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Chiral symmetry in non-Hermitian systems: Product rule and Clifford algebra
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Chiral symmetry provides the symmetry protection for a large class of topological edge states. It exists in
non-Hermitian systems as well, and the same anticommutation relation between the Hamiltonian and a linear
chiral operator, i.e., {H,�} = 0, now warrants a symmetric spectrum about the origin of the complex energy
plane. Utilizing two general approaches to identify and generate chiral symmetry, we first show that its symmetry
operator in non-Hermitian systems can go beyond simple spatial transformations such as parity or rotation and
include imaginary gauge transformations in a systematic way. Furthermore, we reveal hidden non-Hermitian
chiral symmetry and its associated particle-hole symmetry, where their operators take unfamiliar forms due to
the presence of energy nonconserving elements. Finally, our implementation of non-Hermitian chiral symmetry
in a topological lattice leads to an edge state with “folded” localization, where its tail is reflected by the opposite
edge and resides on a separate sublattice.
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I. INTRODUCTION

The importance of symmetries in physics has been es-
tablished in many forms, such as in Noether’s theorem that
assigns a conservation law to every continuous symmetry of
a system [1–3]. Outside of the quantum realm, Hermiticity is
not required in general and non-Hermitian symmetries have
been energetically exploited [4–6], especially since the sem-
inal work by Bender and co-workers on parity-time (PT )
symmetry [7]. Several other non-Hermitian symmetries have
also been carefully analyzed, such as the non-Hermitian ex-
tensions of particle-hole and chiral symmetries [8–12], as well
as exclusively non-Hermitian symmetries including pseudo-
Hermiticity [13] and pseudochirality [3].

Among them, chiral symmetry is one of particular interest
in topological systems, for it provides protection to a wide
range of topological states in Hermitian systems [14–20].
Originally conceived to describe the conserved handedness of
Dirac fermionic fields, it often accounts for the symmetry of
the energy bands with respect to the Fermi level or the energy
of an uncoupled orbital. A natural non-Hermitian extension of
chiral symmetry can be introduced via the same anticommu-
tation relation between the Hamiltonian and a linear operator,
which now warrants a complex spectrum symmetric about the
origin of the complex energy plane [8]. As a consequence, a
non-Hermitian zero mode, with its energy right at the origin of
the complex plane, can still exist similar to its Hermitian coun-
terpart. Such exotic states and associated topological phases
of matter have attracted fast-growing interest in photonics
and related fields [21–35], which are inherently open systems
and demand a systematic study and characterization of non-
Hermitian chiral symmetry.

*li.ge@csi.cuny.edu

Several important differences exist among the conse-
quences of chiral symmetry in Hermitian and non-Hermitian
systems. In the latter, the pairwise eigenstates of the system
warranted by chiral symmetry not only have opposite frequen-
cies (given by the real part of the energy eigenvalues), but
they also have opposite gain and loss (given by the imaginary
part of the energy eigenvalues). In addition, unlike the chiral
symmetry in a Hermitian lattice with two sublattices, the zero
modes in a non-Hermitian lattice are not found to have finite
amplitudes in only one sublattice in general. Furthermore,
these zero modes can be exceptional points (EPs) [36–43]
where two or more eigenstates coalesce with the same wave
function, a unique property in non-Hermitian systems.

On the one hand, the easiest way to construct a non-
Hermitian system with chiral symmetry is to maintain the
sublattice symmetry of an underlying Hermitian system (such
as in a tight-binding square or honeycomb lattice without
on-site detunings) and lift its Hermiticity by introducing
asymmetric couplings [9]. While this approach can be applied
to both periodic [8] and finite-size systems, it does not utilize
one important benefit provided by the non-Hermitian plat-
forms in optics and photonics [4], namely, the availability and
tunability of gain and loss in optical cavities and waveguides,
which are represented by an imaginary detuning between
different lattice sites. On the other hand, if we directly ap-
ply such an imaginary detuning to a Hermitian system with
chiral symmetry, its chiral symmetry is lifted and we often
obtain non-Hermitian particle-hole (NHPH) symmetry [9–11]
or pseudo-anti-Hermiticity [3,44] instead, which results in a
spectrum symmetric about the imaginary axis of the complex
energy plane [8,45].

To overcome these obstacles and facilitate the exploration
of topological phases of matter in non-Hermitian systems, two
general approaches can be employed to identify and generate
non-Hermitian chiral symmetry. In the first approach, a prod-
uct rule where chiral symmetry, denoted by � below, results

2469-9950/2021/103(1)/014111(11) 014111-1 ©2021 American Physical Society

https://orcid.org/0000-0001-8977-3306
https://orcid.org/0000-0002-1922-4464
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.014111&domain=pdf&date_stamp=2021-01-19
https://doi.org/10.1103/PhysRevB.103.014111


JOSE D. H. RIVERO AND LI GE PHYSICAL REVIEW B 103, 014111 (2021)

from the simultaneous satisfaction of NHPH symmetry and
bosonic antilinear symmetry. The former is defined similarly
to its Hermitian counterpart, i.e., with the Hamiltonian H anti-
commuting with an antilinear operator �; the latter is defined
as a commutation relation between the Hamiltonian and an
antilinear operator �, with PT symmetry being a prominent
example. In the second approach, the Clifford algebra satisfied
by the Dirac matrices can be utilized to discover and analyze
non-Hermitian chiral symmetry, independent of NHPH and
bosonic antilinear symmetries.

In this paper, we employ these two approaches to broaden
our knowledge of non-Hermitian chiral symmetry. We first
show that its operator does not necessary only involve sim-
ple spatial transformations, such as parity or rotation in a
two-dimensional (2D) lattice. In particular, we show how
imaginary gauge transformations [46–48] can be included in a
systematic way while maintaining non-Hermitian chiral sym-
metry, exemplifying flexible control of non-Hermitian zero
modes at an EP and achieving spatial localization at the center,
one corner, or all corners of a square lattice. Furthermore, we
reveal hidden non-Hermitian chiral symmetry and its associ-
ated NHPH symmetry, where their operators take unfamiliar
forms due to the presence of energy nonconserving elements.
Finally, our implementation of non-Hermitian chiral symme-
try in a topological lattice with complex detunings leads to an
edge state with “folded” localization, where its tail is reflected
by the opposite edge and resides on a separate sublattice.

II. APPROACH I: PRODUCT RULE

We first review two important concepts in the fundamental
proposition regarding possible forms of symmetries in quan-
tum systems, i.e., the Wigner theorem [49]. It states that any
symmetry transformation is necessarily represented by a lin-
ear (and unitary) or antilinear (and antiunitary) transformation
of the Hilbert space. A linear symmetry transformation U
satisfies

U (aφ1 + bφ2) = aUφ1 + bUφ2, (1)

where φ1,2 are two arbitrary quantum states and the complex
numbers a, b are their linear superposition coefficients. In
contrast, an antilinear symmetry operator A satisfies

A(aφ1 + bφ2) = a∗Aφ1 + b∗Aφ2, (2)

where the asterisks denote the complex conjugation as usual.
From this definition, it can be inferred that an antilinear oper-
ator can be represented by the product of a linear operator and
the complex conjugation.

As mentioned in the Introduction, the first approach we
employ to generate non-Hermitian chiral symmetry relies on
the simultaneous satisfaction of NHPH symmetry and a non-
Hermitian bosonic antilinear symmetry:

{H, �} = 0, [H,�] = 0. (3)

Bosonic antilinear symmetry can be implemented conve-
niently using strategically placed photonic elements with
balanced optical gain and loss [4]. Meanwhile, a probably
more important and intriguing foundation of this approach is
that imposing any arbitrary imaginary on-site potentials to an
underlying Hermitian chiral lattice with real-valued couplings

gives rise to NHPH symmetry automatically [9]. Therefore,
NHPH symmetry can coexist nicely with bosonic antilinear
symmetry enabled by optical gain and loss, which in turn
warrants non-Hermitian chiral symmetry as we show in detail
below.

Since both � and � in Eq. (3) are antilinear operators,
they can be written as the product of a linear operator and
the complex conjugation K :

� ≡ CK, � ≡ XK. (4)

K is often the manifestation of time-reversal operator for a
finite-sized system [7], and C for the NHPH symmetry men-
tioned above is given by the chiral operator of the underlying
Hermitian lattice, i.e., C = PA − PB as in the Su-Schrieffer-
Heeger (SSH) model [50], where PA,B are the projection
operators onto the two sublattices. These two sublattices are
defined such that there is no coupling between two sites on
the same sublattice. X , on the other hand, can take a variety
of forms. For example, two common choices of X in 2D are
mirror reflection and rotation, which lead to PT [4–7] and
rotation-time (RT ) symmetry [51–53], respectively.

As a consequence of Eq. (3), the following symmetry trans-
formations hold for the eigenstates of H ,

�ψμ = ψν, �ψν = ψν ′ , (5)

where the subscripts μ, ν, ν ′ are not necessarily the same. The
corresponding energy eigenvalues satisfy

εμ = −ε∗
ν , εν = ε∗

ν ′ , (6)

i.e., they are symmetric about the imaginary and real energy
axis of the complex energy plane, respectively. It is then
straightforward to see

��ψμ = ψν ′ , εμ = −εν ′ , (7)

which indicates the existence of chiral symmetry, i.e.,
{H,�} = 0, with the linear operator � ≡ �� = XC∗. A
non-Hermitian zero mode occurs when all the subscripts are
the same, leading to εμ = 0.

This product rule is similar in construction to how chiral
symmetry in a Hermitian system can be generated as the prod-
uct of particle-hole symmetry and time-reversal symmetry
[14]. However, we note that since the non-Hermitian chiral op-
erator � is no longer given by the difference of the sublattice
projection operators, the wave function of a non-Hermitian
zero mode with εμ = 0 does not necessarily vanish on one
sublattice. More importantly, this zero energy can be an EP
as mentioned in the Introduction. Further discussion on these
properties can be found in Appendix A.

The product rule discussed above exists in previously stud-
ied systems where the bosonic antilinear symmetry involves a
simple spatial transformation, such as parity or rotation that is
represented by a permutation in the matrix form [8]. However,
this product rule is much more general, and in some cases the
bosonic antilinear symmetry, as well as the NHPH symmetry,
is complicated and often hidden.

As an example, let us contrast two one-dimensional lattices
shown in Figs. 1(a) and 1(d). They have the same pair of gain
and loss of the same strength (i.e., with imaginary on-site
potentials ±iτ ) at the two ends, but system I has symmetric
coupling while system II has asymmetric couplings. These
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FIG. 1. Generating non-Hermitian chiral symmetry by the prod-
uct rule. (a), (d) Schematics of two tight-binding lattices. Solid and
dashed links indicate couplings t ∈ R and t ′ = 0.3t . (b), (c) Real and
imaginary parts of the complex spectrum for the lattice in (a) as a
function of the gain and loss strength τ . The black dot marks its
exceptional point. (e), (f) Same as (b), (c) but for the lattice in (d).

lattices can be realized using optical microcavities and their
counterparts in microwaves, acoustics, and other related fields
[4]. In particular, asymmetric couplings of different magni-
tudes can be achieved by introducing auxiliary rings [54]. In
this scheme, each lattice is represented an optical microring
cavity, and two such cavities are coupled via a third ring that
has optical gain and loss in its two halves, respectively. When
the clockwise (CW) circulating light in the left microring
travels to the third ring in the middle, it goes through the
bottom half of the ring before coupling to the CW circulating
light in the right cavity. When this process is reversed, the
CW light in the right microring travels to the top half of the
middle ring instead, before coupling to the CW light in the left
microring. Therefore, by having gain and loss in the top and
bottom halves of the middle ring, respectively, light is ampli-
fied along one semicircle and attenuated along the other, hence
making the couplings of the left and right cavities asymmetric.
This scheme of asymmetric couplings has been realized using
two microring resonators with InGaAsP multiple quantum
wells [48], which is captured well by a tight-binding model.
Extending this approach to a lattice with more sites does not
require additional fabrication techniques and hence should be
undemanding.

When τ is zero in Fig. 1, both systems have sublattice sym-
metry and hence chiral symmetry as well. When τ becomes
nonzero, system I acquires NHPH symmetry as specified in
Eq. (4) and PT symmetry with the parity operator P per-
forming a horizontal mirror reflection. Therefore, it displays

a symmetric spectrum about the origin in the complex energy
plane [Figs. 1(b) and 1(c)], manifesting its non-Hermitian chi-
ral symmetry explained by the product rule given by Eq. (7).
While the same route to NHPH symmetry still applies in
system II with � = CK , system II clearly lacks PT symmetry
due to the asymmetric couplings. Therefore, it is quite remark-
able that the system still displays a symmetric spectrum in the
complex energy plane [Figs. 1(e) and 1(f)].

To understand this behavior, we note that asymmetric cou-
plings can be regarded as a consequence of an imaginary
gauge transformation [46]. However, previous investigations
of such gauge transformations have excluded explicitly gain
and loss, which by far is the most viable approach to realize
non-Hermitian systems in photonics and related areas [4].
Here, in the presence of the gain and loss cavity in system
II, the imaginary gauge transformation, given by

ψn = e− 1−n
2 ln t

t ′ ψ̃n ≡ sn−1ψ̃n, (8)

from a system with symmetric coupling t̃ = √
tt ′ and wave

function ψ̃n in the nth cavity, preserves the strength of gain
and loss. As a result, the operator X in the bosonic antilinear
symmetry is given by

X = GPG−1, G = diag(1, s, s2, . . .), (9)

where P is the same mirror reflection as in system I. Clearly,
X is a linear operator and X 2 = GP2G−1 = 1, where 1 is
the identity matrix. Together with the aforementioned NHPH
symmetry, the non-Hermitian chiral symmetry of system II is
then given by � = XC = GPG−1C = GPCG−1, where we
have used [G−1,C] = 0 for these two diagonal operators.

The imaginary gauge transformation given by Eq. (8) is
characterized a phase φ = i 1−n

2 ln t
t ′ that is linear in space.

This property leads to asymmetric couplings that are homoge-
neous in space, i.e., t and t ′ in system II. More generally, the
gauge transformation can involve a phase with a more compli-
cated spatial dependence. In particular, one can localize a zero
mode that is at an EP and protected by non-Hermitian chiral
symmetry anywhere in the system with ease.

Figure 2(a) shows one example in a square lattice with
nine rows and columns, and gain and loss are imposed in
the leftmost and rightmost columns. To apply the imagi-
nary gauge transformation, we let the asymmetric horizontal
and vertical couplings be t, t ′ and 1.1t, 1.1t ′, respectively.
In Fig. 2(b), these asymmetric couplings are still homoge-
neous in space, and an EP of order 3 [55–58] is reached at
τ = 0.79t , similar to those in Fig. 1. The corresponding wave
function is exponentially localized at the upper right-hand
corner. If instead we exchange the two asymmetric couplings
in the x (y) direction in the right (bottom) half of the lattice,
the EP is realized at τ = 0.94t , and the non-Hermitian zero
mode is localized at the defect of the gauge transformation in
both directions, i.e., right at the middle of the square lattice
[Fig. 2(c)]. Finally, if we reverse the direction of all these
asymmetric couplings, now the non-Hermitian zero mode at
its EP is localized at all four corners [Fig. 2(d)], reached when
τ = 0.7t .

Here, we note that even though the system remains non-
Hermitian when the gain and loss are removed, it can be
obtained from a Hermitian system with uniform couplings
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FIG. 2. Localized non-Hermitian zero mode at an EP.
(a) Schematic of a square lattice before an imaginary gauge
transformation is applied. Horizontal and vertical couplings are
given by t and 1.1t , respectively. (b)–(d) Spatial profile of a zero
mode at an EP with a modified coupling t ′ = 0.7t , 0.5t , and 0.4t ,
respectively. See the main text for the application of this imaginary
gauge transformation.

√
tt ′,

√
1.1tt ′ in the x and y direction, respectively, similar to

the imaginary gauge transformation mentioned below Eq. (8).
Therefore, such a system without gain and loss always has
a real-valued energy spectrum and cannot have an EP, un-
less a periodic boundary condition is imposed [46], which
is difficult to imagine in 2D and breaks down the imaginary
gauge transformation. With the introduction of gain and loss
with the imaginary gauge transformation, however, the chiral
symmetry-induced zero mode at an EP demonstrated here
may lead to applications in enhanced optical and photonic
sensing [58–60].

In these examples, the imaginary gauge transformation
does not affect NHPH symmetry: The transformed lattices by
the imaginary gauge still consist of two sublattices with real
couplings, and the imaginary on-site detunings due to gain
and loss again lead to NHPH symmetry [9]. Therefore, one
just needs to analyze the spatial dependence of the phase φ

to identify � accountable for its bosonic antilinear symmetry.
This task becomes increasingly more difficult with the system
size if the variation of φ is complex or even random.

In the meanwhile, there are other systems with non-
Hermitian chiral symmetry where it is NHPH symmetry that is
obscure. For example, one may accidentally construct systems
with NHPH and non-Hermitian chiral symmetries [61] and
be unaware of their symmetry operators. One such case is
given in Fig. 3(a), where four sites on a tight-binding ring are
coupled by two pairs of complex couplings, g1 and g2; this
model can be considered as a generalized Rice-Mele model
[62], with the two sites on the diagonal detuned from the other
two on the antidiagonal by 2
. When 
 is real, it can be
shown that the eigenvalues of this system are symmetric about
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FIG. 3. A hidden non-Hermitian chiral symmetry. (a) Schematic
of a four-cavity ring with complex couplings g1 ≡ g1r + ig1i, g2 ≡
g2r + ig2i, and their complex conjugates. Blue and orange denote the
on-site detunings ±
. (b) Cross section of four coupled waveguides
embedded in a silica substrate that emulate the tight-binding model
shown schematically in (a). The four waveguides are denoted by
D1–4, and the rectangular regions between two nearest neighbors
are denoted by M13,M14,M23,M24. Complex couplings g1 and
g2 are achieved by locally introducing gain (−ir in the dielectric
constant) in M13,M23, while g∗

1 and g∗
2 are implemented by loss

(ir in the dielectric constant) in M14,M24. (c), (d) Trajectories
of the complex eigenvalues λ in the paraxial equation when r is
increased from 0 to 0.009 with (c) 
 = 1.1216 nm−1 and (d) 
 =
1.1216 + 0.6990i nm−1. Black dots show finite-difference simula-
tions of (b), which are captured qualitatively by the tight-binding
model (thick solid lines). The arrows indicate the motion of λ’s
with increasing r, and the real and imaginary axes are shown as
thin solid lines. The parameters of the tight-binding model used are
g1i = −2.3895r nm−1, g2i = −18.648r nm−1, g1r = 0.4107 nm−1,
g2r = 2.1054 nm−1. They give the best fit for the trajectories of the
finite-difference solutions of the paraxial equation.

the real axis, imaginary axis, and the origin of the complex
plane. The first property is the result of RT symmetry: The
system is invariant under a combined π -rotation and time-
reversal operation when β is real. The NHPH symmetry, on
the other hand, is difficult to identify and cannot be revealed
using a gauge transformation. To pin down this accidentally
generated NHPH symmetry and the resulting non-Hermitian
chiral symmetry, we change the perspective in Sec. III and
resort to the second approach mentioned in the Introduction,
i.e., the Clifford algebra and the Dirac matrices.

Here, we note a scheme to realize non-Hermitian couplings
g1,2 in the model above by embedding photonic elements
(e.g., resonators or waveguides) in amplifying or absorbing
media [63]. We implement this scheme in Fig. 3(b) using the
transverse-electric (TE) modes in four coupled silica waveg-
uides, which emulate the tight-binding model in Fig. 3(a) via a
coupled-mode analysis (see the details in Appendix B). These
waveguides are formed by a small contrast in the real part of
the refractive index from the background silica, i.e., 1.4586
in waveguides 1 and 2 and 1.4594 in waveguides 3 and 4 vs
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1.449 in the substrate at the telecom wavelength 1.550 μm.
Even though the index contrast is low, a guided mode inside
the waveguides only requires an incident angle larger than the
critical angle of 83◦ in this case, which is satisfied here in the
paraxial regime: The propagation constants of these modes
are found to be about 5.88 μm−1, leading to an incident angle
of 84◦ that is just above the critical angle. We denote the
eigenvalues of the paraxial equation in this case by λ’s, which
are in the unit of μm−1. They correspond to the eigenvalues
ε of the tight-binding Hamiltonian shown schematically in
Fig. 3(a) [see also Eq. (16)]. By solving for λ’s in the coupled
system using finite-difference simulations, we find qualitative
agreement between these results and the ones produced by
the coupled-mode analysis, as can be seen by comparing the
dots and solid lines in Figs. 3(c) and 3(d), respectively. The
(approximate) non-Hermitian chiral symmetry of this system
is readily seen in both figures, where the detuning 
 is real
and imaginary, respectively. The absence of other symmetries
in the latter case will be discussed in the next section, and
details of the simulations can be found in Appendix B.

III. APPROACH 2: CLIFFORD ALGEBRA

The Dirac matrices {γ 0, γ 1, γ 2, γ 3}, also known as the
gamma matrices, appear in the Dirac equation to describe
relativistic quantum mechanics. They are given by

γ 0 =
(

12 0
0 −12

)
, γ j =

(
0 σ j

−σ j 0

)
( j = 1, 2, 3),

(10)
in terms of the identity matrix and Pauli matrices. Together
with

γ 5 =
(

0 12

12 0

)
, (11)

they satisfy the Clifford algebra

{γ μ, γ ν} = 0 (μ �= ν), {γ μ, γ μ} = 2ξμ14, (12)

where ξμ = 1 (μ = 0, 5) and −1 (μ = 1, 2, 3). This defining
property of the Clifford algebra is particularly appealing in
the generation of non-Hermitian chiral symmetry: By defining
the Hamiltonian as a superposition of the Dirac matrices and
their products, we have a straightforward way to determine its
chiral operators.

For example, if the Hamiltonian includes a linear super-
position (with arbitrary coefficients gi and g j) of individual
Dirac matrices, we can enumerate all its chiral symmetries by
using Eq. (12) as well as

{giγ
i + g jγ

j, ξ ig jγ
i − ξ jgiγ

j} = 0 (i �= j) (13)

and

{γ jγ k, γ l} = 0, (14)

where j �= k and l = j or k. If the Hamiltonian also contains
the product of two Dirac matrices, we may also need to utilize

{γ jγ k, γ kγ l} = 0 ( j �= l �= k). (15)

In this analysis, we note that on-site detunings can
be expressed by γ 0 = diag(1, 1,−1,−1), iγ 1γ 2 =
diag(1,−1, 1,−1), γ 3γ 5 = diag(1,−1,−1, 1), and

the trivial uniform detuning 14, as well as their linear
superpositions.

Now let us revisit the system shown in Fig. 3(a). Its Hamil-
tonian can be written as

H = 
γ 0 + g1rγ
5 + γ 0(g2rγ

1 + ig1iγ
3) + g2iγ

2, (16)

where g1 ≡ g1r + ig1i and g2 ≡ g2r + ig2i. In the absence of
detuning (i.e., 
 = 0), we find γ 0 as a chiral operator, which
is identical to the sublattice operator C in Eq. (4). Note,
however, it is not the only chiral operator in this case. Using a
generalization of Eq. (14), i.e.,

{γ j γ̃ , γ̃ } = 0, γ̃ =
∑
k �= j

akγ
k, (17)

we find another chiral operator given by

� = g2rγ
1 + ig1iγ

3 (18)

with proper normalization.
The non-Hermitian chiral symmetry defined by this �

operator holds even when 
 is finite, whereas that defined
by γ 0 (i.e., the sublattice symmetry) is lifted. � then war-
rants the spectrum symmetry about the origin of the complex
energy plane observed in Fig. 3(c). In the case that 


is real, the system also has RT symmetry as mentioned.
From the perspective of the product rule discussed previ-
ously, i.e., � = ��, one can then identify the obscure NHPH
symmetry as

� = R2K (g2rγ
1 + ig1iγ

3) = R2(g2rγ
1 − ig1iγ

3)K. (19)

This NHPH symmetry, as well as the RT symmetry, is lifted
with a complex 
. However, the non-Hermitian chiral sym-
metry persists owing to the Clifford algebra [Fig. 3(d)].

In the example above, the sublattice symmetry is lifted by a
finite detuning. It also disappears with next-nearest-neighbor
(NNN) couplings [i.e., between cavities of the same color ar-
ranged diagonally in Fig. 3(a)], but in this case non-Hermitian
chiral symmetry can still be introduced by using the Clifford
algebra in principle (see Appendix C).

A remarkable advantage of the Clifford algebra approach
emerges when intricate forms of detunings and coupling con-
stants are to be implemented in photonic lattices. Therefore,
it facilitates the investigation of non-Hermitian extensions of
known Hermitian topological systems. Below, we exemplify
this approach and show a phenomenon of “folded” localiza-
tion.

An interesting family of topological tight-binding Hermi-
tian lattices were constructed as nontrivial square roots of
some parent systems in Ref. [64]. Despite the lack of sub-
lattice symmetry in the parent systems, the resulting lattices
feature bands symmetric about the zero energy and acquire
their topological properties from band inversions protected by
chiral symmetry. In particular, the Bloch Hamiltonian of the
Hermitian “bow-tie” lattice [64] can be written as

Hs = (βγ 0 + ig2γ
1 sin k − ig2γ

2 cos k) + g3γ
1γ 5, (20)

where β, g1,2 are all real couplings and k is the lattice wave
vector. This model has been realized using coupled silicon
waveguides [65].
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Shaded areas represent the projection of the bulk band gaps on the
real energy axis. Solid and open dots in (b) indicate the energy of the
edge states in (c) and (d), respectively. They are finite in length with
64 and 63 sites, where purple, orange, and gray denote the on-site
detunings ±β and 0. Inset in (c): Amplitude of this edge state in the
first (solid) and last (dashed) cavities of all 16 unit cells. g2/g3 = 0.8
and β/g3 = −0.3 + 0.01i are used.

Hs in Eq. (20) actually describes two copies of the same
lattice [see Fig. 4(a)], but it is easier to analyze than the
Bloch Hamiltonian of the latter using the Clifford algebra. The
previously identified chiral symmetry of Hs is given by γ 5,
which can be readily verified using Eqs. (12) and (14). Using
Eqs. (15) and (17), we also identify another non-Hermitian
chiral symmetry,

�2 = γ 1(βγ 0 − ig2γ
2 cos k)

N
1
2

, N = β2 + g2
2 cos2 k, (21)

which is not found in Refs. [64,65]. Here, the product of the
two chiral operators leads to a linear symmetry, i.e.,

�2�1 = − iβγ 2 + g2γ
0 cos k

N
1
2

≡ W, [H,W ] = 0, (22)

and {1,�1,�2,W } form the Klein group, which is the direct
product of two Z2 groups.

Besides γ 0, the simple form of �1 also accommo-
dates detunings of the form γ 3γ 5, which is given by
diag(1,−1,−1, 1) as mentioned previously. By itself, this
form of detunings is equivalent to γ 0, which is most obvious
once we perform a gauge transformation on the wave function
in the fourth cavity, i.e., ψ4 → −ψ4; it flips the sign of all
negative couplings [66], with which the difference between
γ 0 and γ 3γ 5 lies only in the order of g2 and g3. This lattice
reduces to the SSH model without this form of detunings.

More importantly, the Clifford algebra analysis leads to
the following two observations. First, the chiral symmetry
given by �1 persists when these detunings are complex, which

offers a straightforward route to study the non-Hermitian
extension of this model. Second, these different forms of
detunings can coexist without destroying this chiral sym-
metry. For example, even though the detunings given by
γ 0 and γ 3γ 5 are equivalent as mentioned, their super-
position gives a different form of detuning [e.g., β(γ 0 +
γ 3γ 5) = diag(2β, 0,−2β, 0) as depicted in the bottom panel
of Fig. 4(a)] and leads to another lattice. By taking β to be
complex, we observe a complex spectrum with non-Hermitian
chiral symmetry [solid lines in Fig. 4(b)]. Due to the ambigu-
ity of defining topological numbers in non-Hermitian systems,
here we avoid this discussion and show instead the evidence
of topological protection, i.e., edge states in the band gaps of
the system.

Depending on the terminations at the two ends of this
lattice, it can display, for example, an edge state in the left
band gap [solid dot in Fig. 4(b)] or right at the origin [open
dot in Fig. 4(b)], i.e., a non-Hermitian zero mode. Their spatial
profiles are shown in Figs. 4(c) and 4(d), respectively. While
both of them seem to have vanished amplitude in a subset of
cavities, only the zero mode is truly dark on one of the original
sublattices before the detunings are introduced, consisting of
the first and third cavities of each unit cell. The alternate
detunings on this sublattice do not affect the spatial profile
of this mode, and hence its energy remains zero. In contrast,
the edge state shown in Fig. 4(c) has a “folded” localization:
The amplitude of the wave function in the first three cavities
of each unit cell attenuates exponentially from left to right,
while that in the fourth cavity increases exponentially, as if
the tail of this edge mode localized on the left is reflected by
the opposite boundary (see the inset).

IV. CONCLUSION AND DISCUSSION

In summary, we have presented two general approaches
to construct systems with non-Hermitian chiral symmetry,
aiming to facilitate the exploration of topological phases of
matter in non-Hermitian systems, especially on optical and
photonic platforms. The first approach relies on the simul-
taneous satisfaction of NHPH symmetry and non-Hermitian
bosonic antilinear symmetry. We have shown that by go-
ing beyond simple spatial transformations such as parity or
rotation, a much broader range of non-Hermitian systems
can display chiral symmetry, including those with an imagi-
nary gauge transformation. The second approach utilizes the
Clifford algebra, and the examples we have discussed are
based on the Dirac matrices. They have helped us reveal non-
Hermitian chiral and other symmetries whose operators would
otherwise remain obscure. Using this approach, we have also
investigated the non-Hermitian extension of a known topo-
logical model, and we have shown that chiral symmetry as
well as topological edge states can persist with complex on-
site potentials. Generalizations to more complicated or even
higher-dimensional systems can also be achieved, by working
with suitable Clifford algebras.

As a final clarification, we note that chiral symmetry in
optics and photonics can also refer to the symmetry between
clockwise and counterclockwise modes of motion [67–70],
which should be distinguished from our discussions here.
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APPENDIX A: HERMITIAN VERSUS NON-HERMITIAN
CHIRAL SYMMETRY

In the Introduction of the main text, we have listed several
different consequences of chiral symmetry in Hermitian and
non-Hermitian systems. Here, we exemplify these differences
by considering a tight-binding honeycomb lattice with three
rings and the same nearest-neighbor coupling g ∈ R every-
where [Fig. 5(a)]. Before we introduce on-site gain and loss,
the system is Hermitian and its chiral symmetry warrants a
symmetric spectrum about ε = 0 [Fig. 5(c)], with a single
(and nondegenerate) zero mode that only has a finite am-
plitude in the sublattice B indicated by sites with solid dots
[Fig. 5(e)].

For its non-Hermitian counterpart, we impose equal gain
and loss (i.e., ±iτ for the imaginary parts of the on-site

(a)

(e) (f)

EP

g

1

0

(b)

Gain Loss

g
GainLoss

Gain Loss

Hermitian Non-Hermitian

-2 0 2
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-1

0

1

Im
[

]/g

(c) (d)

-2 20
Re[ ]/g

-1
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]/g

: A
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FIG. 5. Hermitian vs non-Hermitian chiral symmetry.
(a) Schematic of a finite-size honeycomb lattice with only
nearest-neighbor couplings. The two sublattices A and B are marked
by solid and open dots. (b) Its non-Hermitian counterpart with also
NHPH and PT symmetries. (c), (d) Complex spectra for (a) and
(b) at τ = √

2g. Dots of increasing sizes indicate nondegenerate,
doubly degenerate, and triply degenerate states. (e), (f) Spatial
profiles of the zero modes in (c) and (d).

potentials) to three pairs of lattice sites [Fig. 5(b)]. This sys-
tem can be described by the generalized dihedral group MT 2v

(v = 3) [51], with all v reflections in the dihedral group D2v

now combined with time reversal. Therefore, we have three
different parity-time operators � j = P jK ( j = 1, 2, 3), which
are about the 90◦(270◦), 30◦(210◦), and 150◦(330◦) axes, re-
spectively. Since the underlying Hermitian honeycomb lattice
with real-valued couplings has chiral symmetry, NHPH sym-
metry arises automatically with the introduced gain and loss
modulation as mentioned in Sec. II, with � ≡ (PA − PB)K .
Together, they lead to three related non-Hermitian chiral op-
erators specified by the product rule in Eq. (7), i.e.,

� j = P j (PA − PB), (A1)

with �2 = R3�1, �3 = R3�2, and �1 = R3�3. Here, Rn

is the counterclockwise rotation by an angle equal to 360◦/n.
Due to the presence of both NHPH and PT symmetries,

the spectrum shown in Fig. 5(d) is symmetric about the
real and imaginary axes as well, which is a property when
the non-Hermitian chiral symmetry is constructed using the
product rule. In the absence of these other symmetries, the
spectrum due to non-Hermitian chiral symmetry is only sym-
metric about the origin of the complex energy plane [see, for
example, the solid lines in Fig. 4(b)].

When the gain and loss strength is set to τ = √
2g, this

non-Hermitian system has an EP zero mode [Fig. 5(d)] where
three eigenstates of H coalesce with the same wave function.
Clearly, this wave function has a finite amplitude on both the
A and B sublattices [Fig. 5(f)]. This property holds for any
other finite value of τ , where the system has a single, non-EP
zero mode.

APPENDIX B: FOUR-COUPLED WAVEGUIDE RING
WITH HIDDEN CHIRAL SYMMETRY

In Sec. II of the main text, we have introduced a system
with a hidden non-Hermitian chiral symmetry, consisting of
a ring of four sites with real detunings and complex cou-
pling constants. This system is emulated using a silicon-based
photonic setup in Fig. 3, where we use the notion of active
coupling between waveguides [63]: One introduces gain and
loss in the surrounding medium to achieve complex coupling
constants and emulate the tight-binding model in Eq. (16). In
this Appendix, we obtain the parameters for the tight-binding
model from a coupled-mode analysis.

The silicon waveguides [denoted by D1−4 in Fig. 3(b) and
below] have the same rectangular cross section of 5 μm ×
3 μm in our simulations, with two distinct refractive indices
n1 = 1.4586 and n2 = 1.4594 arranged diagonally. They are
embedded in a silica substrate with refractive index ncl =
1.449. To produce two types of coupling constants g1, g∗

1 and
g2, g∗

2, we arrange the waveguides with horizontal and vertical
separations of 6.24 and 3.86 μm, respectively. The rectangu-
lar interstitial regions between the waveguides are denoted by
M13, M24, M23, and M14, with the two subscripts indicating
the two neighboring waveguides.

In the simple model introduced in Fig. 3(a), the on-
site detuning of the four coupled elements is referred to
as ±
 [see also Eq. (16)]. Therefore, here we denote the
dielectric constant of a waveguide in the absence of detuning
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or gain/loss as εc = (n2
1 + n2

2)/2, with δ ≡ k2
0 (n2

1 − εc) and
−δ = k2

0 (n2
2 − εc) playing the role of the on-site detunings.

k0 is defined as ω0/c using the circular frequency ω0 of the
propagating modes. Because the difference between n1 and n2

we consider here is small, we treat δ, as well as all gain and
loss parameters, as small perturbations.

We assume that a waveguide with εc supports a single TE
mode with the propagation constant β0 at ω0, i.e., the field
evolves as exp(iβ0z − iω0t ) along the waveguide direction
z. In the coupled system, supermodes of the form �(r, t ) =
φ(r) exp(iβ0z − iω0t ) satisfy the scalar Helmholtz equation

[∇2
⊥ + ε(x)k2

0

]
φ(r) = (

β2
0 + 2iβ0∂z − ∂2

z

)
φ(r), (B1)

where x is the transverse coordinate, ∇2
⊥ is the transverse

Laplacian operator, and ε(x) is the position-dependent di-
electric constant. In the paraxial regime, the second-order
derivative on the right-hand side can be neglected, leading to
a Schrödinger-like equation

i∂zφ(r) = 1

2β0

[−∇2
⊥ + V (x)

]
φ(r), (B2)

where the potential energy takes the form V (x) = β2
0 − ε(x)k2

0
and z plays the role of time. We denote an eigenvalue of the
effective Hamiltonian on the right-hand side of Eq. (B2) by
λ, which has the same dimension as β0. This is the quantity
we have plotted in Figs. 3(c) and 3(d). The corresponding
eigenstate takes the form φ(r) = φ(x) exp(iλz), and we note
that the magnitude of λ is much smaller than β0 in the paraxial
regime.

To show that this coupled waveguide system with δ �= 0
can realize the tight-binding model given by Eq. (16), we
introduce gain and loss in the following fashion. First, an
imaginary perturbation is added to the dielectric constant in
the interstitial regions, with −ir in M13, M23 and +ir in
M24, M14. Next, an imaginary perturbation iγ j is added to
each waveguide D j , and its magnitude depends on whether a
real or complex on-site detuning is desired. Finally, we work
with the basis of individual waveguide modes ψ j , defined for
each stand-alone waveguide in the absence of detuning or
gain/loss.

By expanding φ in Eq. (B2) in this basis and performing the
usual overlapping integrals, we arrive at a matrix Hamiltonian
of the following form,

H̃ =

⎛
⎜⎝


 + i�1 g1 g̃2


 + i�2 g2 g̃1

g1 g2 −
 + i�3

g̃2 g̃1 −
 + i�4

⎞
⎟⎠,

(B3)

where the factor 1/2β0 on the right-hand side of Eq. (B2) is
absorbed by defining ε̃c ≡ εc/2β0 and ε̃cl ≡ n2

cl/2β0 as we
will show below. Each term in Eq. (B3) is proportional to
integrals of the products of waveguide fields ψiψ j at all per-
turbed domains. For instance, 
 = Jδ in the diagonal terms
are defined with J ≡ ∫

D1
ε̃cψ

2
1 dx, while � j ( j = 1, 2, 3, 4)

are defined as Jγ1 + �−, Jγ2 − �−, Jγ3 + �+, and Jγ4 −
�+ respectively, where �± = r(ρ1 ± ρ2), ρ1 ≡ ∫

M13
ε̃cψ

2
1 dx,

and ρ2 ≡ ∫
M24

ε̃cψ
2
1 dx. The off-diagonal terms (i.e., the cou-

plings) are given by

g1 = χ j1 + i[rκ1 + j1(γ1 + γ3)], (B4)

g̃1 = χ j1 − i[rκ1 − j1(γ2 + γ4)], (B5)

g2 = χ j2 + i[rκ2 + j2(γ2 + γ3)], (B6)

g̃2 = χ j2 − i[rκ2 − j2(γ1 + γ4)], (B7)

with χ ≡ k2
0 (ε̃c − ε̃cl ), j1 = ∫

D1
ε̃cψ1ψ3dx, j2 =∫

D1
ε̃cψ1ψ4dx, κ1 = ∫

M13
ε̃cψ1ψ3dx, and κ2 =∫

M14
ε̃cψ1ψ4dx.

Clearly, the form of the matrix of Eq. (B3) resembles
that of the model Eq. (16) we intend to reproduce, and they
become exactly the same with the following choice of the
gain and loss in each waveguide: γ1 = −�−/J , γ3 = −�+/J ,
γ2 = −γ1, and γ4 = −γ3. With this choice, the diagonal terms
of H̃ become a pair of detunings with equal magnitude but
opposite signs (i.e., ±
), while the off-diagonal terms now
satisfy g1 = g̃∗

1, g2 = g̃∗
2 as in Eq. (16):

H̃ =

⎛
⎜⎝


 g1 g∗
2


 g2 g∗
1

g1 g2 −


g∗
2 g∗

1 −


⎞
⎟⎠. (B8)

We note that if just to satisfy these requirements of the cou-
plings, a weaker condition γ1 + γ2 + γ3 + γ4 = 0 is needed,
i.e., with no excessive gain or loss when all four waveguides
are considered.

To verify that the tight-binding model derived above
captures the coupled waveguides, finite-difference (FD) sim-
ulations are carried out at a fixed wavelength of 1.550 μm.
A 19 μm × 12 μm computational domain is used, which is
discretized uniformly with rectangular elements 0.29 μm ×
0.28 μm in size. Several stages are performed in the simula-
tions.

The first stage solves the Helmholtz equation for a single
waveguide of permittivity εc = 2.1287, from which we obtain
the propagation constant β0 = 5.88 μm−1 and the field ψ (x).
This field is then shifted to the center of each waveguide in
the coupled system, which we take as ψ j and use to compute
all the integrals J , j1, ρ1, κ1, j2, ρ2, and κ2.

Here, we also perform two additional steps to improve the
accuracy of these quantities. (1) By removing all gain and loss

2.26 + 0.777i-2.29 - 0.774i

0 10-10 0 10-10

0

-8

8

min

max

FIG. 6. Intensity patterns of two propagation modes in Fig. 3(d).
The insets show their eigenvalues of the paraxial equation in the unit
of nm−1.
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FIG. 7. Non-Hermitian chiral symmetry of a 3D pyramid.
(a) Schematic of the system. Purple and orange denote the on-site
detunings ±β. (b) Its eigenvalue spectrum with g2 = g1 ∈ R, g3 =
0.8g1, and detuning αeiπ/4γ 3γ 5, where α is increased from 0 to 2.
(c) Same as (d) but with an additional detuning αeiπ/3γ 1γ 2.

(i.e., setting γ j = r = 0), H̃ given by Eq. (B8) still holds but
with simplified couplings g1,2 = g̃1,2 = χ j1,2. By fitting the
result of the FD simulation in this case with H̃ , we find that
the fitted values for J and j1,2 agree qualitatively with their
analytical expressions, with a difference of less than 15% in
general. These fitted values are used in later steps. (2) Next,
we introduce a fixed r = rmax = 0.009, while all the γ ’s are
still zero in the FD simulation. By fitting the result of the FD
simulation in this case with the general H̃ given by Eq. (B3),
we find corrections to ρ1, ρ2, κ1, and κ2, which are again less
than 15% in general.

Finally, the choice of gain and loss that leads to Eq. (B8)
is implemented in the FD simulations. Since these values of
γ ’s in the derived tight-binding model are proportional to r,

we make a final correction to this constant of proportionality,
i.e., multiplying all γ ’s by the same factor slightly deviated
from 1, in order to produce the best fit of the FD simulation
at r = rmax. By reducing r (i.e., the amount of gain and loss
in the interstitial regions) from rmax and the values of γ ’s ac-
cordingly, we produce the comparison of the FD simulations
and the tight-binding model shown in Figs. 3(c) and 3(d).

In Fig. 6 we also show the intensity patterns of the two
eigenmodes in the first and third quadrants of the complex
eigenvalue plane at rmax in Fig. 3(d). At first glance, their
patterns seem to be mirror images of each other with respect
to the horizontal axis. However, their local intensity maxima
in each cavity are given by [0.0583, 1, 0.3332, 0.0327] and
[0.0103, 0.3921, 1, 0.0649], respectively, which clearly indi-
cates the absence of any mirror symmetry. Here, we have
normalized the global intensity maximum to be 1.

APPENDIX C: 3D PYRAMID

To show that the Clifford algebra can still lead to non-
Hermitian chiral symmetries without two sublattices and their
chiral operator γ 0, we consider a lattice with such connectiv-
ity in Fig. 7(a) and the following Hamiltonian,

H = g1γ
5 + g2γ

0γ 1 + g3γ
1γ 5, (C1)

where g3 represents the two NNN terms. We caution that this
model requiring careful matching of the sign and magnitude
of three pairs of couplings, and hence it is difficult to realize.

Its chiral symmetries are specified by �1 = γ 1 and �2 =
γ 0γ 5, which can be checked using Eqs. (14) and (15). �1

tolerates detunings of the forms γ 0 and γ 1γ 2, shown explic-
itly below Eq. (15). At the same time, �2 accommodates
detunings given by γ 0 and γ 3γ 5 [Fig. 7(c)]. At first glance, a
detuning consisting of a superposition of γ 3γ 5 and γ 1γ 2 (i.e.,
H → H + d1γ

1γ 2 + d2γ
3γ 5) would then lift all chiral sym-

metries of the system. However, the chiral symmetry given by
�1 actually evolves with the detuning, i.e.,

�1 → γ 1 + d2γ
1γ 3, (C2)

and the non-Hermitian Hamiltonian still has a symmetric
spectrum about the origin of the complex energy plane
[Fig. 7(d)]. Only by having all three forms of detuning can
this chiral symmetry be removed.
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[60] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang,
Exceptional points enhance sensing in an optical microcavity,
Nature (London) 548, 192 (2017).

[61] X. Zhou, S. K. Gupta, Z. Huang, Z. Yan, P. Zhan, Z.
Chen, M. Lu, and Z. Wang, Optical lattices with higher-order

exceptional points by non-Hermitian coupling, Appl. Phys.
Lett. 113, 101108 (2018).

[62] M. J. Rice and E. J. Mele, Elementary Excitations of a Lin-
early Conjugated Diatomic Polymer, Phys. Rev. Lett. 49, 1455
(1982).

[63] N. V. Alexeeva, I. V. Barashenkov, K. Rayanov, and S. Flach,
Actively coupled optical waveguides, Phys. Rev. A 89, 013848
(2014).

[64] J. Arkinstall, M. H. Teimourpour, L. Feng, R. El-Ganainy,
and H. Schomerus, Topological tight-binding models
from nontrivial square roots, Phys. Rev. B 95, 165109
(2017).

[65] Z. Zhang, M. H. Teimourpour, J. Arkinstall, M. Pan, P. Miao,
H. Schomerus, R. El–Ganainy, and L. Feng, Experimental re-
alization of multiple topological edge states in a 1D photonic
lattice, Laser Photonics Rev. 13, 1800202 (2019).

[66] R. Keil, C. Poli, M. Heinrich, J. Arkinstall, G. Weihs, H.
Schomerus, and A. Szameit, Universal Sign Control of Cou-
pling in Tight-Binding Lattices, Phys. Rev. Lett. 116, 213901
(2016).

[67] B. Redding, L. Ge, Q. Song, J. Wiersig, G. S. Solomon, and
H. Cao, Local Chirality of Optical Resonances in Ultrasmall
Resonators, Phys. Rev. Lett. 108, 253902 (2012).

[68] R. Sarma, L. Ge, J. Wiersig, and H. Cao, Rotating Optical
Microcavities with Broken Chiral Symmetry, Phys. Rev. Lett.
114, 053903 (2015).

[69] Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen,
L. Ge, Q. Gong, and Y.-F. Xiao, Experimental Demonstration
of Spontaneous Chirality in a Nonlinear Microresonator, Phys.
Rev. Lett. 118, 033901 (2017).

[70] S. Liu, J. Wiersig, W. Sun, Y. Fan, L. Ge, J. Yang, S. Xiao,
Q. Song, and H. Cao, Transporting the optical chirality through
the dynamical barriers in optical microcavities, Laser Photonics
Rev. 12, 1800027 (2018).

014111-11

https://doi.org/10.1103/PhysRevX.4.031011
https://doi.org/10.1103/PhysRevA.92.062135
https://doi.org/10.1364/PRJ.5.000B20
https://doi.org/10.1038/srep13376
https://doi.org/10.1088/1751-8113/45/2/025303
https://doi.org/10.1103/PhysRevA.92.052103
https://doi.org/10.1103/PhysRevLett.117.107402
https://doi.org/10.1038/nature23280
https://doi.org/10.1103/PhysRevLett.112.203901
https://doi.org/10.1038/nature23281
https://doi.org/10.1063/1.5043279
https://doi.org/10.1103/PhysRevLett.49.1455
https://doi.org/10.1103/PhysRevA.89.013848
https://doi.org/10.1103/PhysRevB.95.165109
https://doi.org/10.1002/lpor.201800202
https://doi.org/10.1103/PhysRevLett.116.213901
https://doi.org/10.1103/PhysRevLett.108.253902
https://doi.org/10.1103/PhysRevLett.114.053903
https://doi.org/10.1103/PhysRevLett.118.033901
https://doi.org/10.1002/lpor.201800027

