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Wave propagation and diffusion in linear materials preserve local reciprocity in terms of a symmetric Green’s
function. For wave propagations, the relation between the fields entering and leaving a system is more relevant
than the detailed information about the fields inside it. In such cases, the global reciprocity of the scattering off
a system through several ports is more important, which is defined as the symmetric transmission between
the scattering channels. When a two-port system supports nonreciprocal (electromagnetic, acoustic) wave
propagation, it is a (optical, phonon) diode directly following the definition. However, to date no concrete
definition or discussion has been made on the global reciprocity of diffusive processes through a multiple-port
system. It thus remains unclear what are the differences and relations between the three concepts, namely, local
nonreciprocity, global nonreciprocity, and diode effect in diffusion. Here, we provide theoretical analysis on the
frequency-domain Green’s function and define the global reciprocity of heat diffusion through a two-port system,
which has a different setup from that of a thermal diode. We further prove the equivalence between a heat transfer
system with broken steady-state global reciprocity and a thermal diode, assuming no temperature-dependent heat
generation. The validities of some typical mechanisms in breaking the diffusive reciprocity and making a thermal
diode have been discussed. Our results set a general background for future studies on symmetric and asymmetric
diffusive processes.
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I. INTRODUCTION

In processes such as mass transport, thermal conduction,
and direct current (DC) transport, the evolution of physical
fields at macroscale can be described with a diffusion equa-
tion. Recently, artificial functional materials have brought
exciting new possibilities to control diffusive processes.
For example, various metamaterials enable the cloaking of
heat diffusion [1–7], DC current [8–13], and light dif-
fusion [14–17]. In particular, thermal metamaterials [18]
are also designed for many other functionalities, including
heat collection [19–23], temperature management [24], heat
signal camouflage [25–28], and asymmetric heat transfer
[29,30].

The device that transfers heat asymmetrically in oppo-
site directions is called a thermal diode [31–33] or thermal
rectifier [34], which plays an important role in temperature
management and thermal information processing [35]. To
build a thermal diode, simply combining linear materials is
not enough, because heat diffusion is always symmetric in
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them. Such a constraint is believed to due to the microscopic
reversibility, or the time-reversal symmetry of heat carrier dy-
namics, based on which the Onsager-Casimir relation [36,37]
requires that the thermal conductivity should be a symmetric
tensor. Furthermore, the Green’s function for the equation
governing heat diffusion in linear materials must also be sym-
metric [38]. Namely, if one swaps the positions of a point heat
source and the target point, then the corresponding Green’s
function remains the same. We refer to this property as the
local reciprocity of heat diffusion as the reference point can
be any local point inside the material.

The time-reversal symmetry and Onsager-Casimir relation
also apply on electromagnetic (EM) fields [39,40], gov-
erning the symmetry of the permittivity, permeability, and
bi-anisotropic coupling tensors. Similar as in heat diffusion,
the Green’s function for EM wave propagation in linear ma-
terials is symmetric, known as the Lorentz reciprocity. What
is unique for EM or other wave propagation is that this local
reciprocity in linear materials implies a global reciprocity of
their combinations. That is, the scattering matrix of a linear
system is symmetric. The scattering parameters directly relate
the output and input signals, so the global reciprocity is much
more important than local reciprocity in practical applica-
tions. Indeed, the recent active research on nonreciprocal wave

2469-9950/2021/103(1)/014307(12) 014307-1 ©2021 American Physical Society

https://orcid.org/0000-0002-2730-7171
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.014307&domain=pdf&date_stamp=2021-01-15
https://doi.org/10.1103/PhysRevB.103.014307


LI, LI, QI, QIU, AND CHEN PHYSICAL REVIEW B 103, 014307 (2021)

propagation are all about breaking the global reciprocity of
certain devices [41,42].

As mentioned above, thermal devices like thermal diode
have equal importance as those in wave physics. However,
there is still no clear definition of global reciprocity for ther-
mal devices to distinguish it from the local version, not to say
a criterion for its breaking. This is mainly due to the lack of
related concepts including input and output (or incoming and
outgoing) fields to construct a scattering theory for heat diffu-
sion in analogue of wave propagation. Another problem is that
the relation between global nonreciprocity and thermal diode
is unclear. In wave physics, the asymmetric scattering param-
eters between two ports directly imply that signal should be
transferred differently between them in opposite directions,
which meets the property of an optical [43] or phonon [44]
diode. In heat diffusion, it is not so straightforward even if the
scattering parameters can be properly defined. That is because
a thermal diode usually works with different temperatures
maintained at both ends, instead of simply heating or cooling
one end. As a result, whether a two-port thermal device with
broken global reciprocity is always a thermal diode remains a
question.

Here, we provide an in-depth study on the local and global
reciprocities in the context of heat diffusion. By consider-
ing time-harmonic situations, the scattering theory for heat
diffusion through ports is established. The corresponding con-
ditions for the preserving and breaking of global reciprocity
are formulated, with meaningful results in the limit of zero
frequency when the fields cannot be decomposed to input
and output parts. We further prove that any device that pre-
serves global reciprocity cannot be a thermal diode, while that
with global nonreciprocity is a thermal diode. Based on our
findings, methods to break diffusive reciprocity and realize a
thermal diode are summarized, with some typical examples
illustrated.

II. LOCAL RECIPROCITY OF HEAT DIFFUSION

In macroscopic heat transfer, the temperature field T (r, t )
( r is the position vector, and t is time) follows

ρcp
∂T

∂t
= ∇ · (κ · ∇T ) + ρcpv · ∇T + h(r, t ), (1)

where ρ is the density, cp is the specific heat capacity at
constant pressure, κ is the thermal conductivity tensor of the
material, and h(r, t ) is the density of heat source in bulk. We
also included a convective term for generality, where v is
the velocity. We assume forced convection and temperature-
independent velocity field v to avoid nonlinearity. In many
situations, the steady state or steady oscillatory state is of in-
terest, and it is convenient to study the Fourier transformation
of Eq. (1),

iωρcpT (r, ω) = ∇ · [κ · ∇T (r, ω)]

+ ρcpv · ∇T (r, ω) + h(r, ω). (2)

It is well known that when (1) the material is temperature
independent; (2) the thermal conductivity tensor is symmetric;
(3) there is no convection; and (4) the material properties do
not vary with time, Eq. (2) preserves reciprocity in the sense
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FIG. 1. Local reciprocity in heat transfer.

that the Green’s function is symmetric [38] G(r1|r0, ω) =
G(r0|r1, ω).

Consider a domain V as in Fig. 1, where all four conditions
are satisfied. The Green’s function follows

iωρcpG(r|r0, ω) = ∇ · [κ · ∇G(r|r0, ω)] + Q0δ(r − r0),
(3)

where δ(r) is the Dirac δ function, Q0 is a constant to
ensure correct unit. On the domain boundary S with unit
normal vector n, the Green’s function satisfies the Dirichlet
(G(rs|r0, ω) = 0), Neumann ([κ · ∇G(rs|r0, ω)] · n = 0), or
mixed (cG(rs|r0, ω) + [κ∇G(rs|r0, ω)] · n = 0, where c is a
constant) boundary condition. Replacing r0 with r1 gives

iωρcpG(r|r1, ω) = ∇ · [κ · ∇G(r|r1, ω)] + Q0δ(r − r1).
(4)

By multiplying Eq. (3) with G(r|r1, ω) and Eq. (4) with
G(r|r0, ω), then integrating their difference over V, we have∫

V
{G(r|r1, ω)∇ · [κ · ∇G(r|r0, ω)]

− G(r|r0, ω)∇ · [κ · ∇G(r|r1, ω)]}dV

=
∫

V
[G(r|r0, ω)Q0δ(r − r1)−G(r|r1, ω)Q0δ(r−r0)]dV .

(5)

The Gauss’s law can be applied to the left-hand side

l.h.s =
∫

V
∇ · [G(r|r1, ω)κ · ∇G(r|r0, ω)

− G(r|r0, ω)κ · ∇G(r|r1, ω)]dV

=
∫

∂V
[G(rs|r1, ω)κ · ∇G(rs|r0, ω)

− G(rs|r0, ω)κ · ∇G(rs|r1, ω)] · ndS. (6)

We have used the property that κ is a symmetric tensor,
which is satisfied for common materials thanks to the Onsager
reciprocity relation [36]. It is easy to see that the integrand is
zero for all kinds of boundary conditions. The right-hand side
of Eq. (5) is simplified using the sifting property of the Dirac
δ function and gives

r.h.s = Q0[G(r1|r0, ω) − G(r0|r1, ω)] = 0. (7)

The local reciprocity of Eq. (2), under the four conditions
listed below it, is thus proved.
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FIG. 2. Global reciprocity of heat transfer through a two-port
system.

III. GLOBAL RECIPROCITY OF HEAT DIFFUSION
THROUGH TWO PORTS

The above definition of reciprocity does not directly apply
to transportation through a system with several ports. For
wave propagation, the reciprocity of such processes is often
defined as the symmetry of the scattering matrix [39]. Sim-
ilarly, we can study the reciprocity in terms of the relation
between field amplitudes at different ports of a diffusive sys-
tem.

Consider a two-port heat transfer system as in Fig. 2, the
region V is thermally insulated, except for two channels C1 and

C2 that have uniform and linear material properties. It is also
assumed that both channels are long, narrow, and aligned in
the lateral x direction, with their upper and lower boundaries
insulated. At oscillatory frequency ω, the supported modes are

Tc(x, ω) = e±ikcx, kc = (1 − i)
√

ω/2Dc, (8)

where Dc is the diffusivity of the channels. If the interfaces
between the left and right ports and the system are at x1 and
x2, then we can define the fields in the channels as

Tc(x, ω) =
{

A1e−ikc (x−x1 ) + B1eikc(x−x1 ), x � x1

A2eikc(x−x2 ) + B2e−ikc (x−x2 ), x � x2
. (9)

Note that the field evolution is obtained by multiplying
T (x, ω) with eiωt , so A1 and A2 are the amplitudes of the
incident fields, while B1 and B2 are the amplitudes of the
outgoing fields. They are related through the scattering matrix
S, (

B1

B2

)
= S

(
A1

A2

)
=

(
r11 t12

t21 r22

)(
A1

A2

)
, (10)

where r11 and r22 (t12 and t21) are the reflection (transmission)
coefficients. Reciprocity of scattering processes through the
system is defined as a symmetric S, or t12 = t21.

Consider the Green’s function for the entire system plus the
two channels (V ∪ C1 ∪ C2). It satisfies the Neumann bound-
ary condition except for the two ends at x = ±L, and must
have the similar form as Eq. (9) in the two channels

G(x|xa, ω) =
{

A1(xa, ω) e−ikc (x−x1 )−eikcx1

1−eikcx1
+ B1(xa, ω) eikc (x−x1 )−e−ikcx1

1−e−ikcx1
, xa � x � x1

B2(xa, ω) e−ikc (x−x2 )−e−ikc (L−x2 )

1−e−ikc (L−x2 ) , x � x2

,

G(x|xb, ω) =
{

B1(xb, ω) eikc (x−x1 )−e−ikc (L+x1 )

1−e−ikc (L+x1 ) , x � x1

A2(xb, ω) eikc (x−x2 )−e−ikcx2

1−e−ikcx2
+ B2(xb, ω) e−ikc (x−x2 )−eikcx2

1−eikcx2
, x2 � x � xb

, (11)

where xa � x1 and xb � x2. We adopt this special form to en-
sure a meaningful linear distribution in the limit of ω(kc) → 0,
instead of the zero fields for Eq. (9). The boundary condition
is G(±L|xa, ω) = G(±L|xb, ω) = 0 for L → ∞. Therefore,

t12 = B1(xb, ω)

A2(xb, ω)
= G(x1|xb, ω)

A2(xb, ω)
,

t21 = B2(xa, ω)

A1(xa, ω)
= G(x2|xa, ω)

A1(xa, ω)
. (12)

When the sources are close to the interfaces: xa → x1 and
xb → x2, Eq. (12) is

t12 = G(x1|x2, ω)

A2(x2, ω)
, t21 = G(x2|x1, ω)

A1(x1, ω)
. (13)

Clearly, the amplitude of an incident field only depends
on the source, since the reflections at x = ±L → ±∞ are
negligible. It is thus reasonable to assume that A1(x1, ω) =
A2(x2, ω) = A(ω), and the reciprocity of the two-port system
is equivalent to

G(x1|x2, ω) = G(x2|x1, ω). (14)

It means that the condition of global reciprocity is almost
identical as that of local reciprocity, except that the positions
of source and target should be on the interfaces between
the system and the channels. We note that in the limit of
ω(kc) → 0, one cannot distinguish the incident, reflected, and
transmitted parts of a field, since there is no directionality
of field propagation. However, the definition of reciprocity in
Eq. (14) is still meaningful as an extension from the cases with
nonzero frequency.

IV. STEADY-STATE GLOBAL RECIPROCITY
AND THERMAL DIODE

For wave propagation, a nonreciprocal two-port system is
almost the same thing as a diode, both refer to an asymmetric
transmission. It is worth noting that for a diode, the incident
and outgoing waves under consideration are generally re-
quired to be at equal frequency, while it is correct to state that
the transmission between two modes at different frequencies
is nonreciprocal [44]. Here, we focus on the equal-frequency
transmission.
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In diffusive processes, a diode is usually defined differ-
ently. For example, a thermal diode [31–33] refers to a system
in contact with two thermal reservoirs at temperatures T1 and
T2, and the heat fluxes passing through it must be asymmetric
after swapping the values of T1 and T2, as shown in Fig. 3. Nat-
urally, one would ask whether a nonreciprocal heat transfer
system is still equivalent to a thermal diode. We could answer
the question by fixing the temperatures of the interfaces S1 and
S2 at T1 (T2).

For such setups, only the fields at zero frequency or steady
state are of interest, so we consider the steady-state Green’s
function. It must be linear in the channels, thus

x

V S

n

x1 x2

S1 S2

T1 T2

xa xb

FIG. 3. Thermal diode.

G(x|xa, 0) =
⎧⎨
⎩

C1(xa)(x + L), −L � x � xa

D1(xa)(x − xa) + C1(xa)(xa + L), xa � x � x1

C2(xa)(x − L), x2 � x � L
,

G(x|xb, 0) =
⎧⎨
⎩

C1(xb)(x + L), −L � x � x1

D2(xb)(x − xb) + C2(xb)(xb − L), x2 � x � xb

C2(xb)(x − L), xb � x � L
,

(15)

where x = ± L are the positions of the left and right ends
of the channels. Again xa � x1 and xb � x2. The func-
tion satisfies Dirichlet boundary condition G(±L|xa, 0) =
G(±L|xb, 0) = 0. Assuming that the total heat generation
H = ∫ h(r)dV in V is independent of the conditions outside,
the energy conservation requires that

−κcD1(xa)σ = −κcC2(xa)σ + H,

−κcC1(xb)σ = −κcD2(xb)σ + H,

−κc[C1(xa)−C2(xa)]σ = −κc[C1(xb)−C2(xb)]σ = Q0 + H,

(16)

where κc is the thermal conductivity, and σ is the cross-section
area of the channels. If the differential operator on the field
in region V is linear, then the linear combination F (x) =
faG(x|xa, 0) + fbG(x|xb, 0) is also a solution to the equation
in region V. If we require F (xa) = T1 and F (xb) = T2, then the
coefficients satisfy

G
(

fa

fb

)
=

(
G(xa|xa, 0) G(xa|xb, 0)
G(xb|xa, 0) G(xb|xb, 0)

)(
fa

fb

)
=

(
T1

T2

)
. (17)

In the limit L → ∞, the third equation of Eq. (16) gives

G11 + G12 = G22 + G21. (18)

The heat fluxes q1 and q2 in C1 and C2 near the interfaces
S1 and S2 are(

q1

q2

)
= κc

(
D1(xa) C1(xb)
C2(xa) D2(xb)

)(
fa

fb

)
= Q

(
fa

fb

)
. (19)

In the limit L → ∞, we have

Q12 = κcG21/L,

Q21 = −κcG12/L. (20)

The first two equations of Eq. (16) give

Q11 + Q22 = Q12 + Q21. (21)

Now we can swap the values of T1 and T2 to solve another
set of coefficients,

G
(

f̃a

f̃b

)
=

(
T2

T1

)
=

(
0 1
1 0

)(
T1

T2

)
. (22)

Therefore, (
f̃a

f̃b

)
= G−1

(
0 1
1 0

)
G

(
fa

fb

)
. (23)

The corresponding heat fluxes are(
q̃1

q̃2

)
= Q

(
f̃a

f̃b

)
= QG−1

(
0 1
1 0

)
GQ−1

(
q1

q2

)
. (24)

Note that when H = 0, Q is singular, but the following
results can be similarly obtained.

If the system is not a diode, then it is required that(
q̃1

q̃2

)
= −

(
q2

q1

)
= −

(
0 1
1 0

)(
q1

q2

)
. (25)

Substituting into Eq. (24) and considering that the temper-
ature values are arbitrarily chosen, we have

QG−1

(
0 1
1 0

)
GQ−1 +

(
0 1
1 0

)
= 0. (26)

Assuming that the system is reciprocal, namely G12 = G21.
In the limit L → ∞, Eq. (18) gives that G11 = G22. From
Eqs. (20) and (21) we see that Q is anti-symmetric and
traceless. Using all the properties, we found that Eq. (26) is
satisfied and the system is not a diode. However, if Eq. (26) is
satisfied, then we have

(G12 − G21)(G12 + G21 − G11 + Q11L
/
κc) = 0,

(G12 − G21)(G12 − G21 + G11 + Q11L
/
κc) = 0. (27)

The only physical solution is G12 = G21. We thus prove the
equivalence between steady-state global reciprocity and the
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FIG. 4. Effects of nonlinearity. (a) Nonlinear materials 1 and 2 with temperature dependent thermal conductivities κ1(T ) and κ2(T ).
(b) Steady-state temperature profiles for a system built of material 1 with asymmetric geometry. The forward (�T = 25 K) and backward
(�T = −25 K) cases give slightly different amounts of heat. (c) Steady-state temperature profiles for a system built of materials 1 and 2. The
forward (�T = 25 K) and backward (�T = − 25 K) cases give different amounts of heat. (d) Heat (per unit thickness) across the system.

absence of diode effect, or steady-state global nonreciprocity
and being a diode. It is worth mentioning that with heat
generation inside the system, there are multiple choices to
define a thermal diode, except for the violation of Eq. (25).
For example, it can be defined based on the average heat
flux (q1 + q2)/2. However, as we shown above, Eq. (25) is
direct related with the global reciprocity, thereby reflecting the
essential properties of the system.

V. POTENTIAL MECHANISMS

A. Nonlinearity

Based on our analysis, it is noticed that there are several
methods to break the diffusive reciprocity or make a thermal
diode. First, if the governing differential equation is nonlinear,
e.g., because of a temperature-dependent thermal conductivity
or structure [29,45–47], then its solution cannot be obtained
through the Green’s function. In such cases, the local and
global reciprocity are not very meaningful, while diode effect
can be expected.

To demonstrate the effect, consider nonlinear ma-
terials 1 and 2 with isotropic thermal conductivities

κ1(T ) = 0.1 + (T − 275)3/500 (W/(mK)) and κ2(T ) =
0.1 + (325 − T )3/500 (W/(mK)), as plotted in Fig. 4(a).
We first just consider material 1, which is used to build a
geometrically asymmetric system as shown in Fig. 4(b). On
its left and right sides, two channels of size 2 cm × 1 cm are
attached. The thermal conductivity of the channels is set as
400 W/(mK) (that of copper). The left (right) boundary of the
left (channel) is maintained at constant temperature T1 (T2).

We perform finite-element simulations using COMSOL
Multiphysics on the model with the average temperature
T0 = (T1 + T2)/2 = 300 K unchanged, and the temperature
difference �T = T1 − T0 = T0 − T2 from −25 K to 25 K.
Therefore, when �T > 0 (<0), heat is transferred in the
forward (backward direction). Also, the amount of heat trans-
ferred Q(�T ) is positive (negative) in the forward (backward)
direction. Since more parts of the system can be heated from
the right side, the amount of heat in forward direction should
be smaller than that in backward direction, as confirmed
by the simulations. However, the rectification ratio is very
small: |Q(−�T )|/|Q(�T )| = 100.48% when �T = 25 K.
To improve the performance, the configuration in Fig. 4(c)
is often used [31]. It is the combination of material 1 and 2
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with opposite temperature dependence. Therefore, both parts
will have large (small) thermal conductivities for forward
(backward) heat transfer. Figure 4(d) shows the amount of
heat transferred through the three systems. The asymmetric
nonlinearity makes a thermal diode with more significant rec-
tification ratio: |Q(�T )|/|Q(−�T )| = 184.32% when �T =
25 K. Combining nonlinearity with asymmetry is a well-
known strategy for building a thermal diode [29]. It has been
shown that simply using nonlinearity is not enough [48,49].
For one-dimensional heat diffusion, it is also required that the
spatial- and temperature-dependence of the thermal conduc-
tivity should be nonseparable [50]. Detailed analytical studies
on the rectification ratio using temperature-dependent thermal
conductivities have been performed recently [51,52].

B. Asymmetric thermal conductivity tensor

Second, when the thermal conductivity tensor is asymmet-
ric, such as the thermal Hall effect in magnetic fields [53], an
additional term appears in Eq. (6),∫

V
∇G(r|r1, ω) · (κ − κT) · ∇G(r|r0, ω)dV , (28)

which could, but not necessarily be nonzero. To see this, we
rewrite Eq. (28) using the property of κ − κT, which is an anti-
symmetric tensor in three-dimension. In Cartesian coordinate
system, it can be expressed as

[κ − κT] =
⎡
⎣ 0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤
⎦. (29)

Therefore, we can define a vector a such that its three
Cartesian components are a1, a2, and a3. Equation (28) be-
comes∫

V
∇G(r|r1, ω) · a × ∇G(r|r0, ω)dV

=
∫

V
∇ · [G(r|r1, ω)a × ∇G(r|r0, ω)]dV

−
∫

V
G(r|r1, ω)∇ · [a × ∇G(r|r0, ω)]dV . (30)

If only Dirichlet boundary condition is applied, then the
first term is zero based on Gauss’s law. In the second term, we
have

∇ · [a × ∇G(r|r0, ω)]

= ∇G(r|r0, ω) · (∇ × a) − a · [∇ × ∇G(r|r0, ω)]

= ∇G(r|r0, ω) · (∇ × a). (31)

As a result, the additional term is still zero for uniform
materials, which obviously also applies for two-dimensional
cases. When Neumann or mixed boundary condition exists,
the first term in Eq. (30) does not vanish. We thus shown that
the local reciprocity in a uniform material with asymmetric
thermal conductivity tensor is preserved when all the bound-
aries are at fixed temperatures.

To confirm the result, we perform finite-element simula-
tions on a rectangular region (size 10 cm × 5 cm, thickness
1 mm) built of uniform material with thermal conductivity
κ. In the Cartesian coordinate system whose origin is at the
center of the region, the matrix form of κ is

[κ] = κ0

[
1 0.3

−0.3 1

]
, (32)

where κ0 = 100 W/(mK). A heat source Q = 5 W is uni-
formly launched on a small spot of radius 0.3 mm at
[r0] = [−2 cm 0.5 cm]T to mimic a point heat source. If all
boundaries of the region are maintained at constant temper-
ature 300 K as in Fig. 5(a), then the temperature at [r1] =
[1 cm − 1 cm]T is 301.7 K. After swapping the positions of r0

and r1, this temperature value remains the same. However, if
only the left side is maintained at constant temperature with
the other sides thermally insulated as in Fig. 5(b), then the
temperature at r1 is 326.90 K. After swapping the positions
of r0 and r1, this temperature becomes 329.38 K, indicating
a broken local reciprocity due to the existence of Neumann
boundary conditions. For comparison, a symmetric thermal
conductivity [κ] = κ0I gives the same temperature 329.60 K
before and after swapping the positions of r0 and r1.

We also simulated the cases where all boundaries are ther-
mally insulated as in Fig. 5(c). In such a system steady-state
solution does not exist for a constant point heat source, so
we consider the time-harmonic solutions with Q = 5cos(ωt )
(W), where ω = 2π × 0.001 rad/s. The density and heat ca-
pacity of the material are set as ρ = 8000 kg/m3 and cp =
500 J/(kgK). It turns out that the temperature variation am-
plitude at r1 is A1 = 39.03 K, while the value becomes A2 =
39.27 K after swapping the positions of r0 and r1. This again
confirms that the local reciprocity is broken for Neumann
boundary conditions. For comparison, a symmetric thermal
conductivity [κ] = κ0I gives the same temperature amplitude
39.09 K before and after swapping the positions of r0 and r1.
Of course, when the thermal conductivity is nonuniform and
∇ × a is nonzero, the local nonreciprocity is broken following
Eq. (31), irrespective of the boundary conditions.

Next, we study the global reciprocity, especially that at
steady state to determine whether the system could become a
thermal diode. In fact, it can be shown that at zero frequency,
simply using asymmetric thermal conductivity tensor does not
break the global reciprocity of a two-port system, so a thermal
diode cannot be built this way. To prove this, we use the same
setup as in Fig. 2. Similar to Eq. (5), an integral on the system
gives

∫
V
{G(r|r1, ω)∇ · [κ · ∇G(r|r0, ω)]

− G(r|r0, ω)∇ · [κ · ∇G(r|r1, ω)]}dV

=
∫

V
[G(r|r0, ω)Q0δ(r − r1)

− G(r|r1, ω)Q0δ(r − r0)]dV = 0. (33)

Now that r0 and r1 are outside the system in the channels,
so the integral simply vanishes. We can also integral on the
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FIG. 5. Effects of asymmetric thermal conductivity tensor: local reciprocity. (a) Steady-state temperature profiles generated by a point heat
source with all boundaries at fixed temperature. The reciprocity is preserved. (b) Steady-state temperature profiles generated by a point heat
source with the left side at fixed temperature and the other three boundaries thermally insulated. The reciprocity is broken. (c) Temperature
profiles at t = 9120 s generated by a time-harmonic point heat source with all boundaries thermally insulated. The reciprocity is broken.
Boundaries with fixed temperatures are indicated with purple lines. The target positions where temperatures are measured are indicated by
orange dots.

system plus the two channels∫
V ∪C1∪C2

{G(r|r1, ω)∇ · [κ · ∇G(r|r0, ω)]

− G(r|r0, ω)∇ · [κ · ∇G(r|r1, ω)]}dV

=
∫

V ∪C1∪C2

[G(r|r0, ω)Q0δ(r − r1)

− G(r|r1, ω)Q0δ(r − r0)]dV

= Q0[G(r1|r0, ω) − G(r0|r1, ω)]. (34)

Using Eq. (33), the left-hand side (l.h.s.) is simplified as

l.h.s =
∫

C1∪C2

{G(r|r1, ω)∇ · [κc∇G(r|r0, ω)]

− G(r|r0, ω)∇ · [κc∇G(r|r1, ω)]}dV

=
∫

∂C1∪∂C2

κc[G(r|r1, ω)∇G(r|r0, ω)

− G(r|r0, ω)∇G(r|r1, ω)] · ndS. (35)

On the two interfaces S1 and S2 between the channels and
the system. At zero frequency (ω = 0), energy conservation
requires that∫

S1

κc∇G(r|r0, 0) · ndS +
∫

S2

κc∇G(r|r0, 0) · ndS = 0,

∫
S1

κc∇G(r|r1, 0) · ndS +
∫

S2

κc∇G(r|r1, 0) · ndS = 0.

(36)

Combining with the other boundary conditions of C1 and
C2, the surface integral in Eq. (35) vanishes. Therefore, the

right-hand side of Eq. (34) equals zero. We thus prove that
the steady-state global reciprocity is preserved even for a
system with asymmetric thermal conductivity tensor, which
could even be nonuniform. Based on the equivalence shown
in Sec. IV, it cannot become a thermal diode. Of course, at
nonzero frequencies we do not have Eq. (36), so the global
reciprocity is broken.

To confirm the above results, we perform finite-element
simulations on a system with the same shape as in Fig. 5.
Two channels of size 2 cm × 1 cm with thermal conduc-
tivity κc = 400 W/(mK), density ρc = 8900 kg/m3, and heat
capacity cpc = 390 J/(kgK) (those of copper) are attached to
the system. Channel 1 is connected to the left of the system.
Channel 2 is connected to the bottom of the system. The
thermal conductivity of the system follows Eq. (32). The
global reciprocity is tested by applying an oscillatory point
heat source as for results in Fig. 5(c), with all boundaries
thermally insulated. When the point heat source is in channel 1
(5 mm from the interface), the amplitude of temperature vari-
ation in channel 2 (5 mm from the interface) is A1 = 38.89 K.
The value becomes A2 = 42.06 K after the positions of heat
source and target are swapped. The temperature distributions
at t = 9110 s are shown in Fig. 6(a). However, the ratio
A2/A1 decreases toward unity as the oscillating frequency ω

approaches zero, as shown in Fig. 6(b). It confirms our theo-
retical prediction. We also apply fixed boundary conditions
on the left end of channel 1 and lower end of channel 2,
whose temperatures T1 = T0 + �T and T2 = T0 − �T are set
the same as for the nonlinear cases. As shown in Fig. 6(c), the
temperature distributions for the forward and backward cases
are symmetric. As expected, the heat is linearly proportional
to �T , so Q(�T ) = −Q(−�T ) and the system is not a ther-
mal diode [Fig. 6(d)].
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FIG. 6. Effects of asymmetric thermal conductivity tensor: global reciprocity and diode effect. (a) Temperature profiles at t = 9110 s
generated by a time-harmonic point heat source with all boundaries thermally insulated. The global reciprocity is broken. (b) As the oscillating
frequency ω of the heat source approaches zero, the ratio between the two amplitudes approaches one, indicating a preserved global reciprocity
at steady state. (c) Steady-state temperature profiles with the left and lower boundaries at fixed temperatures. The forward (�T = 25 K) and
backward (�T = −25 K) cases are symmetric, so the system is not a thermal diode. (d) Heat (per unit thickness) across the system. The target
positions where temperatures are measured are indicated by orange dots.

C. Thermal convection

Third, if thermal convection (assuming forced convection
with temperature-independent velocity field) is present, then
an additional term appears that could possibly break the local
reciprocity,

−
∫

V
[G(r|r1, ω)ρcpv · ∇G(r|r0, ω)

− G(r|r0, ω)ρcpv · ∇G(r|r1, ω)]dV. (37)

Such a convection-induced nonreciprocity has been studied
for mechanically rotating structures, whose effective ther-
mal conductivities tensor are shown to be asymmetric [54].
The nonreciprocity is reflected in a rotated temperature field
around the structure. Interestingly, the reciprocity can be re-
stored by combining counter-rotating parts, thereby disguising

a convective system as a purely conductive one [55]. It should
be noted that this reciprocity is between any two arbitrary
directions, so it is basically a local one. In terms of a two-port
setup, the result is quite different. Based on the effective ther-
mal conductivity [54], most results for asymmetric thermal
conductivity tensor are also valid for heat convection through
rotating structures. Namely, the local reciprocity is broken;
the global reciprocity for a two-port system is broken for
nonzero frequencies but preserved at zero frequency based on
the similar argument for Eq. (34); the system cannot become
a thermal diode. Note that Eq. (37) cannot be manipulated
like Eq. (28), so the local reciprocity is broken even for pure
Dirichlet boundary conditions.

All the predictions are numerically demonstrated for a 1-
mm-thick solid ring with inner and outer radius 1.5 cm and
3 cm rotating at angular speed 
 = 2π × 0.002 rad/s. Its
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FIG. 7. Effects of heat convection. (a) Temperature profiles on a rotating ring (with rotation speed 
) at t = 9110 s generated by a time-
harmonic point heat source (at angular frequency ω) with all boundaries thermally insulated. The local reciprocity is broken. (b) Temperature
profiles on a rotating ring attached with two channels at 9080 s generated by a time-harmonic point heat source with all boundaries thermally
insulated. The global reciprocity is broken. (c) Steady-state temperature profiles with the left and lower boundaries at fixed temperatures. The
forward (�T = 25 K) and backward (�T = − 25 K) cases are symmetric, so the system is not a thermal diode. The target positions where
temperatures are measured are indicated by orange dots. (d) Heat (per unit thickness) across the system at different rotation speeds 
.

thermal conductivity, density, and heat capacity are set as κ =
16 W/(mK), ρ = 8000 kg/m3, and cp = 500 J/(kgK) (those
of stainless steel). For local reciprocity, all the boundaries are
thermally insulated. In a polar coordinate system (r, θ ) whose
origin is built at the center of the system, a heat source Q =
2cos(ωt ) (W) is placed at [r0] = [2.25 cm 5π/4]T. For ω =
2π × 0.001 rad/s, the amplitude of temperature variation at
[r1] = [2.25 cm 7π/4]T is A1 = 52.23 K. The value becomes
A2 = 37.46 K after the positions of r0 and r1 are swapped.
The local reciprocity is broken, as shown in Fig. 7(a). The
same is confirmed for fixed boundary conditions. The temper-
ature fields are not shown as they are not very informative:
only the vicinity of the heat source is heated up.

To test the global reciprocity, two channels are attached
to the ring at θ = 5π/4 and 7π /4 as in Fig. 7(b). The size
and material parameters of the channels are the same as used

in above simulations. The heat source Q is placed at [r0] =
[3.5 cm 5π/4]T. The amplitude of temperature variation at
[r1] = [3.5 cm 7π/4]T is A1 = 43.28 K. The value becomes
A2 = 31.17 K after the positions of r0 and r1 are swapped,
indicating global nonreciprocity. It is also verified that as
ω → 0, the ratio A1/A2 approaches unity, which confirms
the steady-state global reciprocity. The system is thus not a
thermal diode as shown in Fig. 7(c), where outer end of chan-
nel 1 (2) is maintained at fixed temperature T1 = T0 + �T
(T2 = T1 = T0 − �T ), same as for the nonlinear cases. The
temperature profiles for forward and backward cases are ob-
viously symmetric. Since there is no heat generation in the
system, the amount of heat through both channels should
equal. We thus choose to calculate the heat Q(�T ) as an
integral over a cross-section in the right channel [yellow lines
in Fig. 7(c)]. The results for different rotation speeds 
 of the
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FIG. 8. Effects of temperature-dependent heat source. (a) Temperature profiles on a two-port system with an interior hole at fixed
temperature generated by a point heat source with all boundaries thermally insulated. The global reciprocity is preserved. (b) Steady-state
temperature profiles with the left and right boundaries at fixed temperatures. The forward (�T = 25 K) and backward (�T = −25 K) cases
are asymmetric. (c) Heat (per unit thickness) across the system. Boundaries with fixed temperatures are indicated with purple lines. The target
positions where temperatures are measured are indicated by orange dots.

ring are plotted in Fig. 7(d). All of them are odd symmetric to
�T , indicating the absence of diode effect.

D. Heat generation

In our analysis, there could be heat generation inside the
system, so its scope is broader than in many other works on
thermal diode and rectification. As proved in Sec. IV, when
the total heat generation H is independent of the outside ther-
mal conditions, the equivalence between steady-state global
reciprocity and diode effect is still valid. In addition, it is easy
to see that when the distribution of heat generation density
h(r) in the system is inhomogeneous and asymmetric, it can
break the steady-state global reciprocity without relying on
other effects. Therefore, inhomogeneous heat generation is a
convenient mechanism to make a thermal diode.

Here, we further consider the case when there exists a
heat source in the system that depends on the temperatures in
the channels. Equation (16) and the following derivations are
incorrect as H is temperature-dependent. Such a case can be
easily realized using a setup as shown in Fig. 8(a). The system
is a rectangular of size 10 cm × 5 cm (thickness 1mm) with
thermal conductivity κ = 100 W/(mK). A square hole of size

1 cm × 1 cm is made inside. The center of the square is 1 cm
left from the center of the rectangular. Two channels of size
2 cm × 1 cm with thermal conductivity κc = 400 W/(mK)
are attached to the left and right boundaries of the system.
To introduce a temperature-dependent heat source, the bound-
aries of the square hole are maintained at fixed temperature
T0 = 300 K. Since this is simply Dirichlet boundary condi-
tion, the local and global reciprocities are preserved following
the proofs in Secs. II and III. The global reciprocity is numeri-
cally confirmed [Fig. 8(a)] by applying a heat source Q = 5 W
to a small spot of radius 0.3 mm at the center of channel 1.
The temperature at the center of channel 2 is 303.33 K. The
value remains the same after swapping the positions of the
heat source and target.

Despite of the steady-state global reciprocity the system
violates Eq. (25) [Fig. 8(b)], because the heat generation in-
side depends on the temperature difference between T0 and
T1 (T2). As the hole is closer to channel 1, the difference
between T0 and T1 contributes more. Therefore, in the forward
(backward) case, the heat generation is negative (positive) as
T0 is lower (higher) than T1, namely, Q1(�T ) − Q2(�T ) > 0
for �T > 0 and Q1(�T ) − Q2(�T ) < 0 for �T < 0, where
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Q1 and Q2 are the heat in channel 1 and 2, respectively.
The linearity and symmetric boundary conditions also im-
ply that Q1(–�T ) = –Q1(�T ) and Q2(–�T ) = –Q2(�T ).
It follows that Q1(�T ) + Q2(–�T ) �= 0 or the average
heat [Q1(�T ) + Q2(�T )]/2 �= –[Q1(–�T ) + Q2(–�T )]/2
[Fig. 8(c)]. Strictly speaking, the system is a three-port one
with the central hole in contact with some thermal reservoir,
so it does not meet the rigorous definition of a thermal diode.
However, it is still a representative counterexample for the
equivalence between Eq. (25) and steady-state global reci-
procity.

VI. CONCLUSION

Based on the frequency-domain Green’s function, we have
provided a reasonable definition of scattering matrix and
global reciprocity of diffusion which extends to the zero-
frequency limit. We also proved that for linear systems

without temperature-dependent heat generation, steady-state
global reciprocity indicates the absence of diode effect, while
breaking the global reciprocity makes a thermal diode. We
discussed several potential mechanisms that may break the
reciprocity and make a thermal diode. Nonlinearity with
asymmetric geometry makes a thermal diode. Asymmetric
thermal conductivity tensor breaks the local reciprocity and
global reciprocity at nonzero frequency. However, for a two-
port system, the steady-state global reciprocity is preserved,
so asymmetric thermal conductivity tensor does not make
a thermal diode. Typical systems with heat convection and
temperature-dependent heat generation are also studied. They
also preserve steady-state global reciprocity, but the for-
ward and backward heat fluxes could be assymetric in the
latter. Finally, dynamic materials whose parameters are time-
modulated [56] have attracted great interest as a potential tool
to induce diffusive nonreciprocity [57,58]. We will discuss it
in a separate work.
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