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Strain-temperature phase diagram of BaZrO3 with antiferrodistortive distortions
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Barium zirconate (BaZrO3) has attracted increasing attention due to its distinguished dielectric property and
high chemical stability. As one kind of perovskite oxide, BaZrO3 often exhibits a delicate interplay of lattice
distortions and strain. In this work, the effect of strain on the ferroelectric and antiferrodistortive distortions
in BaZrO3 thin films is investigated at finite temperature by using density functional theory calculations and
the first-principles based effective Hamiltonian method. It is found that due to the delicate balance between
antiferrodistortive and ferroelectric distortions, polarization in BaZrO3 thin films at absolute zero kelvin can
be activated only under an in-plane tensile strain larger than 3.0%. The rotation of oxygen octahedra (antifer-
rodistortive distortion) is along the out-of-plane direction under the compressive strain and small tensile strain,
whereas it changes to the in-plane direction when the tensile strain is larger than 0.3%. When the tensile strain
increases to 4.1%, both rotation of oxygen octahedra and polarization are along the [110] direction. Furthermore,
the temperature dependence of ferroelectric and antiferrodistortive distortions under different strains is investi-
gated by using an effective Hamiltonian model. The strain-temperature phase diagram is calculated to identify
the different distortions under different strains and temperatures.
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I. INTRODUCTION

BaZrO3 is one of the typical perovskites with high melting
point, small thermal expansion coefficient, and distinguished
dielectric property, which has a great potential in technolog-
ical applications, such as a substrate for thin film deposition,
microwave electronics, and high-temperature proton conduc-
tor [1–4]. However, unlike other ABO3 perovskites such as
BaTiO3 and PbTiO3, ferroelectric distortion doesn’t exist in
BaZrO3 when there is no external field [5], which causes
BaZrO3 to be more underappreciated than other perovskite
materials. Nevertheless, the ferroelectric distortion appears
when an in-plane strain is applied on BaZrO3 [6,7], indicating
that strain engineering may be used to tune the properties of
BaZrO3.

Strain engineering has been an effective way of tuning
properties of perovskite, such as phase transition temperature
[8], piezoelectric properties [9], band gap [10], and so on.
In general, the ferroelectric distortion in a perovskite is also
sensitive to an external strain [11,12]. The coupling between
ferroelectric polarization and strain provides a possible way
to tune the ferroelectric properties in perovskite materials
[13,14]. For example, the ferroelectric Curie temperature of
BaTiO3 can be enhanced to nearly 500 °C by strain, and the
polarization is 250% higher than that of bulk BaTiO3 [13].
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Furthermore, an external strain can even induce ferroelec-
tricity in paraelectric materials. For instance, the epitaxially
strained SrTiO3 exhibits ferroelectric polarization near room
temperature [15]. The strain-temperature phase diagrams of
SrTiO3 have been constructed both experimentally and theo-
retically [16] to show the influence of strain and temperature.
Meanwhile, a phase transition from cubic to tetragonal in
BaZrO3 has been observed under high hydrostatic pressure
at room temperature [17,18], indicating that an external me-
chanical loading can control the phase transition in BaZrO3.

Several studies have been carried out to study the ef-
fect of external strain on the properties of BaZrO3. Previous
first-principle calculations show that BaZrO3 exhibits a para-
electric to ferroelectric transition under both compressive
and tensile strain, and the dielectric constant is significantly
enhanced [7]. Under the strain of −4%, the predicted po-
larization has the value of 34 μC/cm2, which is larger than
the spontaneous polarization of BaTiO3. In the previous
first-principles calculations [7], however, only ferroelectric
distortion has been considered and other lattice distortions
are excluded, which is often coupled with polarization. Fur-
thermore, previous calculations are conducted only at zero
temperature.

To predict the properties of perovskites at finite tempera-
ture, the first-principles-based effective Hamiltonian method
is an effective way [19,20], which has been employed to
study the phase diagram of many ferroelectric materials such
as BaxSr1-xTiO3 [21], BaTiO3 [22], PbZrxTi1-xO3 [23–25],
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NaNbO3 [26], PbZrO3 [27], BiFeO3 [28,29], and so on.
Since the ferroelectricity in perovskites arises from the
ferroelectric lattice distortion, i.e., the relative displacement of
atoms, it can be treated as a degree of freedom in the effective
Hamiltonian method. In addition to the ferroelectric lattice
distortion, there are also other kinds of lattice distortions
that do not produce polarization in the perovskite, such as
rotation and titling of oxygen octahedra (antiferrodistortive
distortion), Jahn-Teller distortion [30], and breathing distor-
tion [31,32]. Among them, the rotation of oxygen octahedra
has been reported to exist in many perovskite materials. By
taking consideration of oxygen octahedral rotation, Bellaiche
et al. confirmed the existence of a monoclinic Cc phase and a
rhombohedral R3 c phase in Pb(Zr, Ti)O3 [25], which doesn’t
appear when the oxygen octahedral rotation is absent [24].
Although the rotation of oxygen octahedra has also been
reported to exist in BaZrO3 [5], none of the previous theo-
retical calculations have considered the role of the rotation
of oxygen octahedra in the strain-temperature phase diagram,
to the best of our knowledge. Up to now, how the rotation
of oxygen octahedra interacts with polarization induced by
strain and how temperature will influence these lattice dis-
tortions are still unknown for BaZrO3. Thus, it is necessary
to introduce the rotation of oxygen octahedra as a degree of
freedom into the effective Hamiltonian method and investigate
its influence on the ferroelectric properties of BaZrO3 at finite
temperatures.

In this work, the effect of strain on the ferroelectric and an-
tiferrodistortive (AFD) distortions in BaZrO3 is investigated
at finite temperature using density functional theory (DFT)
calculations and first-principles based effective Hamiltonian
method. First, the ferroelectric and AFD of BaZrO3 under
in-plane epitaxial strain are studied. Results from the DFT
calculation show that only a relatively sizeable tensile strain
can induce ferroelectric polarization. Second, the temperature
dependence of AFD and ferroelectric polarization under dif-
ferent strains are investigated by the effective Hamiltonian
method. Finally, a full strain-temperature phase diagram is
constructed to identify the AFD and ferroelectric polarization
in BaZrO3 under different temperatures and strains.

II. METHODOLOGY

A. DFT calculations

First-principles calculations are performed to obtain po-
tential energy surface and phonon dispersion of BaZrO3

at absolute zero. The Vienna ab initio simulation package
(VASP) is employed with LDA as exchange-correlation po-
tential in the calculations. The following valence electrons
for Ba(5s25p66s2), Zr(4s24p64d25s2), and O(2s22p4) ions
are used, with an 850-eV plane-wave cutoff. The Brillouin
zone is sampled using an 8×8×8 Monkhorst-Pack k-point
mesh. The cubic BaZrO3 is first fully relaxed until the
Hellmann-Feynman forces on each atom is converged to be
less than 10−3 eV/Å. The calculated lattice parameter for
cubic BaZrO3 is 7.863 34 bohrs, which agrees well with other
first-principles studies [6] and the experimental value obtained
at 10 K (7.9198 bohrs) [5]. Based on the obtained lattice
parameters, phonon dispersion curves are computed using the
PHONOPY program code [33], in which the linear response

method based on the density functional perturbation theory
(DFPT) is employed [34]. The rotation of oxygen octahedra
which is associated with the unstable mode in phonon spec-
trum is considered as the degree of freedom while building an
effective Hamiltonian model for BaZrO3.

The potential energy surfaces as a function of polarization
are calculated for BaZrO3 with and without the rotation of
oxygen octahedral under different in-plane strains. The struc-
ture is fully relaxed until the Hellmann-Feynman force on
each atom is converged to be lower than 10−3 eV/Å. The dis-
placement of atoms relative to the cubic structure is increased
or decreased by changing the amplitude of different modes to
achieve the energies under different polarizations. Similarly,
the rotation of oxygen octahedra is added to each structure and
the potential energy surface with oxygen octahedral rotation is
obtained.

B. First-principles-based effective Hamiltonian method

Based on DFT results, an effective Hamiltonian model
is constructed to study BaZrO3. The effective Hamiltonian
model has four degrees of freedom: (1) the Ba centered
dimensionless variable v , which is used to describe inhomo-
geneous strain ηI ; (2) the Zr centered polar mode u , which is
associated with ferroelectric distortion; (3) the homogeneous
strain tenser ηH ; (4) the Zr centered AFD mode ω that repre-
sentatives the rotation of oxygen octahedra. The ω used here
is a dimensionless quantity. It representatives the ratio of the
displacement of oxygen atoms to that under zero strain at 0 K.
The total energy of BaZrO3 includes two parts:

E tot = EFE({u}, {η}) + EAFD({ω}, {u}, {η}), (1)

where EFE is the energy associated with polar modes, elastic
deformations, and their couplings, while EAFD is the energy
associated with AFD modes and their interactions with polar
mode and strain. η = ηI + ηH represents the strain, which
includes both homogeneous and inhomogeneous strain. EFE

can be expanded as [19]

EFE = E self ({u}) + Edpl({u}) + E short ({u}) + E elas({η})

+ E int ({u}, {η}). (2)

The first term in Eq. (2), E self , is the polar mode self-
energy, which represents the energy of polar mode without
interaction with other polar modes. It can be expressed by

E self ({u}) =
∑

i

[
κ2u2

i + α2u4
i

+ γ
(
u2

i,xu2
i,y + u2

i,yu2
i,z + u2

i,xu2
i,z

)]
, (3)

where ui = |ui|; it means the amplitude of polar mode on the
i th site. ui,x means the component of the polar mode in the x
direction on the i th site. The coefficients of κ2, α2, and γ need
to be determined from first-principles calculations.

The second term Edpl is the long-range dipole-dipole inter-
action. It can be expressed as

Edpl({u}) = Z∗2

ε∞

∑
i< j

ui · u j − 3(R̂i j · ui )(R̂i j · u j )

R3
i j

, (4)

where Ri j = Ri − R j ; Z∗ and ε∞ are the Born effective charge
and optical dielectric constant, respectively.

014113-2



STRAIN-TEMPERATURE PHASE DIAGRAM OF … PHYSICAL REVIEW B 103, 014113 (2021)

The third term, E short, is the short interaction. Since this
energy decays rapidly with distance, we only consider the
interactions between two neighbor polar modes that share the
same Ba atom. The dipole-dipole interaction is excluded from
this part. It can be written as

E short ({u}) = 1

2

∑
i �= j

∑
αβ

Ji j,αβui,αu j,β . (5)

Here, ui,α is the α component of polar mode on the i th site,
while u j,β is the β component on the j th site, and α and β

denote the Cartesian components. Ji j,αβ is the parameter for
the short interaction between them.

The fourth term, E elas, is the elastic energy, which includes
both inhomogeneous and homogeneous strain:

E elas({η}) =
∑

i

{
1

2
B11

(
η2

i,1 + η2
i,2 + η2

i,3

)

+ B12(ηi,1ηi,2 + ηi,2ηi,3 + ηi,1ηi,3)

+ 1

2
B44

(
η2

i,4 + η2
i,5 + η2

i,6

)}
, (6)

where ηi,k (k = 1, 2, . . . , 6) is the k-th component of total
strain η at the site ith. B11, B12, and B44 are the elastic con-
stants.

The fifth term, E int, is the interaction energy between polar
mode and strain. It can be read as

E int ({u}, {η}) = 1

2

∑
i

∑
kαβ

Bkαβηi,kui,αui,β , (7)

in which Bkαβ is the coupling constant, and both homogeneous
strain and inhomogeneous strain are included in η. The formu-
lation and physical meanings for the five energy terms of EFE

are the same as those in Ref. [19].
Although there are several energy terms for the AFD

modes of the effective Hamiltonian model [26,27], only the
terms with coefficients not close to zero are necessary for
BaZrO3. Meanwhile, some high-order terms are introduced to
ensure the convergence of the model, such as the sixth order in
Eω-self and fourth order in Eω-short. The energy terms for AFD
are given as follows:

EAFD({ω}, {u}, {η}) = Eω-self ({ω}) + Eω-short ({ω}) + Eω-u-int ({ω}, {u}) + Eω-η-int ({ω}, {η}). (8)

The first term, Eω-self , can be read as

Eω−self =
∑

i

[
κAω2

i + αAω4
i + βAω6

i + γA
(
ω2

i,xω
2
i,y + ω2

i,xω
2
i,z + ω2

i,yω
2
i,z

)

+ γ ′
A

(
ω2

i,xω
4
i,y + ω2

i,xω
4
i,z + ω2

i,yω
4
i,z + ω2

i,yω
4
i,x + ω2

i,zω
4
i,y + ω2

i,zω
4
i,x

)]
, (9)

where ωi = |ωi|, and ωi,x is the x component of ωi, which
represents the rotation along the x axis. This term is truncated
at sixth order instead of fourth order to guarantee convergence
in Monte Carlo simulation.

The second term, Eω-short, is the short interactions between
two neighbor AFD modes that share the same oxygen atom. It
can be written as

Eω-short =
∑

i j

∑
αβ

Ki jαβωi,αω j,β + K ′
i jαβω2

i,αω2
j,β , (10)

where Ki jαβ = δαβ (|Ri j,α|(k12 − k11) + k11) + (1 − δαβ )
(|Ri j,α|(k13 − k14) + k14), and K ′

i jαβ = k21. Ki jαβ and K ′
i f αβ

are the parameters between the α component of AFD mode at
site ith, with β component of AFD mode at site jth.

The third term, Eω-u-int, is the interactions between AFD
modes and polar modes. It only considers the biquadratic term
and can be expressed as

Eω-u-int ({ω}, {u})=
∑
i, j

∑
αβγ δ

Eαβγ δωi,αω j,βu j,γ ui,δ. (11)

The last term, Eω-η-int, is the coupling between strain and
AFD modes. It also includes both inhomogeneous strain and
homogeneous strain. It can be read as

Eω-η-int ({ω}, {η})=
∑

i

∑
kαβ

Ckαβηi,kωi,αω j,β . (12)

All the parameters of BaZrO3 used here are obtained from
first-principles calculations and listed in Table I.

The Monte Carlo (MC) simulations are performed based
on this effective Hamiltonian using a 12 × 12 × 12 supercell
with period boundary condition. The in-plane strains from
−5% to 5% are considered to obtain the strain-temperature
phase diagram of BaZrO3 thin films. The equilibrate state
under 0 K is achieved with 106 MC sweeps. After that, the
model is heated up to 2000 K with a temperature step of
2 K. For each step, 104 MC sweeps are performed. At each
MC step during the canonical MC simulation, we make a trial
move on each u in sequence, then each v , then each ω in
sequence, and then ηH . The change of total energy after each
trial movement is denoted by 
Etot , and we can calculate the
probability of this movement p by

p = min

[
1, exp

(
-

Etot

kBT

)]
, (13)

where kB is the Boltzmann constant and T is the tempera-
ture. The step size of degrees of freedom is adjusted during
MC simulation to ensure the movement accepted by Eq. (13)
is 0.2.

To verify the accuracy of the present model, the energy
surfaces for the out-of-phase rotation from DFT calculation
and the effective Hamiltonian model are given in Fig. 1. It is
found that both energy surfaces agree well with each other,
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TABLE I. Parameters of the effect Hamiltonian model for BaZrO3 in atomic units using the notations of Ref. [20]. Energies are in hartree.

Parameters for FE

Unit cell a0 7.863 34 Bohr
E dpl Z∗ 8.8158 ε∞ 4.707
E self κ2 0.044 361 9 hartree/bohr2 γ −0.010 56 hartree/bohr4

α 0.030 99 hartree/bohr4

E short j1 −0.018 141 85 hartree/bohr2 j2 0.061 731 35 hartree/bohr2

j3 0.006 018 8 hartree/bohr2 j4 −0.004 257 5 hartree/bohr2

j5 0.005 870 8 hartree/bohr2 j6 0.000 388 58 hartree/bohr2

j7 0.000 388 58 hartree/bohr2

E elas B11 5.7599 hartree B12 1.454 35 hartree
B44 1.483 hartree

E int B1xx −1.403 714 hartree/bohr2 B1yy −0.061 93 hartree/bohr2

B4yz −0.005 368 hartree/bohr2

Parameters for AFD
Eω-self κA 0.017 380 92 hartree αA −0.004 627 89 hartree

βA 0.030 521 5 hartree
γA 0.003 497 495 hartree γ ′

A 0.123 04 hartree
Eω-short k11 0.004 185 39 hartree k12 0.001 545 02 hartree

k13 0.001 198 75 hartree
k14 0.006 039 707 hartree k21 0.004 356 5 hartree

Eω-u-int ExxxxA0.146 95 hartree/bohr2 ExxyyA0.012 67 hartree/bohr2

ExyxyA −0.108 77 hartree/bohr2

Eω-η-int C1xxA −0.7359 hartree C1yyA 0.095 949 hartree
C4yzA −0.008 108 hartree

which indicates that the present model is precise to describe
the energic properties and phase transition of BaZrO3.

III. RESULTS AND DISCUSSION

A. Rotation and polarization at the temperature of absolute zero

We first obtain the phonon spectrum of cubic BaZrO3. As
is shown in Fig. 2(a), cubic BaZrO3 doesn’t exhibit instability
at the � point, which is linked to the ferroelectric distortion

FIG. 1. The energy surfaces of out-of-phase rotation from the
DFT calculation and the effective Hamiltonian. The two curves agree
well with each other, which indicates the model is accurate to de-
scribe the energic properties and phase transition of BaZrO3.

[35]. But there is an unstable phonon with R25 symmetry cor-
responding to the rotation of the oxygen octahedra [36]. The
computed phonon spectrum is consistent with the results of
previous calculations [37]. This unstable phonon R25 indicates
that it is necessary to introduce the AFD mode (distortion)
denoted by ω into the effective Hamiltonian model. Further-
more, the phonon spectrum of BaZrO3 under 4%, −2%, −4%
in-plane strain are also calculated as shown in Figs. 2(b)–2(d).
Instability at the � point appears under a relatively larger
strain indicating the emergence of ferroelectricity in BaZrO3

under both tensile and compressive strain and can be used to
explain the ferroelectric distortion found in Ref. [7]. However,
whether this ferroelectricity can coexist with oxygen octahe-
dral rotation or not is still uncertain.

To investigate the interaction between ferroelectric and
AFD distortions, we carried out several DFT calculations for
the potential energy related to polarization with and without
oxygen octahedra rotation. The strains are taken as 4% and
−4%, respectively. The out-of-phase oxygen octahedral rota-
tion is added on the [001] direction manually. The results are
shown in Fig. 3. The polarizations are calculated from

P =
5∑

i=1

Z̃∗
i ũi

a3
, (14)

where i runs from 1 to 5; it represents five atoms for a
perovskite unit cell. a is the lattice constant, ũi is the dis-
placement of the i th atom in a unit cell, and Z̃∗

i is the Born
effective charge for the i th atom. It should be noticed that
the change of Born effective charge with epitaxial strain is
not considered and the Z̃∗

i denotes the Born effective charge
of the cubic phase. Although this simplification underesti-
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FIG. 2. Phonon spectrum of BaZrO3 under different in-plane strains: (a) no strain; (b) the tensile strain of 4%; (c) the compressive strain of
−2%; (d) the compressive strain of −4%. The symmetry point labels are � = (0, 0, 0), X = (0.5, 0, 0), M = (0.5, 0.5, 0), R = (0.5, 0.5, 0.5)
in the cubic Pm3̄m phase and � = (0, 0, 0), X = (0.5, 0, 0), M = (0.5, 0.5, 0), A = (0.5, 0.5, 0.5), Z = (0, 0, 0.5), R = (0, 0.5, 0.5) after
in-plane strains are added. The R point in (a) and A points in (b)–(d) correspond to the out-of-phase rotation, while the � point corresponds
to the ferroelectric distortion. The M points in (b)–(d) correspond to the in-phase rotation. The X point corresponds to the antiferroelectric
distortion.

FIG. 3. The energy profiles for BaZrO3 with and without the rotation of oxygen octahedron under (a) the tensile strain of 4%; and (b) the
compressive of −4%. When the rotation of oxygen octahedron is considered, ferroelectric polarization is zero under a compressive strain.
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FIG. 4. Octahedral rotation changes with in-plane strain under
0 K from the effective Hamiltonian method. ω100 represents the max-
imum in ω100 and ω010. When the tensile strain is smaller than 0.3%,
the rotation is in [001] direction, and it changes to [100] direction
when the strain is in the range of 0.3–4.1%. When the strain is larger
than 4.1%, the rotation on [010] direction has the same value as that
on [100], which indicates that the rotation is along [110] direction.

mates dipole-dipole energy, its influence on the strain-induced
polarization is very weak. The energy references in Fig. 3
are the cubic phase for BaZrO3 without rotation of oxygen
octahedra and the I4/mcm phase for BaZrO3 with the rotation
of oxygen octahedra. Without rotation of oxygen octahedra,
the potential energy under both tensile and compressive strain
shows a double well shape, which indicates polarization can
be induced in BaZrO3. However, after considering the rotation
of oxygen octahedra, due to the interaction between polariza-
tion and rotation of oxygen octahedra, the double well under
compressive strain turns into a single well. Meanwhile, the
double well under tensile strain remains, as shown in Fig. 3.
These results indicate that rotation of oxygen octahedra sup-
presses polarization. And the detailed relationship between
oxygen octahedral rotation and strain-induced ferroelectricity
are studied by the effective Hamiltonian method.

With the parameters listed in Table I, we perform effective
Hamiltonian simulation for BaZrO3 with a 12 × 12 × 12
supercell, which is less than 5 nm. Due to the period boundary
condition, the domains are not found in such a small supercell.
The oxygen octahedral rotation and polarization with different
in-plane strains are shown in Figs. 4 and 5. All the rotations
are out of phase and the average statistical rotation is calcu-
lated through the following form:

ωα = 1

NM

N∑
i

∣∣∣∣∣
M∑
k

ωk
iα

∣∣∣∣∣, (15)

where M is the number of Monte Carlo steps and ωk
iα is the

rotation along the x, y, or z axis at site i for the k th MC step.
It should be noted that the calculated average rotation cannot
separate in-phase rotation from out-of-phase rotation. How-
ever, it is found that all the rotations are in the out-of-phase
mode, which indicates Eq. (15) is enough to describe the

FIG. 5. Polarization changes with in-plane strain under absolute
0 K obtained from the effective Hamiltonian model. The polarization
emerges at 3% tensile strain with a [100] direction. When the strain
is larger than 4.1%, the value of polarization on [100] direction
becomes the same as that on [010] direction, which indicates the
polarization points to [110].

oxygen octahedral rotation. The rotation of oxygen octahedra
can be described by a0a0c− (the axis of oxygen octahedral
is [001]) according to the Glazer tilt systems [38], when the
strain is less than 0.3%. When the tensile strain is larger than
0.3%, the axis of oxygen octahedral rotation changes from
[001] to [100]. With the increase of in-plane tensile strain, the
rotation changes from [100] to [110]. These phase transitions
of oxygen octahedral rotation are similar to that in SrTiO3

[39], which also has a path from [001] to [100] and finally
achieves [110]. The polarization occurs at 3% tensile strain,
and it can reach 0.350 C/m2 at 5% tensile strain which is even
higher than that of BaTiO3. However, no ferroelectric distor-
tion is found under compressive strain, which is different from
that in SrTiO3 [15]. This difference mainly arises from the
competition between oxygen octahedral rotation and polariza-
tion. When the BaZrO3 is in-plane compressed, the rotation
in the z direction is enhanced, as is shown in Fig. 4; the
average rotation ωiz goes up with the strain. And this rotation
will suppress the formation of ferroelectricity. Meanwhile,
the promotion of ferroelectricity from strain is weak, since
it requires as high as −2% compressive strain to generate
polarization in BaZrO3 when rotation is unconsidered [7],
while SrTiO3 only needs less than −1% compressive strain
[40]. Furthermore, the c/a ratios of BaZrO3 and BaTiO3 with
different compressive strains are calculated and compared
with the c/a ratios of SrTiO3 from Ref. [41], as shown in
Fig. 6. Among these three materials, BaTiO3 has polarization
under a compressive strain, while BaZrO3 has AFD mode and
SrTiO3 has a phase transition from nonpolar AFD mode to
and polar AFD mode. The dash line is the phase boundary
of SrTiO3. When the compressive strain is larger than 0.74%,
polarization emerges in SrTiO3. Without the participation of
polarization, the c/a ratio grows linear with epitaxial strain.
But when the polarization is involved, the growth of the c/a ra-
tio becomes nonlinear, similar to the behavior of BaTiO3 and
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FIG. 6. c/a ratios of BaZrO3, BaTiO3, and SrTiO3 vary with
compressive strain. The c/a ratios of SrTiO3 are taken from Ref. [41].
The dash line is the phase boundary of SrTiO3. When there is
only AFD mode, c/a ratio grows linearly with epitaxial strain, but
when the polarization is involved, the growth of c/a ratio becomes
nonlinear.

SrTiO3 with a larger compressive strain. Thus, the suppression
of ferroelectricity is superior to the promotion from strain, and
no polarization occurs. When it comes to the tensile strain, as
is shown in Fig. 5, it is found from DFT calculations that when
the polarization is absent, the rotation in the [100] direction
has lower energy than that in the [110] direction, as is shown
in Table II. However, after the polarization is considered in
the DFT calculations, the polarization and oxygen octahedral
rotation favor the [110] direction under a larger tensile strain.
These results indicate that there exists a competition between
rotation and polarization. When the tensile strain is small,
rotation determines the direction of distortion. However, when
the strain becomes larger, polarization will replace rotation
and dominate the direction of distortion.

B. Rotation and polarization changes
as a function of temperature

Based on the results at absolute zero, how the polarization
and oxygen octahedral rotation change with temperature is
investigated. Since the melting point of single-crystal BaZrO3

can reach as high as 2900 K [40], the model is heated to a
relatively higher temperature. During the model heating up to

TABLE II. The energy of different phases from first-principles
calculations. 40 atoms (eight unit cells) are used in calculating these
modes, and the structure of ω100 under different strain is regarded as
reference state.

Strain 0.02 0.06

ω100 0 eV 0 eV
ω110 1.28 × 10−03 eV −1.2 × 10−04 eV
ω100, P010 −5.5932 × 10+01 eV
ω110, P110 −5.6333 × 10+01 eV

FIG. 7. Polarization changes with temperature under different
in-plane strains. When the strain is 3.4%, which is below 4%, the
polarization is along [100] direction and vanishes after the model is
heated. When the strain is 4.5%, the polarization first points to [110]
direction and changes into [100] before it finally disappears.

2000 K from 0 K, both polarization and rotation of oxygen oc-
tahedra change with the temperature, which is similar to other
materials [42]. Figures 7 and 8 show the temperature depen-
dent polarization and oxygen octahedral rotation under 3.4%
and 4.5% tensile strain. When the strain is less than 4.1%,
it encounters two phase transitions. The former is due to the
vanish of polarization, while the latter is caused by the van-
ish of oxygen octahedral rotation. The latter phase transition
temperature is much larger than the former’s, which indicates
that the rotation of oxygen octahedra is much more stable than

FIG. 8. Rotation of oxygen octahedra changes with temperature.
When the strain is 3.4%, which is below 4%, the rotation of oxygen
octahedra is in [100] direction and vanishes under a relatively high
temperature comparing to the phase transition temperature of polar-
ization. When the strain is 4.5%, the rotation of oxygen octahedra
first points to [110] direction and changes into [100] before it finally
vanishes.
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FIG. 9. Strain-temperature phase diagram of BaZrO3. The P and
ω represent polarization and rotation of oxygen octahedra, while its
subscript means the direction.

strain-induced ferroelectricity. When the strain is larger than
4.1%, it goes through three phase transition sequences. First,
both polarization and oxygen octahedral rotation changes di-
rection from [110] to [100], then the polarization disappears.
And finally, the rotation of oxygen octahedra vanishes. The
polarization and rotation of oxygen octahedra change their
direction simultaneously, indicating that the direction of po-
larization is mainly influenced by the coupling between AFD
and ferroelectric distortions. Based on these results, the strain
versus temperature phase diagram is obtained in Fig. 9. The
phase diagram shows that different distortions exhibit in the
different strains and temperatures. When the strain is tensile
and the temperature is higher than 300 K, there is no dis-
tortion, whereas both AFD and ferroelectric distortions are

exhibited at the right-bottom corner of the phase diagram
where the temperature is low and the tensile strain is large.
It should be noted that the polarization emerges at 3% tensile
strain in the present work, which indicates that the ferroelec-
tricity mainly arises from the coupling with strain. Although
the LDA functional underestimates lattice parameters and
overestimates polarization, its influence on ferroelectricity is
very weak compared to the influence of strain.

IV. CONCLUSIONS

In summary, the effect of strain and temperature on
the AFD and ferroelectric distortions of BaZrO3 thin films
are studied by first-principles calculations and the effective
Hamiltonian method. First of all, the unstable phonons of cu-
bic BaZrO3 are identified, which are employed as the degrees
of freedom in the effective Hamiltonian model. Based on the
calculated profiles of potential energy, the rotation of oxygen
octahedra is responsible for the absence of ferroelectric distor-
tion under compressive strains. Second, the strain dependence
of the rotation of oxygen octahedra and polarization is pre-
dicted by using an effective Hamiltonian model. It is found
that due to the dedicated balance between AFD and ferroelec-
tric distortions, polarization in BaZrO3 thin films at absolute
zero can be activated only under an in-plane tensile strain
larger than 3.0%. Finally, the temperature dependence of the
rotation of oxygen octahedra and polarization under different
strains has been obtained and the strain-temperature phase
diagram is constructed to identify the different distortions in
BaZrO3 with different temperatures and strains.
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