 ps, which are comparable to the values
estimated from adiabatic processes mentioned above. These
results generally confirm our conclusion about polarization
relaxation in the time domain. The dynamics of the polariza-
tion component at room temperature are independent of each
other, and the relaxation times along the polar and nonpolar
directions are quite different. As a result, the relaxation time
of BTO is suggested to be a second-rank tensor with only three
nonzero parameters along the principal directions.

Furthermore, the designed adiabatic processes are per-
formed at different ferroelectric phases of BTO by varying the
background temperature from 300 K to 80 K. Here, the initial
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FIG. 3. Temperature dependence of the polarization relaxation
time in different ferroelectric phases of BaTiO3. Here, the green solid
data points denote τ along the nonpolar directions without sponta-
neous polarization, while the red open circles represent τ along the
polar directions with nonzero spontaneous polarization in a specific
ferroelectric phase.

states for the adiabatic processes are set to be a small deviation
� from the corresponding equilibrium states, similar to the
settings in Cases I and II mentioned above (see details in
Sec. SIV of the Supplemental Material [54]), to calculate the
relaxation time of Px(t ), Py(t ), and Pz(t ). For instance, for the
orthorhombic (O) phase of BTO, two cases of initial states
are selected, i.e., Case I of PI

0 = (0, 1 + �, 1 + �)λ and Case
II of PII

0 = (�, 1 + �, 1 + �)λ; for the rhombohedral (R)
phase, because there is spontaneous polarization along the
〈111〉 direction, only one case is considered, i.e., Case I of
PI

0 = (1 + �, 1 + �, 1 + �)λ. In addition, the variance of
� in the initial states is confirmed to have little influence
on the intrinsic polarization relaxation time (see Fig. S4 in
the Supplemental Material [54]). In this case, the relaxation
time τ is estimated as the average value of those obtained
from at least six independent MD simulations. Figure 3 plots
the temperature dependence of τ in different ferroelectric
phases of BTO. It is found that the τ in the nonpolar di-
rections is approximately an order of magnitude larger than
that in the polar directions, indicating much slower relaxation
along the nonpolar directions. Furthermore, τ shows differ-
ent temperature dependences in different ferroelectric phases.
For example, τzz = τyy = τxx decreases with temperature from
∼0.600 ps at 80 K to ∼0.350 ps at 150 K in the R phase, and
τzz = τyy decreases with temperature from ∼0.150 ps at 170 K
to ∼0.100 ps at 210 K in the O phase, while τzz shows an
opposite temperature dependence from ∼0.035 ps at 230 K to
∼0.050 ps at 300 K in the T phase. Interestingly, for the τ in
the nonpolar directions, the τxx in the O phase decreases with
increasing temperature, but τxx = τyy in the T phase does not
show significant temperature dependence; however, an abrupt
increasing trend occurs near the boundary of the O and T
phases that is not found for τ along the polar directions, e.g.,
τyy = τzz in the O phase and τzz in the T phase. This may

be attributed to the slowing of the polarization relaxation due
to the ferroelectric phase transition; this mechanism requires
further investigation.

IV. DISCUSSION

A. Relation linking relaxation time and kinetic coefficient

As mentioned above, the GLE of Eq. (5) can be condition-
ally simplified to the phenomenological TDGL equation of
polarization evolution on the meso- or macroscale [27,34,52].
We take the TDGL equation for example. For a ferroelectric
monodomain system, the polarization evolution P = P(t ) fol-
lows

∂P

∂t
= −L

∂ψ

∂P
, (14)

where ψ (P) is the free energy density; i.e., F [P] =∫
V ψ (P)dV , with F [P] being the functional of P. In general,

ψ (P) has a symmetrical double well form when no external
field is applied as

ψ (P) = −AP2 + BP4 = B(P2 − λ2)2 − Bλ4. (15)

Here, A and B are the expansion coefficients, λ is the polariza-
tion with free energy minimization, and λ2 = A/2B. Similar
to the adiabatic relaxation process designed in Sec. III, if there
is a small deviation � in P with respect to its equilibrium state
of λ, as P = (1 + �)λ at t = 0, the increment in ψ can be
approximately written as

ψ (P) − ψ (λ) ≈ (P − λ)2/2χ (16)

in the case of � 	 1, where χ is the dielectric constant
related to the curvature of ψ (P) at P = λ, and χ−1 = 8Bλ2.
Therefore, Eq. (14) can be simplified to

Ṗ = −Lχ−1(P − λ). (17)

We can then obtain the evolution of P(t ) as

P(t ) = λ(1 + �e−Lt/χ ). (18)

Comparing Eq. (18) with Eq. (8), we can link the polarization
relaxation time τ and kinetic coefficient through the relation-
ship

L = χ/(2τ ) = χ/(2〈τk〉). (19)

That is, the energetic dissipation rate γ = τ−1 in a ferroelec-
tric system, written in terms of a finite lifetime of phonon
modes due to phonon-phonon interactions, i.e., γ = 〈τk〉−1,
is exactly the damping constant in Tani’s equation [52] and
is closely related to the kinetic coefficient L in the TDGL
equation for the polarization evolution in a phenomenological
framework.

Figure 4 plots the temperature dependence of L = L(T )
at different ferroelectric phases of BTO, estimated follow-
ing Eq. (19), where τ = τ (T ) is obtained from Fig. 3 and
χ = χ (T ) is calculated by performing MD simulations based
on the fluctuation relation of polarization addressed anywhere
[59] (see Sec. SVII of the Supplemental Material [54]). Refer-
ring to the estimation of τ , L is expected to be a second-rank
tensor with only three nonzero parameters, i.e., Lxx, Lyy, and
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FIG. 4. The temperature dependence of the kinetic coefficient L
is used to govern the polarization evolution behavior in the TDGL
equation and is estimated following L = χ/(2τ ). Here, the data of
τ = τ (T ) can be obtained in Fig. 3, and χ = χ (T ) is plotted in
Fig. S4 in the Supplemental Material [54].

Lzz, where Lαα = χαα/(2ταα ) with α = x, y, z, because there
is no significant coupling between the different polariza-
tion components during the relaxation process. As plotted in
Fig. 4, Lαα has almost the same values and temperature depen-
dence as Lββ (here β = x, y, z) if Pα = Pβ . Otherwise, there is
a significant distinction between Lαα and Lββ if Pα = Pβ . In
particular, Lαα has a larger value in the case of Pα = 0. As
shown in Fig. 4, Lxx, Lyy, and Lzz are almost the same in the
R phase because there is spontaneous polarization along the
〈111〉 direction. Correspondingly, Lzz and Lyy are larger than
Lxx in the O phase, with a 〈011〉 spontaneous polarization,
and Lzz is much larger than Lxx and Lyy in the T phase with
spontaneous polarization along 〈001〉. Overall, the values of
Lαα are on the order of magnitude of 103 [A2 s/(J m)]. In
addition, the Lzz in the T phase exhibits a sharply increasing
trend, e.g., from ∼1500 at 230 K to ∼6000 [A2 s/(J m)] at
300 K, and Lxx and Lyy remain almost temperature indepen-
dent, ∼500 [A2 s/(J m)].

According to Eq. (19), the kinetic coefficient governing the
polarization evolution in the TDGL equation is affected by
both χ and τ . At first glance, because the variation of χ (see
Fig. S5 in the Supplemental Material [54]) with temperature
is much more dramatic than that of τ (see Fig. 3), the temper-
ature dependence of L is mainly dominated by χ , particularly
near the phase boundary. However, when L is examined from
a physical point of view, χ and τ reflect different relaxation
characteristics of polarization during a specific phase transi-
tion process. On one hand, the χ at various temperatures are
determined to be associated with the polarization fluctuation
near equilibrium (see Sec. SVII of the Supplemental Material
[54]). In addition, as discussed in Sec. II, χ is related to
the information of a given free energy landscape, particularly
near the potential bottom of the free energy surface. There-
fore, χ mainly reflects the fluctuation characteristics, which
are determinant when the ferroelectric system experiences a

quasiequilibrium phase transition process. On the other hand,
τ reveals the dissipation nature of phase transport, which takes
over when dealing with issues related to nonequilibrium phase
transition processes on a given free energy surface. In our
opinion, for a specific phase transition, χ mainly represents
the thermodynamics of the initial and final states, while τ

characterizes the dynamics during the phase transition pro-
cess, both of which are represented in the kinetic coefficient
used in the TDGL equation.

Moreover, the kinetic coefficient L in the TDGL equation
is a key factor for the dynamical behavior of polarization
in ferroelectrics. In the current work, we obtain the kinetic
coefficient L as a second-rank tensor, which is different from
the one used in PFM as a scalar. This is because the free
energy in our model is different from that in PFM. Following
Landau’s theory of phase transition, the explicit expression of
free energy in PFM is obtained by representing the free energy
surface as a Taylor expansion of the order parameter, i.e.,
polarization for ferroelectrics, always taking the free energy
of the cubic phase as a reference. Therefore, L in PFM reveals
the symmetry of the free energy functional, i.e., in the form
of a scalar, when the TDGL equation is employed in combi-
nation with the Landau free energy to simulate polarization
relaxation. On the other hand, τ and the corresponding L in
the current model are determined based on the free energy
surface under the well-defined ferroelectric equilibrium states
at the specific background temperature. That is, the L in each
ferroelectric phase of BTO definitely reveals the symmetry of
the crystal structure of each phase of BTO. Therefore, the L
calculated in the current work should be written in the form
of a second-rank tensor. The TDGL equation is a generalized
phenomenological equation of motion for polarization in fer-
roelectrics, where various free energy functional expressions
can be adopted and are not confined to the one with cubic
symmetry as a reference. In fact, we are aware that there have
been studies focusing on recasting the free energy used in
PFM based on first-principle-derived simulations [57,60–62].
In other words, for issues about polarization relaxation in fer-
roelectrics, the form of L used in the TDGL equation should
be determined by the expression of the free energy functional.
We take a specific case of polarization relaxation inside a
ferroelectric system with multidomain states as an example.
If there are sufficient numbers of domains involved, which
makes the whole system isotropic, PFM, with a free energy
functional taking that of the cubic phase as reference and
the scalar form of L, is determined to be more convenient
for describing the polarization relaxation. In this scheme, the
polarization relaxation along different directions is treated as
identical. However, if one focuses on the dynamical behavior
of polarization inside a specific domain of such a multidomain
ferroelectric system, the tensor form of L is recommended to
account for the anisotropic characteristics of the polarization
relaxation, and the possible existing coupling or competi-
tion between the polarization along different directions. The
anisotropy and possible competition between different po-
larization directions can be expected to have a significant
influence on the polarization dynamics of the ferroelectric
system, especially when the system experiences a phase tran-
sition from one ferroelectric phase to another ferroelectric
phase.
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In summary, based on a polarization relaxation process of
a small deviation from equilibrium within a single side of
double well energy landscape, i.e., from P0 to PA in Fig. 1(d),
we discuss the physical picture of τ addressed in Eq. (19) that
the polarization relaxation time τ or energy dissipation rate
γ is linked to the kinetic coefficient L in phenomenological
models. In the following, we apply a physical picture of τ to a
case where polarization goes through the energy barrier, i.e.,
from PA to PB in Fig. 1(d), to determine the applicability and
reliability of the physical picture of τ .

B. Relation linking the relaxation time and switching time

Applying a sufficiently large reversed external electric field
Eext on the ferroelectric domain with nonzero spontaneous
polarization results in polarization switching. Considering a
ferroelectric monodomain system containing N interactive lo-
cal microregions with polarization Pi under an external field
Eext, the free energy density ψ (Pi ) is written as

ψ (Pi ) = ψs(Pi ) −
′∑
j

(χ−1PiPj ) − EextPi, (20)

where ψs(Pi ) is the self-energy in the form of a symmetrical
double well, the second term in rhs is the interaction between
Pi and its neighbors Pj , and the term −EextPi denotes the
effect of the external electric field applied. In the case of
|Eext| > Ecrit(Ecrit is the thermodynamic coercive field [34]),
the polarization undergoes a fast switching process, analo-
gous to the driven Brownian motion, where the energy barrier
related to ψs(Pi ) has little influence [34,41]. In addition, the
actions of the neighboring Pj in Eq. (20) provide an internal
field Eint = ∑′

j χ
−1Pj governing the motion of Pi, which can

then be written as

Eint =
′∑
j

χ−1Pj ≈
′∑
j

χ−1〈Pj〉 = χ−1P (21)

under the mean-field approximation. Here, P is the total
polarization as the ensemble average over all the microre-
gions involved, and P = 〈Pj〉. In this regard, in the case of
|Eext| > Ecrit,

ψ (Pi ) ≈ −(Eint + Eext )Pi. (22)

Following the TDGL equation of Eq. (14), we have the evolu-
tion equation as

Ṗ = L(χ−1P + Eext ), (23)

where the evolution rate of the total polarization Ṗ is equiva-
lent to 〈Ṗi〉 under the assumption that ∂〈Pi〉/∂t = 〈∂Pi/∂t〉 in
a ferroelectric monodomain state.

We consider a polarization switching process, where the
polarization P = λ is switching to P = −λ by an external
field Eext = −E . The switching time ts is defined as the time
interval for P = P(t ) switching from λ to zero, as

∫ ts

0
dt =

∫ 0

λ

dP

L(χ−1P − E )
. (24)

Solving Eq. (24), we have

ts = −2τ ln [1 − Ecrit/E ] or e−ts/2τ = 1 − Ecrit/E . (25)

FIG. 5. The polarization switching processes of BaTiO3 at 300 K
under various applied reversal external electric fields Eext = −E
ranging from 2.0 to 7.5 MV/cm.

Here, τ = χ/(2L) is actually the polarization relaxation time
discussed in the foregoing section. The thermodynamic coer-
cive field Ecrit = λ/χ can be estimated from the ferroelectric
hysteresis loop, e.g., Ecrit = 2.6 (MV/cm) of BTO at 300 K
(see Fig. S6 in the Supplemental Material [54]).

Figure 5 demonstrates the switching processes in the T
phase of BTO under various Eext = −E with strengths of E
ranging from 2.0 to 7.5 (MV/cm) by performing MD sim-
ulations at room temperature. Before Eext is applied, 10 ps
of MD runs with a time step of 0.4fs and a canonical en-
semble are carried out to obtain the equilibrium state of the
monodomain with a spontaneous polarization of Pz = λ at
t = 0. Subsequently, a constant reversed Eext = −E is applied
to drag the polarization in the opposite direction. Plotted in
Fig. 5, ts is found to sensitively decrease as the strength of
Eext increases, e.g., from ts = 0.35 ps for E = 2.5 (MV/cm)
to ts = 0.05 ps for E = 7.5 (MV/cm), which is much faster
than that under a small applied field, with several (MV/m)
reported [34]. Figure 6(a) plots the relation of ts and E written
in the form of e−ts/2τ = 1 − Ecrit/E , with a comparison be-
tween the dynamical simulation data of ts and the theoretical
predictions in Eq. (25), where Ecrit = 2.6 (MV/cm) is esti-
mated from the ferroelectric hysteresis loop (see Fig. S6 in
the Supplemental Material [54]) and τ = 0.05 ps as shown
in Fig. 3. Good consistency can be found when E > Ecrit,
which confirms the applicability and reliability of the physical
picture of the polarization relaxation time τ clarified in the
current paper. On the other hand, we fit the simulation data
following Merz’s Law; i.e., t−1

s = τ−1e−Ecrit/E . As shown in
Fig. 6(b), Merz’s law can also describe the E dependence
of ts well, especially when E � 3 (MV/cm). However, the
τ = 0.018 ps and Ecrit = 6.65 (MV/cm) obtained as fitting
parameters using Merz’s law significantly deviate from the
MD simulation estimations. Moreover, Merz’s law should
be applicable in the case of small applied field strength,
which conflicts with the results in Fig. 6(b) and similar
switching behaviors in ferroelectric nanowires reported in
Ref. [63].
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FIG. 6. The dependence of the polarization switching time ts on
the applied external electric field E . The “Simulation data” represent
the results estimated from the switching processes ts shown in Fig. 5
and are compared to (a) the prediction (denoted the “Current Model,”
with a red solid line) of our model derived based on the physical
picture of relaxation time τ introduced in generalized Langevin
equation of Eq. (5), i.e., e−ts/2τ = 1 − Ecrit/E . Here, τ = 0.05 ps is
illustrated in Fig. 2, and Ecrit ∼ 2.6 MV/cm is the thermodynamic
coercive field estimated by the ferroelectric hysteresis loop shown in
Fig. S5 in the Supplemental Material [54]. (b) The corresponding
switching rate t−1

s as a function of E and the comparison of the
dynamical simulation data with theoretical predictions following the
current model and Merz’s law [37], i.e., t−1

s = τ−1e−Ecrit/E . A detailed
discussion can be found in context.

Note that the theoretical model of Eq. (25) is derived
based on the assumption that micropolar regions are unit-
cell dipoles involved in a ferroelectric monodomain system,
whose switching corresponds to the directional rotation along

the energetic optimal path upon their “potential” landscape.
In fact, as addressed in Ref. [64], more complicated many-
body effects are responsible for dipole flip-flop motion during
the relaxation process, but these effects are not considered
in the current model. Furthermore, Eq. (25) is appropri-
ated in the limit of E > Ecrit because of the logarithm function
in Eq. (25). Therefore, further investigation is required to
expand our model to the case of E < Ecrit, as illustrated in
Fig. 5, where ultrafast polarization switching can be observed
in many-body dynamical simulations.

V. CONCLUSION

In this paper, on the basis of atomic simulations, we dis-
cussed the temporal characteristics of polarization relaxation
in ferroelectric materials by taking BaTiO3 as an example.
Starting from a many-body ferroelectric system involving
weakly interactive phonon modes, we proposed a general-
ized Langevin equation with a form similar to that of the
evolution equation in a recently developed dynamical phase
field model to describe the dynamical evolution of the ob-
served polarization on the meso- or macroscale. An adiabatic
process was artificially designed, and a simple relation be-
tween the polarization relaxation time and the lifetime of
the phonon modes in a many-body system was derived to
bridge the meso- or macroscale modeling scheme with the
corresponding microscale dynamics. Although the validity of
this relation was not directly verified in the current paper, we
designed two application scenarios to discuss the applicabil-
ity and reliability of the physical picture of the polarization
relaxation time. First, from the designed adiabatic relaxation
process of polarization, we calculated the temperature depen-
dence of the relaxation time, which was linked to the kinetic
coefficient describing the polarization evolution feature in
the phenomenological model, such as the time-dependent
Ginzburg-Landau equation used in the phase field model.
Second, we proposed a formula describing the dependence
of the polarization switching time on the applied external
electric field. The good consistency between the theoretical
prediction and simulation data confirmed the applicability
and reliability of the physical picture of the relaxation time.
Although the theoretical models and atomic simulations in
the current report are restricted to a simple case, i.e., a ferro-
electric monodomain system, and must be carefully examined
when expanded to a complicated system, the discussion of the
physical picture of the relaxation time could provide useful
ideas for the development of a multiscale modeling scheme
for ferroelectrics.
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