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Enabling simulations of helium bubble nucleation and growth: A strategy for interatomic potentials
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Helium bubbles are a severe form of radiation damage that has been frequently observed. It would be possible
to understand the complex processes that cause bubble formation if suitable interatomic potentials were available
to enable molecular dynamics simulations. In this paper, Pd-H-He embedded-atom method potentials based on
both Daw-Baskes and Finnis-Sinclair formalisms have been developed to enable modeling of He bubbles formed
by the radioactive decay of tritium in Pd. Our potentials incorporate helium into an existing Pd-H potential while
addressing two challenging paradoxes: (a) Interstitial He atoms can dramatically lower their energies by forming
dimers and larger clusters in Pd but are only bound by weak van der Waals forces in the gas phase. (b) He atoms
diffuse readily in Pd yet significantly distort the Pd lattice with large volume expansions. We demonstrate that
both of our potentials reproduce density functional theory results for (b). However, the Daw-Baskes formalism
fails to resolve paradox (a) because it cannot reproduce the experimental helium equation of state. We resolved
this problem through a modification of the Finnis-Sinclair formalism in which a (fictitious) negative embedding
charge density is produced by Pd at the He binding sites. In addition to molecular statics validation of static
properties, molecular dynamics simulation tests establish that our Finnis-Sinclair potential leads to the nucleation
of helium bubbles from an initial random distribution of helium interstitial atoms.
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I. INTRODUCTION

Face-centered-cubic (fcc) palladium (Pd) has desirable
properties for the storage of hydrogen isotopes [1,2] due to the
reversibility of hydride formation at moderate temperatures
and pressures. Its properties in the presence of tritium (T)
are more stable than those of other metal tritides [3]. These
properties also make palladium a valuable platform for study
of the effects of helium (He) in metals. The decay of intersti-
tial T to He leads to the formation of He bubbles due to the
insolubility of He in Pd. As these helium bubbles grow [4],
they cause swelling and change the T storage thermodynamics
[5]. Eventually the Pd lattice is sufficiently disrupted that He is
released rapidly [6]. Understanding He bubble nucleation and
growth kinetics is thus important to the practical application
of the tritides of palladium and other metals, as well as metals
in other environments that introduce helium to the bulk, such
as nuclear fission and fusion reactors [7,8]. While experimen-
tally probing the complete evolution of T-induced bubbles
requires times on the order of the half-life of T (12 years),
molecular dynamics (MD) studies of He bubble nucleation
and growth can be performed more quickly because the pro-
cesses of nucleation and growth occur on atomistic simulation
timescales, as will be demonstrated below. MD simulations,
however, cannot be performed without a sufficiently accurate
Pd-H-He interatomic potential. Note that T can be modeled as
its isotope hydrogen (H) here because T and H have the same
electronic structure. In the following, we will only refer to H.

For the binary Pd-H system, a potential should capture
(i) the miscibility gap between dilute Pd and Pd hydride

[9]; (ii) the preferred octahedral interstitial site for H [10];
(iii) the rapid H diffusion (activation energy barrier ∼0.2 eV)
[11]; as well as (iv) lattice constants, cohesive energies, and
elastic constants of the PdHx hydride as a function of compo-
sition x [12]. Numerous Pd-H potentials have been developed
in the literature [13–18]. Some potentials [13,14] are designed
only for dilute hydrogen compositions. These potentials ei-
ther do not capture the miscibility gap or incorrectly predict
a preference for tetrahedral hydrogen interstitial sites. The
embedded-atom method (EAM) [13,19] potential developed
by Wolf et al. [15,16] reported a miscibility gap, but un-
fortunately is not sufficiently well documented [17] to be
regenerated. The EAM potential [17] we developed previ-
ously satisfies the four criteria outlined above, although the
lattice constant of the H-rich PdHx and the composition range
of the miscibility gap deviate from experimental values [12].1

Given a Pd-H potential, a Pd-H-He potential can be
constructed by defining the He-related component of the po-
tential. For MD simulations of helium bubble nucleation and
growth, the He component of the potential should capture a
variety of properties as will be outlined here. Helium bub-
ble formation is believed to occur in several stages. First,
in defect-free Pd, interstitial He aggregates to form clusters,
without creating new defects in the Pd lattice. When these
clusters grow sufficiently large, Pd atoms are displaced to
create a bubble. Thereafter the bubbles continue to grow by

1Recently, Park and Hijazi reported that their EAM Pd-H potential
captures the miscibility gap with improved accuracy [18].
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accumulating He and displacing Pd in a manner determined
by the pressure of He in the bubbles. The He diffusion energy
barrier is important for a potential to reproduce because it
determines how fast He atoms form clusters. The bond length
and bond energy of He-He dimers in Pd define how the He
atoms cluster. The He cluster energy and vacancy formation
energy of Pd as a function of cluster size determine when
He bubbles nucleate from clusters. The swelling volume of
interstitial He and (rocksaltlike) clusters determines the elastic
effects of He on Pd and this in turn affects H storage thermo-
dynamics. Finally, for capturing He densities within bubbles,
a correct description of the equation of state of pure He is
desired.

Two papers describing MD simulations of He behavior
in palladium hydrides have been published recently [20,21].
The potential used in Ref. [20] incorrectly predicts tetrahedral
interstitial sites for H. In addition, it is not clear if this po-
tential can capture He bubble nucleation because He bubbles
were manually created. We explored the potential used in
Ref. [21] and found an extremely large He diffusion energy
barrier in Pd (>3.0 eV). In contrast, the energy barrier found
in the literature density functional theory (DFT) calculations
is less than 0.48 eV [22]. In fact, our DFT calculations (to be
presented below) indicate an even smaller He diffusion barrier
(less than 0.1 eV). As a result, the literature potential used in
Ref. [21] cannot realistically capture the kinetics of He bubble
nucleation. Potentials have been created for He in W [23].
However, as we discuss below, the strategies used do not apply
to He in octahedral sites in fcc Pd.

The objective of the present work is to extend our Pd-H
EAM potential [17] to include He. This Pd-H potential is
selected because it possesses a miscibility gap and its charac-
teristics are well documented [11,12,17,24]. To capture all the
DFT results on the He features elaborated above, we introduce
an extension of the Finnis-Sinclair EAM formalism. We estab-
lish the usefulness of our approach by showing a MD study
of the nucleation of He bubbles from randomly populated
He interstitials, such as those produced experimentally by
radiological decay of randomly distributed tritium atoms.

II. DENSITY FUNCTIONAL THEORY CALCULATIONS

The DFT calculations presented here are performed in a
cubic 108 Pd atom cell. This unit cell size is chosen to di-
minish the possibility of artifacts due to shape distortions of
the cells by the large effective size of interstitial He. We relax
the positions of the atoms and calculated total energies using
the VASP code [25,26], the Perdew-Burke-Ernzerhof (PBE)
version of the generalized gradient approximation [27], and
the projector-augmented wave approximation [28]. At least
a 6 × 6 × 6 set of k-vectors is used. We relax forces to be less
than 0.001 eV/Å. In all calculations the shape and size of the
unit cells are also relaxed to yield a stress-free state. Electronic
relaxation is accelerated through Methfessel-Paxton Fermi
level smearing [29] (width 0.2 eV). For accuracy, we use a
500-eV, plane-wave basis cutoff. To provide some estimate
of the sensitivity to the choice of density functional, we also
report some energies using the local density approximation
(LDA).
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FIG. 1. He diffusion pathways between nearest neighbor octahe-
dral sites in H-free Pd, as computed with DFT. Solid line: through
tetrahedral site; dashed line: direct path.

First, consistent with the previous studies, we find that He
preferentially occupies the octahedral interstitial site in Pd.
The insertion energy is 3.64 eV, demonstrating the insolu-
bility of He in Pd. Next, to estimate barriers for diffusion,
the climbing-nudged elastic band method of Henkelman and
colleagues [30–32] is used to compute diffusion pathways and
transition states. There is some discrepancy in the literature in
the location of the transition state for He diffusion between
neighboring octahedral sites [33,34]. Zeng et al. [33] deduced
a transition state at the intervening tetrahedral site, while Das
and de Leeuw [22] and Cao and Geng [34] reported a transi-
tion state near the line connecting the neighboring octahedral
sites. Based on our DFT computed diffusion paths given in
Fig. 1, the direct path is preferred. For both paths, however, the
diffusion energy barrier for an interstitial is only on the order
of 0.1 eV, at the limits of what DFT can reasonably resolve.
This small barrier is similar to what has been computed for He
in W [35].

To gain insight into what determines the He diffusion
barrier, we have computed how the electronic charge density
rearranges during He motion. To do this we take the electronic
charge density of the configurations along the direct path
shown in Fig. 1 and subtract the sum of the charge densi-
ties of the identical Pd lattice without the He atom and the
charge density of an isolated He atom. The resulting charge
differences in the (100) plane containing the diffusion path
are shown in Fig. 2. The solid circle marks the perimeter of a
sphere containing 90% of the He electronic charge. As closed-
shell atoms, He atoms clearly displace electrons toward the Pd
[36]. The difference in the charge displaced from the indicated
He sphere between the octahedral site and the transition state
is only 0.08 e. However, even though the energy changes and
differences in total charge displaced are relatively small, the
nature of the charge displacement changes markedly during
the He motion. The displacements at the transition state are of
particularly long range, showing the necessity of considering
large cells.
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FIG. 2. (a)–(f) The electronic charge density displaced by a He
atom along the diffusion path between the octahedral interstitial
site and the direct transition state computed in Fig. 1. The white
crosses mark atomic centers. The black circles contain 90% of the
He electronic charge.

Figure 2 demonstrates that the two He electrons never
chemically bind with the Pd lattice. Thus, the interstitial
motion of He does not involve the forming, breaking, and re-
forming of chemical bonds, as is typical of interstitial atomic
motion. The large charge rearrangements in Fig. 2 suggest,
however, that Pd-Pd bonds are weakened and rearranged. This
weakening presumably plays a role in our comparatively large
DFT swelling volumes of 9.7 Å3 of He in Pd.

Another unique aspect of interstitial He atoms is that, as re-
ported below, they are strongly attractive within the Pd lattice
with a binding energy of 0.9 eV. As argued below, this is due
to the fact that clustering together reduces the overall charge
displacement, rather than any chemical binding between
He.

At low temperatures, it is well known that the equation
of state of He is strongly affected by quantum mechanical,
zero-point energy effects [37]. For example, 3He at zero tem-
perature can crystallize into the body-centered-cubic (bcc)
structure, while 4He crystallizes into the hcp structure. Thus
the question naturally arises as to whether zero-point energy
effects could influence the arrangement of He in Pd. To an-
swer this question, we computed the zero-point energy of
He containing lattices in the harmonic approximation. We
calculated the normal vibrational modes νi of a cell containing
two interstitial He atoms and 32 Pd atoms. We considered two
configurations of the atoms, one in which the He atoms are
initially placed in neighboring octahedral sites to form a He
dimer and another one in which the He atoms are far from each
other in fifth neighboring sites. We estimated the zero-point
energy as (1/2)

∑
i hνi. We find that the zero-point energy

destabilizes the dimer by 40 (45) meV for 4He (3He). Thus,
this effect is quite small compared to the overall effects of
charge displacement, giving rise to an interaction energy of
0.9 eV, and justifies the neglect of He isotope effects in our
empirical potential.

octahedral sites
(with spacing = 2.75 Å)

tetrahedral sites
(with spacing 1.58 Å) 

DFT He-He spacing
in Pd = 1.7 Å

(a) He sites in fcc Pd (b) He sites in bcc W (c) DFT relaxed charge of (a) 

FIG. 3. The configuration of two neighboring He interstitial
atoms in (a) fcc Pd and (b) bcc W. (c) shows the electronic charge
displaced by a pair of He atoms in configuration (a) after structural
relaxation using DFT. The gray scale in (c) is the same as in Fig. 2.
Note that in contrast to Pd, two neighboring He atoms sit in one
octahedral cage in W.

III. POTENTIAL FORMALISM

Two versions of Pd-H-He EAM potential are developed:
one based on the Daw-Baskes (DB) formalism [13], and the
other one based on the Finnis-Sinclair (FS) formalism [19].
Both formalisms consider two contributions to the potential
energy: a pairwise interaction and a many-body interaction
which is a function of the local electron density. However, the
physical meaning of the many-body term is different between
the two approaches. In DB, the many-body term accounts
for the energetic cost of “embedding” an atom in the local
electron cloud. In FS, the many-body term is derived from
the second-moment approximation to the tight-binding frame-
work. Rather than focusing on the differences in the physical
interpretation of these terms, however, here we focus on—and
leverage—their mathematical differences.

Mathematically, the electron density computation in the
DB and FS formalisms differs in a subtle way. Considering
that an atom j produces an electron density at a nearby loca-
tion occupied by an atom i, the DB formalism assumes that
this electron density depends only on the species of atom j,
whereas the FS formalism assumes that this electron density
depends on the species of both atoms i and j. Obviously, this
difference in the DB and FS formalisms becomes inconse-
quential for elemental systems, but can critically influence the
form of the potential for alloys and compounds (as we show
here). As we now discuss, an extension of the FS formalism
is necessary for us to resolve the paradoxical behavior that in
a Pd matrix He atoms tend to form clusters, but in a pure He
state He atoms only weakly interact through van der Waals
forces.

In Figs. 3(a) and 3(b), we compare two neighboring helium
interstitial sites in fcc palladium and bcc tungsten (W) using
DFT. He tends to cluster in Pd because the two He atoms
can collaborate in displacing the requisite electronic charge.
Figure 3(c) shows the electronic charge displaced by the dimer
formed after relaxing the configuration shown in Fig. 3(a).
The He-He distance is 1.7 Å which is much shorter than the
∼2.8 Å distance between octahedral sites. The total charge
displaced by the dimer is 0.2 e less than the sum of the charge
displaced by He in two separated octahedral sites. Further, as
shown in Fig. 1, the energy required to displace an isolated He
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FIG. 4. Schematic depiction of FS functions. (a) Electron density
ρ at a He atom is positive from He and negative from Pd. (b)
Embedding energy as a function of electron density, showing how
He-He interactions are attractive in Pd and repulsive in He. If a
He atom in Pd is approached by another He atom, the embedding
energy is reduced (attraction). In contrast, in pure He additional He
interactions lead to embedding energy increases (repulsion).

atom along the same path that forms the dimer is small. The
net result is that the He-He interaction energy has a strongly
attractive value of ∼−0.9 eV.

The most straightforward way to reproduce this He dimer-
ization in an EAM potential is to invoke an attractive He-He
pairwise potential, as we do for the DB potential discussed
below. However, this attraction introduces artifacts for the
gas He phase in large bubbles since the attractive interaction
between the He atoms is strictly a result of the 0.2 e reduction
in the electron charge displacement within the Pd lattice.
Another approach, which has been applied successfully for He
in bcc W [23,38], is to introduce a repulsive Pd-He pairwise
potential. However, as Fig. 3(a) shows, this repulsion will tend
to center He in the octahedral sites making the He-He spacing
even larger than the ∼2.8 Å spacing between the unexpanded
octahedrons. Further, this repulsion directly affects lattice
volume changes and He diffusion barriers. Because of these
constraints, we were unable to find a Pd-He potential that was
able to reproduce DFT results. As shown in Fig. 3(b) the
situation for He dimers in W is much different because the
preferred He binding position is in tetrahedral sites where
neighboring distances are already small (although it is simpler
to make He dimers low energy in W because of the tetrahedral
site occupancy, the low energy structure of the He dimer in W
computed in Ref. [35] is not neighboring tetrahedral sites).

We overcame this difficulty by extending the FS formalism
to allow the designation of a negative Pd electron density
ρHe

Pd (r) produced at He sites, without changing any EAM
functions of the Pd-H system. While such a modification is not
motivated by physics (since electron densities cannot be neg-
ative), it is consistent with the EAM formalism and enables us
to capture the bifurcated behaviors of He in Pd compared with
He in gas. A schematic depiction of the basic idea is presented
in Fig. 4. Because He atoms prefer to occupy a site with zero
electron density, we design a He embedding energy FHe(ρ)
that has a minimum at zero electron density. This means that
a single He atom in Pd has a high embedding energy due to
the negative electron density, correctly reproducing the insol-
ubility of He interstitials in Pd lattices. Since by nature the He

electron density ρHe
He (r) is positive at He sites, the magnitude

of the negative electron density at a He atom in a Pd lattice
is reduced when another He approaches. This reduces the
embedding energy of both He atoms, effectively creating a
strong attraction between them. On the other hand, in pure He
environments the positive electron density ρHe

He (r) means that
the magnitude of electron density, and therefore embedding
energy, always increases when He atoms are closer. As a
result, He-He interactions are purely repulsive in pure He
using this potential.

Note that the FS potential derives from a second-moment
approximation to the tight-binding framework [19,39,40]. Be-
cause the outer-shell electrons in He are saturated, the hopping
integral between He and other atoms are zero [41]. This means
that the many-body term in the original FS potential would
define a zero bond order and hence a zero binding energy,
leaving only the pairwise repulsive interaction energy. Our
DFT calculations discussed above indicate that He is strongly
repelled from regions with high electron density and a local
electron density is generated by many atoms. As a result, the
many-body effect of repulsion cannot be neglected (as the
original FS formalism would imply for He). The mathematical
form of the FS potential and the concept of negative electron
density incorporate exactly the physics of this many-body
repulsion, albeit through invoking a nonphysical electron den-
sity.

Since the FS formalism is more general than the DB
formalism, we will use the FS formalism to represent both
models in the following discussion for convenience. A
complete Pd-H-He EAM model includes six pair interac-
tion functions: φPdPd(r), φPdH(r), φHH(r), φPdHe(r), φHHe(r),
φHeHe(r); nine electron density functions: ρPd

Pd (r), ρH
Pd(r),

ρHe
Pd (r), ρPd

H (r), ρH
H (r), ρHe

H (r), ρPd
He(r), ρH

He(r), ρHe
He (r); and

three embedding energy functions: FPd(ρ), FH(ρ), FHe(ρ). The
superscripts in the electron density functions signify which
atoms occupy the location of the electron density measure-
ment.

A. Daw-Baskes model

For the DB model, φPdPd(r), φPdH(r), φHH(r),
ρPd

Pd (r) = ρH
Pd(r) = ρHe

Pd (r), ρPd
H (r) = ρH

H (r) = ρHe
H (r), and

FPd(ρ), FH(ρ) are taken directly from the corresponding
functions of the literature Pd-H EAM [17]. Here we will
develop three pair functions, φPdHe(r), φHHe(r), and φHeHe(r),
one electron density function, ρPd

He(r) = ρH
He(r) = ρHe

He (r), and
one embedding energy function FHe(ρ). The IJ pair function
between He and Pd (i.e., IJ = PdHe) is assumed to be purely
repulsive:

φIJ (r) = E0,IJexp

(
−αIJ

r − r0,IJ

r0,IJ

)
fc(r, rs,IJ , rc,IJ ), (1)

where E0,IJ , αIJ , r0,IJ , rs,IJ , rc,IJ are positive pairwise param-
eters, and fc(r, rs,IJ , rc,IJ ) is a cutoff function. fc(r, rs, rc) is
defined as

fc(r, rs, rc) =
{

1
2 erfc

[
μ(r−rs )+ν(rc−r)

rc−rs

]
, r < rc

0, r � rc
. (2)

Here μ and ν are constants defined by 1
2 erfc(μ) =

10−5 and 1
2 erfc(ν) = 0.9, respectively. It can be shown that
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fc(r, rs, rc) approaches 1 at r � rs, and near 0 at r near rc.
As a result, multiplying fc(r, rs, rc) with any function will
not change significantly that function at small r, but smoothly
truncate the function at the cutoff distance rc. Note that strictly
speaking, fc(r, rs, rc) = 10−5 rather than 0 at r = rc. How-
ever, we can set it to zero when constructing the tabular
function for the MD code LAMMPS [42,43], which produces
negligible errors.

In our DFT calculations, we observe that as He atoms
closely approach H atoms and other He atoms in Pd, the
energy of the system decreases. This indicates attractive He-H
and He-He interactions in the Pd lattice. For the DB model,
this attraction in fcc lattices can be effectively incorporated
by the pair interaction. Hence, IJ (IJ = HHe, HeHe) pair in-
teractions involve an attractive component:

φIJ (r) = E0,IJ fc(r, rs,IJ , rc,IJ )

βIJ − αIJ

{
βIJexp

[
−αIJ

(r − r0,IJ )

r0,IJ

]

−αIJexp

[
−βIJ

(r − r0,IJ )

r0,IJ

]}
, (3)

where E0,IJ , αIJ , βIJ , r0,IJ , rs,IJ , rc,IJ are all pair parameters
(E0,IJ is negative and all others are positive).

The electron density function for He is expressed as

ρJ
I (r) = f J

I exp
(−γ J

I r
)

fc
(
r, rJ

s,I , rJ
c,I

)
, (4)

where I = He, J = Pd, H, He, and f J
I , γ J

I , rJ
s,I , rJ

c,I are pos-
itive pair parameters. Note f Pd

He = f H
He = f He

He , γ Pd
He = γ H

He =
γ He

He , rPd
s,He = rH

s,He = rHe
s,He, and rPd

c,He = rH
c,He = rHe

c,He in the DB
model.

The He embedding energy function is assumed to have the
form

FHe(ρ) =
{

F0,He
[

1
2 − 1

2 cos
(

ρ

ρ0,He
π

)]
, ρ < ρ0,He

F0,He, ρ � ρ0,He
, (5)

where F0,He and ρ0,He are positive species-dependent parame-
ters.

The functional forms described above are motivated by
DFT calculations. Most importantly, our DFT calculations
indicate that He atoms repel electrons toward the Pd sites.
This means that electron densities at neighboring Pd sites
are increased by He but the electron density at the He site
is reduced. The increases in electron densities at Pd sites are
captured by the positive He electron density function, Eq. (4).
While the DB model does not allow the reduction of electron
density at the He site, similar effects can be incorporated by
reducing the sensitivity of He embedding energy to electron
density. This is implemented in Eq. (5) where the embedding
energy is a constant for the electron density range ρ � ρ0,He.
This flat embedding energy also gives a low He diffusion
energy barrier, resolving the paradox that He atoms have a
low diffusion energy barrier while exhibiting a large swelling
volume in Pd. As described above and will be shown below,
the FS model better addresses the effects of electronic charge
displacement through a positive He electron density at Pd and
a negative Pd electron density at He.

B. Finnis-Sinclair model

In our FS model, the φPdPd(r), φPdH(r), φHH(r), ρPd
Pd (r) =

ρH
Pd(r), ρPd

H (r) = ρH
H (r), FPd(ρ), FH(ρ) functions are taken

directly from the corresponding functions of the literature
Pd-H (DB) EAM potential [17]. Furthermore, we set ρHe

H (r) =
−ρPd

H (r) to ensure a negative electron density at He sites in
PdHx without additional tuning of the H electron density. The
remaining functions to be determined include three pair func-
tions: φPdHe(r), φHHe(r), and φHeHe(r); four electron density
functions: ρHe

Pd (r), ρPd
He(r), ρH

He(r), ρHe
He (r); and one embedding

energy function: FHe(ρ). With the FS model, the attractive
H-He and He-He interactions in Pd can be obtained using
the embedding energy so that purely repulsive pair interac-
tions between He and any other element can be used. Here,
we use Eq. (1) to represent φPdHe(r) and φHHe(r), and a
repulsive polynomial to represent φHeHe(r) (to more conve-
niently fit the He equation of state shown below) as in the
following:

φHeHe(r) =
{
αHeHe(r − r0,HeHe)2 + βHeHe(r − r0,HeHe)3, r < r0,HeHe

0, r � r0,HeHe
, (6)

where αHeHe, βHeHe, and r0,HeHe are positive pair parameters.
The electron density functions ρHe

Pd (r), ρPd
He(r), ρH

He(r), and
ρHe

He (r) are all represented by Eq. (4) except that f He
Pd is nega-

tive to enforce a negative Pd electron density at He sites.
The He embedding energy function FHe(ρ) is expressed as

FHe(ρ) =
⎧⎨
⎩

F0,He, ρ � ρ0,He

F0,He
[

1
2 − 1

2 cos
(

ρ

ρ0,He
π

)]
, ρ0,He < ρ < 0

F2,Heρ
2 + F3,Heρ

3, ρ � 0
, (7)

where F0,He, F2,He, F3,He, and ρ0,He are parameters (ρ0,He is
negative and F0,He, F2,He, and F3,He are positive). Equation (7)
has a minimum of zero at ρ = 0.

IV. POTENTIAL PARAMETRIZATION

Parametrization of the EAM potentials is accomplished
by fitting DFT lattice constants and cohesive energies of six
structures: Pd (fcc) with a He atom at an octahedral interstitial
site, Pd with a He atom at a tetrahedral interstitial site, Pd
with a He-He dimer at two neighboring octahedral interstitial
sites, Pd with a H-He dimer at two neighboring octahedral
interstitial sites, PdHe (rocksalt), and PdH0.75He0.25 (mixed
rocksalt). In addition, we fit DFT lattice constants and cohe-
sive energies for five additional structures corresponding to
a He atom occupying different locations along the diffusion
path in a Pd lattice. This helps fit the diffusion energy barrier.
For the FS formalism, we also fit the energy of fcc He as
a function of lattice constant. In reality, 3He has a hexago-
nal close-packed crystal structure [44]. However, fitting fcc
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TABLE I. Parameters for He-related EAM (DB) (length in Å and energy in eV).

E0,PdHe 0.002000 rs,HHe 4.295500 ρ0,He 13.742806 f He
He 1.592508

αPdHe 11.274271 rc,HHe 5.655147 f Pd
He 1.592508 γ He

He 0.221689
r0,PdHe 2.488746 E0,HeHe −1.219337 γ Pd

He 0.221689 rHe
s,He 2.575412

rs,PdHe 1.924805 αHeHe 6.401310 rPd
s,He 2.575412 rHe

c,He 7.975412
rc,PdHe 2.319795 βHeHe 2.680178 rPd

c,He 7.975412
E0,HHe −0.181660 r0,HeHe 1.680000 f H

He 1.592508
αHHe 21.168969 rs,HeHe 3.289651 γ H

He 0.221689
βHHe 12.057009 rc,HeHe 4.440681 rH

s,He 2.575412
r0,HHe 3.120972 F0,He 3.288065 rH

c,He 7.975412

is sufficient to tune the potential toward the experimental
equation of state (a fluid equation of state is computed later
during dynamic testing); obviously our potential will not ac-
curately capture the 3He solid phase, however. The fitting is
achieved by minimizing the weighted mean-square difference
between the target and predicted properties. Note that fitting
static properties does not ensure good performance in MD
simulations. An iterative approach is used to resolve this prob-
lem. Specifically, four built-in Mathematica [45] numerical
optimization routines—a conjugate gradient method [46], the
downhill simplex method of Nelder and Mead [47], a genetic
algorithm [48], and a biased random walk (simulated anneal-
ing) [49]—are used for parametrization. After each fitting
iteration, all four parametrized potentials are evaluated in MD
simulations. These MD simulations include computation of
the fluid equation of state for He and the energies of large He
clusters in Pd, both of which are relevant to bubble nucleation
and growth. The best performer during the test simulations is
used as the starting potential for the next iteration, and target
properties and weighing factors are adjusted based on the
results of the MD evaluation. The iterations continue until one
parametrized potential satisfactorily achieves the design crite-
ria outlined above. The parameters thus determined are listed
in Tables I and II, respectively, for the DB and FS formalisms.
For convenience, the DB parameters are expressed in a more
general FS form. Electronic versions of the potentials, in the
format of the MD code LAMMPS [42,43], are provided in the
Supplemental Material [50]. To show function shapes, plots
of all the functions of the FS potential are also provided in the
Supplemental Material. Note that existing LAMMPS pairstyle
eam/fs does not allow negative electron densities and we have
created a modified pairstyle eam/fs/he to enable them. This
pairstyle will be included in a future LAMMPS release. The

DB and FS potential files [50] use the eam/fs and eam/fs/he
pairstyles, respectively.

V. CHARACTERISTICS OF POTENTIALS

A. Molecular statics calculations of basic properties

After a high-temperature MD test simulation validates that
our potentials predict octahedral interstitial sites for He in Pd
as found in our DFT calculations, detailed molecular statics
(MS) simulations are performed to calculate important He-
in-Pd properties that are relevant to bubble nucleation. These
properties include the He diffusion energy barrier QHe, the
swelling volume 	0,He of one He atom, the swelling volume
	He,He of a second He atom nearest to the first He atom, the
swelling volume 	H,He of a He atom nearest to an existing H
atom, energy EHe to insert a He atom in Pd, the bond length
rHe-He and the bond energy EHe-He of two neighboring He
atoms in Pd, the per He volume change 
	Pd→PdHe(Å3/He),
and the energy change 
EPd→PdHe (eV/He) in making the
rocksalt PdHe phase from fcc Pd and isolated He atoms. For
all calculations with the fcc Pd lattice, we use 5 × 5 × 5 unit
cells. For all calculations with the rocksalt PdHe lattice, we
use 6 × 6 × 6 unit cells.

For validation of the potentials versus DFT, He diffusion
is studied with the nudged elastic band methods [30–32]. We
find that the lowest energy He diffusion path is between two
neighboring octahedral interstitial sites, and hence we only
calculate the energy barrier QHe between octahedral sites. The
swelling volume 	0,He and insertion energy EHe for the first
He atom are calculated as the corresponding differences in
relaxed volumes and energies for systems with and without
the He atom. The swelling volumes 	He,He and 	H,He for the

TABLE II. Parameters for He-related EAM (FS) (length in Å and energy in eV).

E0,PdHe 0.155004 rc,HHe 3.8101384 γ Pd
He 0.8271817 rHe

s,He 1.5930120
αPdHe 3.427897 αHeHe 39.2759392 rPd

s,He 6.0267311 rHe
c,He 4.3285791

r0,PdHe 2.586950 βHeHe −4.0879424 rPd
c,He 7.0000000 f He

Pd −21.6766656
rs,PdHe 6.004509 r0,HeHe 1.7213068 f H

He 4.6702433 γ He
Pd 0.4897542

rc,PdHe 7.000000 F0,He 1.4084678 γ H
He 0.8556600 rHe

s,Pd 3.1468368
E0,HHe 0.023764 F2,He 2.829678 × 10−6 rH

s,He 2.1333591 rHe
c,Pd 4.0352370

αHHe 10.746122 F3,He 1.001682 × 10−8 rH
c,He 5.1412935

r0,HHe 1.511214 ρ0,He −39.9507951 f He
He 101.9554550

rs,HHe 2.559378 f Pd
He 2.3805680 γ He

He 0.4212486
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TABLE III. He-in-Pd properties calculated from MS (DB and FS potentials) and quantum mechanical (PBE and LDA) methods: He
diffusion energy barrier QHe (eV), He swelling volumes 	0,He, 	He,He, and 	H,He (Å3/He), He insertion energy EHe (eV/He), He-He bond
length rHe-He (Å), and bond energy EHe-He (eV), per He volume change 
	Pd→PdHe (Å3/He) and energy change 
EPd→PdHe (eV/He) for
rocksalt PdHe formation.

Methods QHe 	0,He 	He,He 	H,He EHe rHe-He EHe-He 
	Pd→PdHe 
EPd→PdHe

DB potential 0.19 10.1 10.0 9.7 3.63 1.75 −0.87 9.2 2.92
FS potential 0.13 7.0 14.1 6.9 4.42 1.67 −2.00 10.5 3.35
PBE DFT 0.11 9.7 10.3 9.5 3.64 1.7 −0.87 6.7 2.99
LDA DFT 0.07 7.3 8.0 10.1 3.63 1.7 −0.85 7.4 2.96

second He atom are calculated as the corresponding difference
in relaxed volumes for systems with and without the second
He atom (placed at the nearest octahedral site to the first
He or H interstitial). The bond length rHe-He is the relaxed
atomic spacing between the two neighboring He atoms. The
bond energy EHe-He is the energy change when two widely
separated He interstitials become nearest neighbors at the oc-
tahedral sites. For instance, if the relaxed energies of systems
containing no He atoms, one He atom, and two He atoms
(at the neighboring octahedral sites) are, respectively, E0,
E1, and E2, then EHe-He = E2 + E0–2E1. The volume change

	Pd→PdHe and energy change 
EPd→PdHe are derived from
lattice constants and cohesive energies of fcc Pd and rocksalt
PdHe. Calculated results of these properties are summarized
in Table III along with our DFT results.

Table III indicates that, overall, both the DB and the FS
potentials capture well the desired features of DFT values of
all the listed properties. The He-He bond length obtained from
both potentials is in good agreement with that from DFT. The
diffusion energy barrier is slightly larger than DFT for both
potentials, but still small enough to give large diffusivities.
Both the DB and FS models slightly overestimate the volume
change when a local rocksalt PdHe phase is formed. Further-
more, the FS model overpredicts the magnitude of the volume
change and interaction energy of a He dimer as well as the
insertion energy of a single He atom. Large magnitudes of
these values are key to bubble nucleation but are difficult to
capture by the conventional potentials. Despite the overpre-
diction, however, the FS model will still accurately predict the
nucleation of a bubble as will be shown below. Note that the
He-He bond energy from DFT is around −0.86 eV and the FS
bond energy is −2.00 eV. We point out that the magnitudes of
these values are so large compared to kBT that, once formed,
a dimer will not disassociate, practically resulting in the same
clustering behavior.

Based on our DFT calculations, the swelling volume of
He is extremely large, 	0,He ∼ 10 Å3, from PBE and ∼ 7 Å3

from LDA (for reference, the H swelling volume is only
∼ 2.7 Å3). Our DB and FS potentials give 	0,He ∼ 10 Å3 and
∼ 7 Å3, respectively. Normally inserting a large atom into
a small lattice would cause a large diffusion energy barrier
because of the large lattice displacements required to move
the inserted atom through a constricted transition state. Re-
markably, our potentials can prescribe very low He diffusion
energy barriers. It is our specific EAM functions that ensure
both a large swelling volume and a low diffusion energy
barrier.

B. Molecular dynamics calculations of helium equation of state

The He equation of state, typically described by the volume
of a pure He phase (gas or liquid) as a function of pressure
[51], is important for the He bubble growth processes. As a
result, detailed MD simulations are performed to calculate
atomic volume as a function of pressure for pure He based
on both DB and FS potentials. For the DB potential, the
system contains 12 × 12 × 12 fcc unit cells. For the FS
potential, the system contains 10 × 10 × 10 fcc unit cells.
Note that although we use an fcc initial structure, the system
naturally becomes a liquid- or gaslike configuration with the
FS model where He-He interactions are repulsive in the pure
He phase. On the other hand, by using a classical potential
we are neglecting the quantum mechanical effects which are
important at low temperature (see, e.g., [52]).

Based on an NPT (constant number of atoms, pressure, and
temperature) ensemble, the time-averaged atomic volume is
calculated at a variety of pressures ranging from 1 to 22 kbar.
Specifically, the systems are first annealed at 1000 K for 0.125
ns, and then at 300 K for another 1.0 ns. Time-averaged
volumes are calculated for the last 0.5 ns. To accelerate simu-
lations, we arbitrarily increase the He mass from 4 to 50 amu.
This allows us to use a large time step dt = 0.002 ps without
integration divergence [12,53]. Note that the increased mass
only changes the kinetics but not the energetics that we are
testing here. The results of the volume versus pressure rela-
tionship are shown in Fig. 5(a). For comparison, similar data
from literature experiments [51] are included.

Figure 5(a) indicates that the DB model significantly un-
derestimates the volume of pure He. This is because the
DB potential invokes an attractive He-He interaction, which
results in an unphysical condensed phase. In contrast, the
results from the FS model capture well the experimental He
equation of state. Note that experimental data may also have
some uncertainty margin, and the differences between our
model and experiments are competitive with other models
[54]. A Lennard-Jones (LJ) pair potential was used for He
in a previous study of He bubbles in Pd [21] and similar
potentials have been used for He in W [23,38]. To compare
the behavior of our FS potential with the LJ potential, we
calculate cohesive energies of a model fcc He crystal as a
function of the nearest He-He separation distance, and the
results are shown in Fig. 5(b). Note that an fcc structure needs
to be used as a medium to compare pair and EAM potentials.
Figure 5(b) indicates that our He potential is very similar to
the LJ potential except it is shifted to a larger interatomic
distance by 0.1–0.2 Å and is designed to be purely repulsive.
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FIG. 5. (a) He equation of state at T = 300 K (experimental data from Ref. [51]) and (b) fcc He energy as a function of the nearest bond
length compared to the LJ potential from Ref. [21].

This accounts for the slight overestimate of volumes in our
computed equation of state. Figure 5 proves that the DB model
is not ideally suited for studying late-stage He bubble growth
because it cannot capture the He behavior of pure He in large
bubbles despite the good fits to the He properties inside the Pd.
As a result, we will focus on the FS model in the following.

C. Effects of He cluster size on He insertion energy and Pd
vacancy formation energy

When He atoms are added into a Pd lattice, they segregate
to form local He clusters in a rocksaltlike configuration be-
cause of the effective He-He attraction. As He cluster sizes
increase, the system becomes unstable, eventually displacing
a Pd atom from its lattice site to form a Pd vacancy-self inter-
stitial (Frenkel) pair. A Pd vacancy with surrounding He atoms
can be considered a He bubble nucleus. In principle, the He
insertion energy as a function of He cluster size quantifies the
stability prior to He bubble nucleation, while the Pd vacancy
formation energy as a function of He cluster size measures the
propensity of He bubble nucleation. The He insertion energy
EHe listed in Table III is for a one-He cluster. We now further
test the FS potential by using time-averaged MD simulations
to calculate He insertion energy and Pd vacancy formation
energy as a function of He cluster size.

Our MD systems include 20 × 20 × 20 unit cells of fcc
Pd. He atoms are sequentially added into the center of the
cell, considering up to an eight-atom cluster. For each of
these cases, two MD simulations are performed, one without
a vacancy and one with a Pd vacancy near the center of the He
cluster. Under a zero pressure NPT ensemble, MD simulations
at T = 300 K are performed for 6.25 ns. After the first 1.25 ns
is discarded, the final 5.00 ns simulations are used to derive
time-averaged energies. These energies are used to calculate
He insertion energies (per He atom) and Pd vacancy energies
as a function of He cluster size (number of He atoms). The
results of the calculated He insertion energies and Pd vacancy
formation energies are shown, respectively, in Figs. 6(a) and
6(b). Similar calculations are performed using DFT methods,
and the results are included in Fig. 6.

Table III indicates that the He insertion energy for a sin-
gle He atom (i.e., EHe) is 4.42 eV for the FS potential and
3.64 eV for the DFT calculations. Both capture the large
insertion energy that make an isolated He atom in the Pd
lattice insoluble. Normalized with this EHe, Fig. 6(a) further
indicates that the He insertion energy trends with respect to
He cluster size agree between the FS and DFT calculations
except when the He cluster contains seven atoms where the
DFT value suddenly drops. We find that this is because when
the cluster size reaches seven He atoms, in DFT a Pd atom
is significantly displaced from its lattice site, resulting in the
formation of a Pd interstitial-vacancy pair.2 This interstitial
does not form in MD simulations. We attribute the discrep-
ancy to the significant difference in the system sizes between
the MD and DFT calculations. We will explore the He cluster
size needed to generate a Pd interstitial in MD simulations
using a smaller system size below. Figure 6(a) also indicates
that isolated He atoms tend to cluster because He insertion
energy reduces with cluster size.

Figure 6(b) confirms that the Pd vacancy formation energy
trends with respect to He cluster size are also similar between
the FS and DFT calculations. Specifically, the Pd vacancy
formation energy decreases with He cluster size, meaning
that Pd vacancies (and hence bubbles) are more likely to
form when the cluster size increases. Again, the DFT values
jump abruptly at cluster size 7 due to the formation of a Pd
interstitial. The absolute values of the Pd vacancy formation
energies are higher for the FS than for the DFT calculations
in Fig. 6(b). This means that bubbles are more likely to nu-
cleate in DFT calculations (hence, the overestimation of the
FS model on the He-He dimer swelling volume and He-He
binding energy as shown in Table III does not cause premature
formation of bubbles).

2In other words, the sum of the vacancy formation energy and
self-interstitial energy has become negative. The DFT self-interstitial
formation energy is 3.8 eV. A negative value for the sum for a
seven-atom He cluster is consistent with the DFT trends shown in
Fig. 5(b).
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To explore if the system size difference contributes to
the observed difference in self-interstitial formation shown in
Fig. 6, we repeat the FS calculations using a system configu-
ration shown in Fig. 7. Here the overall system dimension is
the same as above, but the He clusters are periodically added
into the system so that each periodic subcell is equivalent
to the DFT cell size. The configurations obtained after MD
simulations at T = 10 K for a period of t = 5 ns are shown
in Figs. 7(a) and 7(b), respectively, for He cluster sizes of 6
and 7. In these figures, Pd interstitials are marked with small
circles. It can be seen from Fig. 7(a) that after the MD anneal-
ing, none of the six-He clusters generate Pd interstitials. In
sharp contrast, Fig. 7(b) shows that almost all of the seven-He
clusters generate one or more Pd interstitials. These intersti-
tials exhibit a dumbbell structure as shown in the inset, which
matches the structure predicted by DFT. The formation of Pd
interstitials at He cluster size 7 as predicted by the FS model is
in excellent agreement with the DFT calculations. Given that
our results using a large cell did not predict interstitial gener-
ation with a seven-He cluster, this result provides a warning

y-[010]
(a) He cluster size 6 (b) He cluster size 7

: Pd : Hex-[100]z-[001] 10 K for 5 ns

Pd interstitial

dumbell interstitialdumbell interstitialdumbbell  interstitial

FIG. 7. Configurations obtained after 5-ns MD simulations at 10
K using the FS potential and small subcells: He cluster size of (a) 6
and (b) 7. Nucleated Pd self-interstitials are identified with circles.

about using small, highly distorted cells when studying He
bubble nucleation processes.

VI. MOLECULAR DYNAMICS TESTS

MS simulations usually test limited scenarios. MD sim-
ulations often provide more stringent tests of empirical
potentials. In previous MD simulations of He behavior in
palladium hydrides, the He bubbles were manually created
[20,21]. Now that our potentials capture a large swelling vol-
ume, a low diffusion energy barrier, a strong He-He attraction
in Pd, and a He-He repulsion in He, MD simulations may
directly reveal the nucleation of He bubbles. We now explore
such MD capabilities using the FS potential (similar results
were also obtained from the DB potential).

Our MD simulations employ 12 × 12 × 12 unit cells of a
PdH0.6He0.01 lattice modeling palladium tritide with a mod-
erate interstitial concentration of He. As shown in Fig. 8(a),
the initial configuration contains individual H and He atoms
randomly populated in the octahedral interstitial sites of an
fcc Pd lattice without bubbles. The system is then annealed

y-[010]
(a) t = 0 (b) t = 5.0 ns

PdH0.6He0.01 at 400 K

x-[100]

: Pd : H : (single or clustered) interstitial He
z-[001]

: bubble He

FIG. 8. MD annealing of a PdH0.6He0.01 structure at 400 K for
5.0 ns using the FS potential: (a) initial configuration and (b) final
configuration.
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at 400 K for 5 ns using a zero pressure NPT ensemble with a
time step of dt = 0.0005 ps. The final configuration is shown
in Fig. 8(b). Note that in Fig. 8, He atoms that have less than
three Pd neighbors are colored orange; otherwise they are
colored purple. Hence, purple atoms are single or clustered
He interstitials, and orange He atoms are in bubbles.

Figure 8(b) indicates that the FS potentials predict the
formation of He bubbles in palladium tritide at the end of the
simulation. Thus, He atoms not only cluster, but also expel
Pd atoms from lattice sites. Results shown in Fig. 8 indicate
that our potentials can now enable MD simulations to directly
reveal He bubble formation mechanisms in PdH0.6 without
any prior assumptions. Figure 8 also suggests that once mul-
tiple He atoms are present, nucleation of He bubbles from He
interstitials is fast on MD timescales. Because bubbles are
much more readily observed by experimental methods than
interstitial atoms or vacancies, the ability to model bubble nu-
cleation creates a path to model validation using experimental
data (such as measurements made in the electron microscope).

VII. CONCLUSIONS

We have developed two Pd-H-He embedded-atom method
potentials to enable molecular dynamics study of helium bub-
ble nucleation and growth mechanisms. One potential is based
on the Daw-Baskes formalism, and the other is an extension of

the Finnis-Sinclair formalism. We demonstrate that both po-
tentials can prescribe important properties relevant to the early
stages of helium bubble formation, including the helium diffu-
sion energy barrier, helium swelling volume, helium insertion
energy, helium-helium bond length and bond energy, and
swelling and formation energy of rocksalt PdHe clusters. We
also demonstrate that our Finnis-Sinclair formalism further
captures well the helium equation of state and the He cluster
size effects on He insertion energy and Pd vacancy formation
energy. Our direct molecular dynamics simulations reveal the
nucleation of helium bubbles from randomly arranged he-
lium interstitials. This unique capability opens opportunities
for molecular dynamics studies of helium bubble nucleation
without any prior assumptions on bubble configurations.
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