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Pockels effect in low-temperature rhombohedral BaTiO3
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We report a first principles analysis of the linear electro-optic (EO) or Pockels effect in rhombohedral BaTiO3

(BTO), the lowest temperature phase of this ferroelectric perovskite. Si-integrated BTO is a promising material
for EO modulators in Si photonics, with applications in optical quantum computing. This requires a fundamental
understanding of the Pockels effect in BTO at low temperature. Through density functional perturbation theory,
we explore the origins of a strong Pockels response by examination of the components that make up the ionic
contribution to the EO tensor. We identify the phonon modes dominating the EO response and establish their
relation to the electronic structure and optical properties of the material.
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I. INTRODUCTION

The Pockels, or linear electro-optic (EO), effect describes
the change in the refractive index of a crystal when an electric
field is applied [1]. The effect would be particularly useful
in silicon photonics, where it could bridge upcoming optical
technology with conventional silicon devices. Unfortunately,
silicon is not EO active due to its centrosymmetric nature.
Strained silicon and other materials have been implemented
in EO modulators in silicon photonics, boasting a competitive
speed, broad bandwidth, and low power consumption [2–6].
Recently, barium titanate has been successfully integrated
onto silicon photonic platforms to fabricate EO modulators
based on the Pockels effect [7] that showed tremendous
promise. The range of emergent applications of this technol-
ogy includes intrachip data transmission [8], neuromorphic
logic optical chips [9], and photonic integrated circuits for
computing [10–12]. So far, research in this area has focused
on room temperature applications. However, cryogenic con-
ditions are required in certain types of quantum computing,
radio astronomy, particle physics, and terahertz sensing [13].
Rhombohedral BaTiO3, or rh-BTO (space group R3m), is
the lowest temperature stable phase of barium titanate [14].
It is stable below 90 °C and is ferroelectric. Unfortunately,
relatively little is known about the physical properties of this
phase of BaTiO3 [9,13].

Traditionally, the most common use of the Pockels effect
is in the telecommunications industry, where lithium niobate
LiNbO3 (LNO) is used in optical modulators [15]. The effec-
tive Pockels coefficient of ∼30 pm/V for LNO sets a “gold
standard” for an appreciable Pockels response [16]. Addition-
ally, LNO’s broad spectral range also makes it more attractive
than other EO materials [17]. Some materials exhibit stronger
responses, yet they are thermally and chemically unstable in
the conditions needed for integration with silicon photonics
[18]. BaTiO3, however, has a much stronger Pockels response
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(∼1300 pm/V [19]), is chemically and thermally stable, can
be integrated on silicon (001), and its use has already been
demonstrated in a variety of applications, including silicon
photonics [20–22]. The low-temperature response has only
been recently reported and is very much diminished compared
with the room temperature, tetragonal phase [13]. It is unclear
whether this reduction comes from fundamental shifts in the
material properties or from external factors such as strain,
composition, or microstructure.

Here, we report a theoretical study of the EO response
in rh-BTO. Using first principles calculations, we delve into
the building blocks of the ionic contribution to the Pock-
els tensor. Specifically, we explore the Raman susceptibility,
which “measures” how phonons couple to electrons, altering
the electronic structure. The connection between the Raman
susceptibility and electron-phonon coupling was first pointed
out by Kaminow and Johnston [23] and recently discussed
by Hamze et al. [24]. In this paper, we investigate why
certain phonon modes exhibit larger Raman susceptibilities
and dominate the Pockels response for rh-BTO. We analyze
which intrinsic bonding properties strongly contribute to the
response and consider how these could be enhanced via mate-
rials engineering.

II. BACKGROUND AND METHODS

The Pockels effect describes how the refractive index of a
crystal changes under the influence of an applied electric field.
It is traditional to introduce it in the context of a change in the
optical indicatrix as follows [25]:

�

(
1

n2
i j

)
= �(ε−1)i j =

∑
γ

ri jγ Eγ . (1)

But it can also be written as the first-order change to the
dielectric tensor induced by an applied electric field Eγ [26]:

dεi j = −
∑

k

ri jγ εiiε j jdEγ (ω). (2)

2469-9950/2021/103(1)/014303(8) 014303-1 ©2021 American Physical Society

https://orcid.org/0000-0001-5125-296X
https://orcid.org/0000-0003-4241-3519
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.014303&domain=pdf&date_stamp=2021-01-11
https://doi.org/10.1103/PhysRevB.103.014303


THERESE PAOLETTA AND ALEXANDER A. DEMKOV PHYSICAL REVIEW B 103, 014303 (2021)

In piezoelectric crystals such as BaTiO3, we expand the
full differential of the dielectric tensor into purely electronic,
lattice, and piezoelectric contributions [27]:[

dεi j (R, η0, E )

dEγ

]
R0,ηo E=0

=
[
∂εi j (R0, η0, E )

∂Eγ

]
E=0

+ 4π
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]
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τ
Eγ

kα
. (3)

Here, Eγ is the electric field component in direction γ , R
describes the ionic coordinates, ημν is the (μ,ν) element of
the strain tensor describing the distortion due to the electric
field, the naught refers to values at equilibrium, χ

(1)
i j is the

linear dielectric susceptibility, and τκα refers to displacement
of atom κ in the α direction. The superscript Eγ denotes a
derivative being taken with respect to the electric field.

The first term on the right-hand side of Eq. (3) represents
the purely electronic contribution coming from the interaction
of the electric field with valence electrons, assuming the ions
are clamped at their equilibrium positions. It is related to the
second harmonic generation effect. The electronic contribu-
tion can be written in terms of χ (2), which is a third derivative
of the electric enthalpy with respect to the electric field. In
perovskites, this term tends to be relatively small [24].

The second term from the right represents the converse
piezoelectric effect. If the frequency of the applied electric
field is sufficiently high, this response will be “clamped,”
referring to the lattice vectors staying constant. We assume the
applied field frequency is low enough to trigger the converse
piezoelectric effect and compute the full unclamped response.
The unclamped Pockels tensor can be written in terms of the
clamped Pockels tensor rη

i jγ , the piezoelectric strain coeffi-
cients dγμν , and elasto-optic coefficients pi jμν :

rσ
i jγ = rη

i jγ +
3∑

μ,ν=1

pi jμνdγμν. (4)

The elasto-optic coefficients can be calculated directly using
first principles software packages such as ABINIT (see be-
low). However, the piezoelectric strain coefficients must be
calculated separately. They are defined as the derivative of
the inverse dielectric tensor with respect to strain. We rewrite
Eq. (4) in terms of the inverse dielectric tensor and convert the
derivative into a finite-difference form:

�(ε−1)piezo
i j =

3∑
μ,v=1

pi jμvημv, (5)

pi jμv ≈ �(ε−1)i j (η+) − �(ε−1)i j (η−)

2ημv

+ O(η2). (6)

The η± indicates what strain is applied to the unit cell when
the dielectric tensor is calculated. Although strain involves
a three-dimensional distortion of lattice vectors, here, it is
formulated as a simple scalar. Thus, we evaluate the dielectric

tensor for different distortions of the unit cell using a centered,
finite-difference derivative.

The last term in Eq. (3) represents the ionic contribution,
resulting from the change in the dielectric tensor induced by
changes in the atomic positions in response to the applied
electric field. Given the minimum condition on electric en-
thalpy at the equilibrium positions, one can relate the second
derivative with respect to τkα (the force constant matrix in
harmonic theory) to the first derivative of polarization with
respect to τkα (the Born effective charge Z∗

κγ β ) [27]. We
largely follow Veithen et al. [27], and the reader may see the
Supplemental Material [28] with the full details of the deriva-
tion. Since the eigenvectors of the dynamical matrix form a
complete set, τEγ

kα
can be expressed in terms of the zone-center

normal modes or the mass-normalized eigendisplacements,
um(kα) [29]. Consequently, the second term can be written
as:

4π
∑

m

1

ω2
m

[∑
kα

∂χ
(1)
i j (R)

∂τkα

um(kα)

][∑
k′β

Z∗
k′γ βum(k′β )

]
.

(7)
The derivative in the first bracket is the so-called Raman
susceptibility, describing the modulation of the optical proper-
ties [linear dielectric susceptibility χ (1)] by lattice vibrations
[23]. This is the very same mechanism that is responsible for
Raman scattering. The second bracket is the mode polarity,
which is comprised of the Born effective charge and the
eigendisplacements. The zone center phonon frequencies are
ωm.

Clearly, the electronic susceptibility and its derivative are
critical to the Pockels response. To gain some physical insight,
consider a one-dimensional chain within a tight-binding (TB)
theory, treating the electric field as a perturbation. In the limit
of vanishing frequency, one can write [30]

χ
(1)
i j = 2h̄4e2

m2
e�o

∑
n,n′

|〈ψn′ |∂/∂x|ψn〉|2
(εn′ − εn)3 . (8)

The transition energy in the denominator is cubed, meaning
that transitions between states with the smallest energy differ-
ence, such as those near the band edge, contribute the most.
When a crystal vibrates, the displacement of the ions alters
the band structure, with some modes affecting the electronic
structure more than others. Consequently, we analyze how
certain modes change the band gap, controlling the dominant
term in the electronic susceptibility. As we will go on to
show, the Pockels response depends on the derivative of the
electronic susceptibility with respect to ionic displacement.
We find that modes that stretch the bonds between titanium
and oxygen are the ones that contribute strongly to the Pockels
response.

As we have mentioned, the lowest temperature phase that
has been observed for barium titanate is rhombohedral, with
space group R3m, which is shown in Fig. 1. Through a series
of phase transitions with increasing temperature, the crystal
transforms from the ferroelectric rhombohedral to the ferro-
electric orthorhombic (Tc = −90 ◦C), then to the ferroelectric
tetragonal phase (Tc = 5 ◦C), and finally to the paraelectric
cubic phase (Tc = 120 ◦C) [31].
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FIG. 1. Ball-and-stick model of rh-BaTiO3. The distortion from
the cubic cell is very slight (characteristic angle of 89.84 °), and the
titanium off-center displacement is along the body diagonal.

In the rhombohedral phase, all lattice vectors have equal
length of 4.0036 Å, and the angle between them is 89.84 °
[14]. The atomic positions approximately follow the usual
ABO3 perovskite structure, with barium at the corners, and
then both the oxygen and titanium are slightly displaced from
the face centers and cell center, respectively. The Wyckoff
positions for both the rhombohedral and hexagonal unit cell
descriptions are given in Table I. These distortions give the
phase its spontaneous polarization, with an experimental value
of 33.5 μC cm−1 [32]. The titanium is displaced along the
body diagonal from the center by 0.0077 Å. The oxygens are
all slightly displaced in the opposite direction along the body
diagonal by about 0.043 Å.

All our calculations are performed within the frame-
work of density functional theory (DFT), using the ABINIT

[27,33–38] and VASP [39,40] software packages. In ABINIT,
the local density approximation (LDA) [41,42] was used to
calculate the exchange-correlation energy. We use Teter “ex-
tended” norm-conserving pseudopotentials with the valence
electron configurations 5s25p66s2 for the barium atom (s and
p electrons included as semicore states), 3s23p64s23d2 for the
titanium atom, and 2s22p4 for the oxygen atoms [43]. We ob-
tain a convergence of 2×10−5 Hartree = 5×10−4 eV/atom by
using a plane-wave cutoff energy of 105 Hartree = 2850 eV
and a 10×10×10 Monkhorst-Pack k-point grid [44] for all
ABINIT calculations. We chose to work with a theoretically
optimized lattice constant of 3.94 Å. Considering that LDA
tends to underestimate lattice constants, this agrees well with
the experimental value of 4.0036 Å [14]. The LDA band
gap is probably underestimated. Hybrid exchange-correlation
functionals, such as B3PW and B3LYP, tend to predict bet-
ter band gaps for ABO3 perovskites [45,46], but here, we
use a simpler scissor correction when calculating the high-
frequency dielectric tensor (discussed later). We work with the
same lattice vectors in VASP. We use the same LDA functional

TABLE I. Wyckoff Positions for R3m BaTiO3.

Rhombohedral Hexagonal

Site Element Wyckoff Symbol Wyckoff Symbol

Ba Ba 1a 3m 9b .m
Ti Ti 1a 3m 3a 3m
O O 3b .m 3a 3m

TABLE II. Clamped and unclamped Pockels tensor ri j for rhom-
bohedral BaTiO3.

Clamped EO tensor (pm/V) Unclamped EO tensor (pm/V)⎡
⎢⎢⎢⎢⎢⎢⎣

0 26 55
0 −26 55
0 0 113
0 81 0

81 0 0
26 0 0a

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0a 69a 63a

0a −69 63a

0a 0 123
0 206 0

206 0 0
69a 0a 0

⎤
⎥⎥⎥⎥⎥⎥⎦

aWe transform to the principal axes after the density functional the-
ory calculation runs to recover the correct symmetry, and imperfect
values can lead to noise of about ∼1 pm/V in the transformation.

[41] and projector augmented wave potentials that treat semi-
core s states as valence states in barium and titanium [40]. By
using a plane-wave cutoff energy of 650 eV and a 16×16×16
Monkhorst-Pack k-point grid, we obtain a convergence of
5×10−5 eV/atom.

III. RESULTS AND DISCUSSION

Before discussing our results for the Pockels tensor, which
has received little experimental attention in the rhombohedral
phase, we compare another property, the dielectric tensor, to
assess the validity of the calculations. Previously reported val-
ues of the high-frequency dielectric constant εxx = εyy = 6.16
and εzz = 5.69 [47] are in good agreement with our values of
εxx = εyy = 6.56 and εzz = 6.48. We also compare with the
experimental value based on an average refractive index of
2.28 [13], giving εii = 5.20. When we use a scissor correction
for the band gap, we obtain εxx = εyy = 5.57 and εzz = 5.51,
in good agreement with experiment.

The Pockels tensor has three indices, the first two referring
to the directions of the propagating light (the indicatrix) and
the third to the direction of the applied electric field. The
tensor is symmetric in the first two indices, so it may be
collapsed using Voigt notation. We report both the clamped
and unclamped EO tensors in Table II. The largest compo-
nent of the clamped tensor is r33 = 113 pm/V, while for the
unclamped it is r51 = r42 = 206 pm/V. These are both much
larger than r33 = 33.5 pm/V for unclamped lithium niobate
[48], but significantly less than those of the tetragonal phase of
BTO [49]. Also, the piezoresponse contributes almost half of
the total, suggesting a large difference for the effect measured
at high and low frequency.

Recently, the clamped effective Pockels coefficient of a
thin BaTiO3 film was reported to be 200 pm/V at 4 K [13].
Although BaTiO3 would usually assume the rhombohedral
phase at 4 K, we hesitate to say the observed phase is nec-
essarily rh-BTO. The sample in that study was a thin film
grown on SrTiO3-buffered silicon by molecular beam epitaxy,
a process that often leads to strain caused by thermal and
lattice mismatch [21,50]. Strain alters the temperature when
a phase transition would usually occur in thin films [51],
so the authors attempt to identify the phase, which cannot
be inferred from temperature alone. They argue that certain
signatures, such as abrupt changes in the EO value, indicate a
phase transition to the rhombohedral phase. Considering the
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TABLE III. Phonon frequencies at the � point, divided into trans-
verse and longitudinal modes. All the transverse modes are doubly
degenerate.

Mode SR freq. LR freq. Theory freq. Exptl. freq.
type (cm−1) (cm−1) (cm−1) [53] (cm−1) [54]

TO 91 91 145 –
187 187 191 173
292 292 306 242
491 491 489 522

LO 120 184 193 187
184 288 297 Silent
288 463 471 485
501 702 713 714

thermal properties of phonons, however, could also explain
the abrupt change in the EO response. As the temperature
drops, fewer phonon modes can be excited. Let us assume that
all key modes contribute at the rhombohedral-orthorhombic
phase transition temperature of 183 K and ignore the slight
temperature dependence of frequencies. Then for simplicity,
upon cooling, once a mode’s Bose-Einstein occupation num-
ber drops to 1/e of its value at the phase transition, let’s
exclude that mode’s contribution. Our calculations indicate
that the r13, r23, and r33 elements will vanish at 103 K. Then
at 96 K, the entire ionic response freezes out, which would
reduce the total Pockels response by about 50% of its origi-
nal value, as only the electronic and piezoelectric responses
remain. Overall, our calculations suggest that having such a
large, clamped response at 4 K suggests that a phase other
than rhombohedral might be present in the thin film. On the
other hand, given the number of effects that can alter the
EO response (such as strain and composition), the reported
value agrees fairly with our maximum clamped component of
113 pm/V.

We compare our calculated phonon frequencies with other
theoretically and experimentally obtained values in Table III
and find good agreement. For clarity, in the next section,
we report both the long-range (LR), corrected and uncor-
rected, short-range vibrational frequencies. In ionic crystals,
longitudinal modes are affected by the LR Coulomb force,
as captured by the Lydanne-Sachs-Teller (LST) relation [52].
The LR-corrected values are relevant for comparison with
Raman spectroscopy [54]. Only the transverse modes that do
not require the LST correction enter the Pockels calculation;
we will mention these frequencies in a later part. Note that all
the transverse modes are doubly degenerate.

To gain further insight into the origins of the large value
of the EO coefficient, let us consider the three elements that
constitute the ionic EO response: The Raman susceptibility,
the mode polarity, and the � point frequencies. We express the
ionic contribution of Eq. (7) more compactly by introducing
αm

i j , the Raman susceptibility, and pm,γ , the mode polarity:

rion
i jγ = − 4π√

�on2
i n2

j

∑
m

αm
i j pm,γ

ω2
m

. (9)

FIG. 2. Mode polarities of the � point lowest frequency optical
modes of rh-BTO. The number above each column indicates the
mode frequency in cm−1. The units of the mode polarity are e×Bohr,
where e is the electron charge.

The mode polarity, which measures the dipole moment a
phonon creates, is defined as follows:

pm,γ =
∑
κ,β

Z∗
κ,γ βum(κβ ). (10)

The eigendisplacements um(κβ ) are bound by normalization
conditions and temperature. Thus, the mode polarity is not
likely to produce a very large EO response, but it can diminish
it. The mode polarity for each mode has a component for
each Cartesian direction. We plot the three elements for the
12 lowest frequency optical modes in Fig. 2.

The lowest frequency modes 4–6 have the largest polar-
ities, each having one nonzero component along the three
Cartesian coordinates. Each set of three modes similarly
has one nonzero component of equal magnitude, but with
lower strength compared with modes 4–6. By definition, the
Born effective charge is mode independent. In modes 4–6
(the corresponding displacements are illustrated in Fig. 3),
the distance between the anions and cations varies strongly,
enhancing the dipole moment compared with other modes.

Figure 4 shows the displacement patterns for every mode
by plotting the magnitude (absolute value) of every atom’s
eigendisplacement. Modes 4–6 are unique in that they feature
the titanium moving with equal magnitude but in the opposite
direction as the oxygen, and the barium is frozen out. In
general, barium barely moves, except in modes 7–9. In these
modes, the titanium and oxygen move together along one
direction, while the barium moves in the opposite direction.
This behavior differs from tetragonal BTO, where the barium
generally does not move at all. In modes 10–12 and 13–15,
the movements are limited to oxygen with no clear relational
patterns.

Next, we analyze the Raman susceptibility, which can be
obtained by expanding the derivative of the dielectric tensor
that is directly related to the susceptibility in terms of ionic
displacements:

αm
i j =

√
�o

∑
κ,β

∂χ
(1)
i j

∂τκβ

um(κβ ). (11)

We plot the largest component of the Raman tensor for the
12 lowest frequency optical modes in Fig. 5.
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FIG. 3. Displacement patterns for modes 4–6 that dominate the Pockels response. All feature oxygens and titanium moving in the opposite
directions, thus stretching the bond length. (a) Mode 4: The oxygens move like a rigid octahedron in the [011̄] direction. (b) Mode 5: The
oxygens move nearly uniformly in the [21̄1̄] direction, while titanium moves in the opposite direction. (c) Mode 6: The three oxygens move
nearly uniformly in the [111] directions, while titanium moves in the opposite direction.

Like the mode polarities, the Raman susceptibilities of the
first three optical modes are the largest. To emphasize how
the pairing of a large Raman susceptibility with low frequen-
cies gives an especially large Pockels response, the modes
are labeled by their respective frequencies. Since the mode
frequencies enter the ionic contribution as a squared factor in
the denominator, the combination of small frequencies with
large polarities and Raman susceptibilities leads to a large
Pockels response.

As Eq. (11) suggests, the critical element of the Raman
susceptibility is the derivative of the linear dielectric sus-
ceptibility with respect to atomic displacement, ∂χi j

∂τκα
. Of the

135 elements of this derivative, six have amplitudes that are
orders of magnitude larger than the rest. These six elements
correspond to titanium and oxygen moving along the Ti-O
bond along the three Cartesian directions. We find that modes
that stretch this bond play a large role in the Pockels response,
making them “active” modes (see below).

Consider, for example, how modes 6 and 10 impact the
electronic structure. Equation (8) suggests that the smallest

FIG. 4. Magnitudes of displacement of each atom for all optical
modes at the � point.

energy transitions control the magnitude of the susceptibility.
The band gap transition would be the leading term in this
sum, so we investigate the dependence of the gap on the
displacements of these two modes. In Fig. 6, we plot the
change in the band gap when the ions take on positions deter-
mined by the eigendisplacements for increasing magnitudes
of displacements. We define the amplitude as the absolute
value of the largest component of the displacement pattern
(also known as the supremum norm). To choose the modes
to analyze, we did the following: using Eq. (11), each mode m
has a 3×3 Raman susceptibility matrix with subscripts i j. For
every mode, we took the element of the Raman susceptibility
tensor with the greatest magnitude. Then we chose the greatest
and least elements of the 12 optical modes, which correspond
to modes 6 and 10, respectively, which we call the Raman
active and inactive modes. These also happen to be the modes
that contribute the most and the least to the Pockels tensor.

The plot shows that the Raman inactive mode hardly
changes the band gap, while the active mode considerably
does. Equation (8) shows that the strong dependence of
the band gap on ionic displacements results in a larger ∂χ

∂τ
,

ensuring a large ionic EO response. In this example, the pos-
itive displacement (bond stretch) results in the gap closing.

FIG. 5. Raman susceptibility for the � point optical modes, la-
beled by the mode number with the unboosted (see text) frequencies
shown above each bar. The units of the Raman susceptibility are
Bohr 3/2, coming from the square root of the unit cell volume.
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FIG. 6. The change in the band gap for different magnitudes of
displacement. We calculated this dependence in both ABINIT and
VASP.

We can relate this to the specific orbitals that control the band
broadening near the conduction band minimum. This depen-
dence highlights the connection between modes with large
Raman (and thus Pockels) responses and electron-phonon
coupling [23,24].

To better understand what drives the change in the band
gap for these modes, we draw on molecular orbital theory.
Oxygen has three types of p states, while titanium has five
types of d states, the types referring to the magnetic quantum
number. In the Hückel TB theory [55], the magnitude of the
off-diagonal matrix elements is taken to be proportional to the
orbital overlap. The overlap of each orbital’s wave function
with another is determined by the distance between the atoms
and the alignment of the orbitals. Phonons displace ions and
can therefore change the TB parameters. See Fig. 7 for a
schematic of the orbital geometry.

There are two groups of bonding and antibonding states
formed by the orbitals on oxygen and titanium. Using the
crystal field theory terminology, these are called eg and t2g,
with a star denoting the antibonding states. The bands near the
conduction band minimum are made up of titanium-oxygen
antibonding states (t∗

2g, made up of dxy,dyz, and dxz), while
the bands near the valence band maximum are the so-called
nonbonded oxygen states [56]. As an example, we plot the
density of states (DOS) near the band gap for our equilibrium

FIG. 8. Density of states (DOS) for rh-BTO (a cell with lattice
constant of 3.94 Å is used). The plot includes the total DOS and
the orbital-projected contributions for each atom. The width of the
bands is denoted by the black bars with the orbital named attached.
The center is marked by a star with the color corresponding to the
legend.

volume crystal, with both the total and partial densities of
states (PDOS) in Fig. 8.

Phonons alter the instantaneous ionic positions and thus
the bonding properties of the crystal. We studied how the
active and inactive modes mentioned above affect the width
and “center of gravity” of the bands controlling the band
gap. In the Supplemental Material [28], we plot the various
characteristics as a function of displacement amplitude. The
two main mechanisms behind the change of the band gap as
the active phonon amplitude grows is the t∗

2g band widening
and the nonbonded oxygen center of gravity shifting upward.
The former points to hopping between the O 2p and Ti 3d
states becoming easier or the hopping integral increasing. The
hopping matrix element can be approximated as an empirical
parameter times the overlap integral, which suggests that the
overlap integrals between the O 2p and Ti 3d states change,
causing the Pockels response to increase.

This relationship can be understood by considering the
ionic displacements of the titanium and oxygen. In the equi-

FIG. 7. (a) A three-dimensional picture of the TiO6 octahedron. (b) A top view of the octahedron, with example orbitals placed on the ions.
The three types of 2p orbitals were assigned to each oxygen with no particular meaning, and the titanium 3dxy was chosen as an example t∗

2g

state. The lobe coloring refers to the sign of the phase of the wave function, red being positive and blue negative. The picture on the left shows
the orbitals before a phonon displacement, with arrows indicating how the ions and their orbitals will move. The picture on the right shows
how the orbitals would overlap with phonon displacement. One can see that the angle between bonds and the bond length strongly affect how
these orbitals overlap.
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TABLE IV. Clamped Pockels tensor for several lattice constants of rhombohedral BaTiO3 (in pm/V).

Latt. constant 3.93 Å Latt. constant 3.94 Å Latt. constant 3.97 Å Latt. constant 4.00 Å⎡
⎢⎢⎢⎢⎢⎢⎣

0 36 90
0 −36 90
0 0 174
0 111 0

111 0 0
36 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0 22 47
0 −22 47
0 0 88
0 69 0

69 0 0
22 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0 10 24
0 −10 24
0 0 45
0 36 0

36 0 0
10 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0a −6 16
0a 6 16
0a 0 31
0 24 0

24 0 0
−6 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

aWe transform to the principal axes after the DFT calculation runs to recover the correct symmetry, and imperfect values can lead to noise of
about ∼1 pm/V in the transformation.

librium structure, the O-Ti-O bonds form a three-dimensional
chain, where every unit cell has two different Ti-O bond
lengths, due to the ferroelectric distortion. In the active mode,
the three oxygens and titanium in the unit cell move in the
exact opposite directions, which means they are moving closer
to another cell for three other pairs. This motion leads to the
maximum change in the overlap integral for the t∗

2g states. We
quantify this by looking at the change in the bond length and
the O-Ti-O bond angle. Using the active mode displacement
with maximum amplitude, the sum of the change in the bond
length of the six Ti-O bonds is 9.13%. This change reduces
the difference between each pair of bond lengths that form
a chain, making the rhombohedral octahedron more like the
cubic one. Comparatively, in the inactive mode, the difference
in sum of bond lengths is only 0.06%. We also examine how
the O-Ti-O bond angle changes. For the active mode, all the
bond angles slightly increase from 175.6 ° to 177.8 °, while
the inactive results in a paltry 0.23 ° change. This motion also
makes the unit cell resemble the cubic one more. Once again,
we see the inactive mode hardly changes the unit cell in ways
that control the bonding properties.

We note that all calculations were completed with a lat-
tice constant that was theoretically optimized. However, LDA
tends to underestimate lattice constants, and the rhombohedral
phase exists at finite temperatures, which leads to thermal
expansion. Thus, there is some uncertainty in what lattice
constant to use to predict experimental values. Consequently,
we calculated the EO response for several volumes, and the
results are listed in Table IV. For each lattice constant, we
allowed the ions to relax while maintaining the same charac-
teristic angle and space group of the unit cell. Note we did not
apply scissor corrections to the band gap for these values.

The results show that starting with the experimental vol-
ume, the Pockels response increases as the cell volume
decreases. As the cell gets smaller, it maintains its space
group, but the reduced coordinates begin to resemble those
of the centrosymmetric cubic cell, reducing the shifts that
give the cell its ferroelectric polarization. This centering of
the atoms and decrease of interatomic distance increases the
overlap of neighboring O 2p and Ti 3d orbitals. As the vol-
ume shrinks, the band gap closes, as the t∗

2g band widens.

Additionally, the frequencies of modes 4–6 decrease rather
steeply as the cell gets smaller, driving up the ionic term.
Mode softening often points to a phase transition, and pre-
vious papers have discussed the possibility of using strain
to enhance BTO’s response via softening the modes in the
vicinity of a morphotropic boundary for the tetragonal phase
[57]. As we decrease the cell volume, the lowest transverse
mode of 17 cm−1 occurs for a lattice constant of 3.93 Å, and
we find instabilities of up to −8i cm−1 near but not at �. The
mode softening does clearly heighten the Pockels response
for these other volumes, as the Raman susceptibilities in fact
diminish. So although the rhombohedral phase does not have
quite as large a response as other phases, with proper strain
engineering, it could possibly be enhanced.

IV. CONCLUSIONS

We report the first principles study of the Pockels tensor
for low-temperature rhombohedral BaTiO3. The cryogenic
conditions necessary for optical quantum computing and other
applications make this an important phase for using EO mod-
ulators based on the Pockels effect in Si-integrated BTO films.
We identify the modes having greater Raman susceptibili-
ties and therefore large contribution to the EO response. We
show how their displacement patterns induce changes in Ti-O
bonding that strongly affect the band gap and electronic sus-
ceptibility. We have also discovered that these same modes are
quite sensitive to strain. The significant increase in the Pockels
response due to the softening of those modes points to the pos-
sibility of enhancing the EO response with strain engineering.
Understanding the origins of the Pockels response is critical
for identifying new material candidates and improving the
known ones. This paper on rh-BTO identifies a fundamental
mechanism controlling the large response and suggests the
possibility of using strain to enhance the response.
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