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Bragg coherent diffraction imaging by simultaneous reconstruction of multiple diffraction peaks
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Bragg coherent diffractive imaging (BCDI) is a noninvasive microscopy technique that can visualize the
morphology and internal lattice deviations of crystals with nanoscale spatial resolution and picometer defor-
mation sensitivity. While BCDI has been successfully applied in various studies of materials, it is less successful
for highly strained crystals. Specifically, it is difficult to correctly reconstruct the electron density of a highly
strained object using conventional phase retrieval algorithms. Although various algorithms have been developed
to overcome this challenge, most of them require a priori knowledge that is not always available in practice.
Here we report a phase retrieval workflow that can invert diffraction patterns from multiple Bragg peaks
simultaneously. The workflow is explored via simulated diffraction from crystals with various strain conditions.
Reconstructions from the workflow consistently demonstrate more accurate electron density maps, in comparison
with the conventional method. For highly strained crystals, the workflow improves the reliability and consistency
of BCDI phase retrieval significantly.
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I. INTRODUCTION

Strain describes the spatial deformations of a crystal struc-
ture from its ground state. It is connected to the internal stress
of the crystal through elasticity theory and has a tensorial
nature. For decades, strain has been known as an effec-
tive mechanism for manipulating the physical and chemical
properties of materials [1–3]. Specifically, nanostructured ma-
terials can withstand much larger strain in comparison with
bulk materials, leading to new possibilities for tuning the
functional properties. Developing the imaging capability that
can quantitatively monitor the strain field in nanomaterials is
essential for modern materials science.

Bragg coherent diffractive imaging (BCDI) [4–7] is a
noninvasive strain probing technique that can measure the
three-dimensional (3D) strain fields of finite crystals with
nanometer spatial resolution and picometer-scale deforma-
tion sensitivity. Utilizing iterative phase retrieval algorithms,
diffraction from a strained crystal can be inverted to a complex
object function, where the magnitude represents the effective
electron density distribution of the crystal, and the phase rep-
resents a projection of the lattice deviations to the momentum
transfer vector of the measured Bragg peak. Similar to the
other coherent diffractive imaging (CDI) techniques [8–12],
the resolution of BCDI is based on the wavelength of the
illumination and the largest scattering angle recorded, rather
than the image-forming lens [13–15].

Various iterative algorithms have been developed to in-
vert the diffraction patterns [16–18]. However, since phase
retrieval is a nonlinear and nonconvex optimization problem,
error minimization strategies are prone to stagnation due to
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the presence of local minima. Specifically, BCDI is less suc-
cessful for highly strained crystals, which are defined in the
continuum limit as the real-space phase exceeds the range of
±π /2 [19,20]. The retrieved object usually shows an unphys-
ical electron density map with a “gap” in the region of strong
phases. Special algorithms have been developed to better re-
construct highly strained crystals. For example, Newton et al.
[19] applied an additional density-normalizing algorithm to
the regular hybrid input-output (HIO) algorithm [16], in order
to acquire a uniform electron density in the reconstruction. In
another work, Huang et al. [20] performed phase-constrained
HIO several times to obtain a reasonable support, then ran reg-
ular HIO using this refined support to correctly reconstruct the
object. However, both methods require a priori knowledge—
-knowing that the crystals should not have discontinuity in
electron density—-that is not always available.

In practice, one could improve the reliability and con-
sistency of the convergence of iterative phase retrieval by
increasing data redundancy, such as the overlap constraint
in ptychography [11,12]. Conventional BCDI is based on a
single Bragg peak, resulting in limited data redundancy. Al-
though it has been shown that reconstructions from multiple
diffraction peaks can be combined together to retrieve the
strain tensor [21], the multiple peaks were inverted separately
rather than treated as one dataset. While the independently
reconstructed objects can be considered as a consistency
validation, it may introduce extra errors associated with align-
ment, as the projection from Fourier space to real space is
insensitive to translation. Recently, Newton [22] proposed
a concurrent approach to eliminate such alignment-induced
artifacts by reconstructing the strain field concurrently with
the iterative phase retrieval. Meanwhile, Wang et al. [23] pro-
posed a new algorithm to reconstruct highly strained crystals
that are undergoing phase transformations. The new approach
simultaneously inverts multiple scans of the same Bragg peak

2469-9950/2021/103(1)/014102(12) 014102-1 ©2021 American Physical Society

https://orcid.org/0000-0002-5435-8863
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.014102&domain=pdf&date_stamp=2021-01-08
https://doi.org/10.1103/PhysRevB.103.014102


GAO, HUANG, YAN, AND WILLIAMS PHYSICAL REVIEW B 103, 014102 (2021)

from a particle at different states, assuming that the shape of
the particle does not change while the structure phases are
evolving. Although this method fits well with some in situ and
operando studies, it may not be implemented in more general
cases.

In this paper, we use simulated Bragg diffraction from
strained crystals to demonstrate that multiple Bragg peaks can
be treated as one dataset and simultaneously inverted using a
modified workflow based on the established error reduction
(ER) and HIO algorithms [16]. In the obtained object, the
deformation can be completely determined if proper Bragg
peaks were selected. In the case of a highly strained crystal,
the object can be correctly reconstructed in a single run with-
out a priori knowledge.

II. FORWARD MODELING AND PHASE RETRIEVAL
METHOD

A. Bragg diffraction simulation

All diffraction simulations presented in this paper were
performed in the kinematic diffraction regime [24]. We
considered only the elastic scattering of x rays, while the
other effects—-such as absorption, inelastic scattering, re-
fraction, and partial coherence effect—-were excluded. We
also ignored instrument effects, such as the detector counting
statistics or background scattering.

The diffraction intensity of a crystal is determined by the
square of the crystal form factor, which is a function of the
momentum transfer vector q = k f − ki [25]:

A(q) =
N∑

n=1

fn(q) exp [−i(q · rn)] , (1)

where ki and k f are the wave vectors of incident and diffracted
photons, respectively. The vector rn defines the coordinate of

atom n with respect to an arbitrary origin. The summation is
performed over all atoms N in the crystal. fn(q) is the atomic
form factor of atom n, which depends on the type of the atom
and the scattering angle defined by q.

In this study, we chose Ag crystals with a face-centered-
cubic lattice as the object. The atomic form factor was taken
from the XRAYLIB library [26]. For a crystal with a specific
shape, the coordinates of all atoms in a perfect lattice were
first calculated with respect to the geometric center of the
crystal. A deformation vector was then added to rn, if the nth
atom was displaced from its ideal lattice position. Finally, the
crystal was rotated to satisfy the Bragg condition by applying
a rotation matrix to each member of the set {rn}. Since Eq. (1)
is computationally expensive, the maximum number of unit
cells in the Ag crystal is 60 × 60 × 60, which is approximately
25 × 25 × 25 nm3 in size.

The diffraction intensity was calculated in a volume of
reciprocal space surrounding a Bragg peak, mimicking a
rocking-curve scan with an illumination wavelength of 1 Å,
a sample-detector distance of 0.25 m, and a pixel size of 220
μm. These parameters are dictated by several factors, includ-
ing the spatial sampling rate, the detection dynamic range, and
the largest scattering angle. A detailed discussion is given in
Appendix A.

The schematic diagram of a typical rocking-curve scan is
presented in Fig. 1(a). To evaluate the performance of the
workflow, we simulated the diffraction from Ag crystals un-
der two conditions: a “low-strain” case and a “high-strain”
case. In the former case, we generated a cubic crystal with
Lorentzian-shaped defects. As shown in Fig. 1(b), all the six
defects are centered on a y′-z′ plane passing through the center
of the crystal, while the displacements are along different axes
with a maximum magnitude of 10% of the lattice constant. As
for the high-strain case shown in Fig. 1(c), a square-frustum
shaped crystal was generated, with only one screw dislocation
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FIG. 1. Schematic diagram of the simulated diffraction. (a) A typical diffraction geometry in a right-handed coordinate system with z in the
direction of the propagation of the incident x-ray beam. ki and k f are the wave vectors of incident and diffracted x-ray photons, respectively. θ

and ϕ are the diffractometer angles, while δ and γ are the detector angles. (Inset) Simulated crystals in the crystal frame (i.e., x′, y′, and z′). (b)
Lattice deformation within a cubic crystal along x′ (left), y′ (middle), and z′ (right) directions, on the plane defined by the red square shown
in (a) inset. (c) Screw dislocation within a frustum-shaped crystal along x′ direction. (d), (e) The [111] Bragg peak from the two crystals,
respectively.
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along the x′ direction. In both cases, the following diffraction
patterns were simulated: [111], [111], [200], [020], [002],
[220], [202], [022], [311], [131], and [113].

B. Simultaneous phase retrieval of multiple diffraction peaks

Iterative algorithm in CDI can be expressed in a projector
notation [17,18], including the modulus constraint πm, the
support constraint πs, and the complex object function o(k).
Using this notation, ER can be expressed as

o(k+1) = (πsπm)o(k), (2)

while HIO is

o(k+1) = [(1 − πs)(1 − βπm) + πsπm]o(k), (3)

where β is the HIO parameter. πmo(k) is the best estimate of
the object on the k th iteration.

For Bragg scattering, the 3D diffraction pattern is sampled
by the Ewald sphere in a skewed coordinate system [27]. In
conventional BCDI, the iterative reconstruction is performed
in the detector frame, followed by one coordinate transfor-
mation at the end to acquire the object in the crystal frame.
For the modified workflow, however, we need to transform the
object between the crystal frame and multiple detector frames
in each iteration. We introduce a coordinate transformation
projector, T , where T d→c is the transformation from a detector
frame to the crystal frame and T c→d is its inverse. Details
of this projector are discussed in Appendix B. We can write
ER and HIO to explicitly apply the support constraint in the
crystal frame:

o(′k)
j = (

πsT
d→c
j πmT c→d

j

)
o(k)

j , (4)

o(′k)
j = [

(1 − πs)T d→c
j (1 − βπm)T c→d

j

+ πsT
d→c
j πmT c→d

j

]
o(k)

j , (5)

where j = 1, 2, . . . , M are different Bragg peaks.
The magnitude of o(k), i.e., electron density of the crystal,

should be identical for all Bragg peaks. The phase, however,
represents different projections of the deformation, U . The
phase of voxel i of o(k) from Bragg peak j, ψi j is linked to
the crystal deformation by ψi j = Q̂ jÛ i, where Q̂ j is the matrix
representation of the momentum transfer vector of Bragg peak
j, and Û i is the matrix representation of the displacement
vector of voxel i.

The magnitude and phase of o(k) need to be treated sep-
arately when combining different peaks together. We define
the transformation from one peak to another as

o(k)
i, j+1 = ∣∣o(′k)

i, j

∣∣ exp[i(Q̂ j+1Û i )] for j = 1, 2, . . . , M − 1

[3pt]o(k+1)
i,1 = ∣∣o(′k)

i, j

∣∣ exp[i(Q̂1Û i )] for j = M. (6)

It is necessary to simultaneously solve U during the itera-
tive phase retrieval. Inspired by the bisection method [28], we

define an iterative procedure

Û
(k, j+1)
i = Û

(k, j)
i + Q̂

+
j

{
arg

[
o′(k)

i, j

] − Q̂ jÛ
(k, j)
i

}
, (7)

where Q̂
+
j is the Moore-Penrose pseudoinverse [29] of Q̂ j ,

satisfying Q̂
+
j Q̂ j = I. The initial U is zero valued. For peak

j on the kth iteration, Eq. (7) finds the difference between
the phase of the object after modulus and support constraints,
o′(k)

j , and the phase derived from the current estimate of the de-

formation, Q̂ jÛ
(k, j)

. Then, U is updated, assuming the lattice
displacements along three different axes equally contribute to
such difference in phase. As discussed in a previous study
[30], U can be fully retrieved if three reflections with linearly
independent Q vectors are measured, while collecting more
reflections results in a higher overdetermination ratio and de-
creases the uncertainty of the measurements.

In this study, various combinations of four diffraction
peaks with nonplanar Q vectors were inverted. The simulated
diffraction intensity with a random phase was used as the
starting point of the phase retrieval. The initial support box
was 50% of the input array and filled with a constant real
density. SHRINK-WRAP [31] was implemented to refine the
support using a Gaussian blurring function with a sigma of
1 voxel and 20% cutoff threshold. For all reconstructions, 250
iterations were carried out with 200 iterations of simultaneous
phase retrieval and 50 iterations of individual phase retrieval.
The first 200 iterations were performed by alternating be-
tween ER and HIO. The remaining 50 iterations used ER with
10 iterations in the crystal frame followed by 40 iterations
without coordinate transformation to eliminate the numerical
error introduced by interpolations. U was updated every 5
iterations from 21st to 200th iteration. For iterations on which
U was not updated, the phase terms in Eq. (6) were from
corresponding peaks in the previous iteration. The final object
of each peak was obtained from the last estimate, πmo(250)

j ,
without averaging.

III. ANALYSIS OF THE RECONSTRUCTIONS

In this section, we evaluate the performance of the work-
flow. We call the conventional workflow the “individual-peak
approach” (IP) and the modified workflow the “multiple-peak
approach” (MP). The parameters of ER and HIO in IP are
identical to those in MP. Objects reconstructed from two
approaches are compared to the ground truth by visual inspec-
tion and the reciprocal-space χ -squared error metric. For the
high-strain cases, the success rates of reconstruction are also
reported.

A. Reconstructions of low-strain objects

The low-strain case is aimed to reveal potential numerical
artifacts that the workflow could induce. Since the crystal
contains only minor deformation, MP of any four diffraction
peaks with nonplanar �q vectors can reconstruct the object
correctly. Alternating the sequence of peaks in MP does not
show any significant change in the reconstruction quality (see
Appendix C). Here, reconstructions from [311] are demon-
strated as a representative example.
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FIG. 2. Reconstruction of [311] peak using different approaches. (a), (b) The magnitude and phase of the object obtained from the multiple-
peak approach, while the ones retrieved from individual peak approach are shown in (c) and (d). The phase maps are masked by the isosurface
level of 30%. The color bars are from 0 to 1 in (a), and from −π to π in (b). (e), (g) The magnitude lineouts along horizontal lines at the
locations marked by 1 and 2, respectively. Red lines are from (a) and blue lines are from (c). Similarly, (f) and (h) are the phase lineouts from
(b) and (d). The dashed lines in (f) and (h) show the phase changes estimated from the deformation in the truth object.

[311] was inverted with [002], [220], and [111] in MP.
Figures 2(a) and 2(b) show a typical reconstruction. Both the
shape and size of the crystal are reconstructed accurately,
and the magnitude inside the crystal is relatively uniform.
Comparing Fig. 2(b) with Fig. 1(b), the crystal deformation is
clearly revealed in the phase map. The phase changes induced
by deformation along x′ are approximately three times of
those induced by deformation in y′ and z′, which is consistent
with the magnitude of the components of the momentum
associated with the [311] peak. Using IP, the shape and size
are also reconstructed correctly, but obvious errors in the mag-
nitude of the reconstructed crystal are observed. As shown in
Figs. 2(e)–2(h), these magnitude errors are spatially correlated
to the deformation along x′, suggesting that they are induced
by the strong phases.

Figure 3(a) shows the behaviors of χ2 during MP recon-
struction. The χ2 of all four peaks converge to a value below
0.01 after switching from HIO to ER for the first time. The
following iterations do not show a significant change in χ2

until the 200th iteration, except the second round of HIO.
The first round of HIO and the update of U started from the
21st iteration, resulting in a fast converging of χ2 in a few
iterations. In the following iterations, the converged U only
causes minor increases in χ2. Two notable decreases in χ2 are
seen at the 201st and 211th iterations, respectively. The former
corresponds to the switch from simultaneous phase retrieval
to individual phase retrieval in the crystal frame, indicating
that transformations from one peak to another introduce extra
errors. These transformation-induced errors, as well as the U -
induced errors mentioned above, are linked to the numerical
error caused by interpolating the object from one peak to
another, namely a “mismatch” between any two Bragg peaks
(see Appendix C). The latter decrease at the 211th iteration is
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FIG. 3. The χ 2-error metric during multiple-peak phase retrieval
for the low-strain case (a) and the high-strain case (b). For both cases,
χ 2 values from the 180th iteration to the 250th iteration are shown in
the insets.
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[022][022] [002][002] [200][200][111][111](a)(a)

(b)(b)

FIG. 4. Reconstructions from [022], [111], [002], and [200] of a crystal with a screw dislocation, using individual-peak approach (a) and
multiple-peak approach (b). The phase maps are masked by the isosurface level of 30%. The scale bar is 10 nm in length. The color bars are
from 0 to 1 for magnitude, and from −π to π for phase.

because of ceasing the coordinate transformation in the indi-
vidual phase retrieval, indicating the numerical error induced
by interpolation itself. The final χ2 values of MP are very
close to the ones of IP, although the reconstructions from MP
do not exhibit the magnitude errors seen in IP.

B. Reconstructions of high-strain objects

For the high-strain case, we present the reconstructions of
[022], [111], [002], and [200]. While most algorithm settings
are identical to the ones in the low-strain case, U updating
starts from the 61st iteration instead of the 21st. Since [022]
and [002] are insensitive to the screw dislocation along the x’
direction, the objects retrieved from these two peaks should be
deformation free. The reconstructions of dislocation-sensitive
peaks—[111] and [200] in this case—should show a circular
phase wrap around the axis of the screw dislocation. As shown
in Fig. 4, both IP and MP can invert [022], [111], and [002]
accurately. As for [200], while the reconstruction from MP is
still accurate, IP cannot obtain the correct magnitude or phase
of the truth object.

In Fig. 4(b), reconstructions of [111] and [200] show
a cylindrical volume of low electron density, which spa-
tially overlaps with the axis of the screw dislocation. This is

commonly seen in crystals containing screw dislocations [32].
Their phases are circularly wrapped in opposite directions,
consistent with their momentum transfer vectors. Comparing
the phase maps of [200] and [111] with the displacement
map shown in Fig. 1(c), the locations of sharp discontinu-
ities are different from those in the truth object. This is
not surprising since this location can be rotated around the
dislocation axis by adding a global phase offset [33]. The
simultaneous phase retrieval is able to lock the dislocation at
the same spatial position in different reflections. However, the
individual phase retrieval in the end of the iterative process
eliminates the constraint, allowing different reflections to have
arbitrary global phase offsets. It is also worth mentioning that
the discontinuities shown in the phase of [200] are slightly
curved, suggesting the presence of a phase ramp. This can be
eliminated by centering the object’s Fourier transform in the
Fourier-space volume.

The behaviors of χ2 of the high-strain case are shown
in Fig. 3(b). Similar to the low-strain case, χ2 converges in
less than 70 iterations. However, unlike the low-strain case,
χ2 of all four peaks stagnate at relatively high levels, while
[200] has the highest value. After switching from simultane-
ous phase retrieval to individual phase retrieval at the 201st
iteration, χ2 decreases from 0.05–0.2 to around 0.005. Both

014102-5



GAO, HUANG, YAN, AND WILLIAMS PHYSICAL REVIEW B 103, 014102 (2021)

TABLE I. Success rate of phase retrieval in high-strain cases
(screw dislocation along x′ direction).

Bragg peak(s) Trials Success rate (%)

IP [022] 20 100
[002] 20 100
[111] 20 90
[200] 20 0
[311] 20 0

MP [022] [111] [002] [020] 10 100
[022] [200] [002] [020] 10 50
[022] [111] [002] [200] 10 70
[022] [111] [002] [311] 10 60
[022] [200] [002] [311] 10 30

the stagnations and the dramatic decreases, as well as the
larger U -induced errors, indicate that the mismatch mentioned
earlier plays a significant role in the numerical error (see
Appendix C). At the 211th iteration, ceasing the coordinate
transformation results in a further decrease from 0.005 to
0.002.

We also monitored the success rates of IP and MP in
the high-strain case. As shown in Table I, three dislocation-
sensitive peaks, [111], [200], and [311], were inverted,
respectively, with random seeds for 20 trials using IP. Sur-
prisingly, reconstructions of [111] show a success rate as
high as 90%. The success rates drop to 0% for both [200]
and [311], because of the strong phase present in the truth
objects corresponding to those peaks. Employing MP, various
combinations of four peaks were inverted with random seeds
for 10 trials. Two types of combinations were tested. In one
type, only one dislocation-sensitive peak was combined with
three dislocation-insensitive peaks. A success rate of 100%
is achieved for a combination containing [111], while the
success rate of a combination containing [200] is 50%. In the
other type, two dislocation-sensitive peaks were mixed with
two dislocation-insensitive peaks. The combination of [111]
and [200] gives a 70% success rate, while the one of [111] and

[311] has a 60% success rate. The lowest success rate, 30%,
is from the combination of [200] and [311]. We notice that
alternating the sequence of the four peaks used as a particular
dataset does not affect the success rate significantly.

IV. DISCUSSION

Table I clearly demonstrates that the workflow has better
performance in the case of highly strained objects. While
[111] can be inverted by IP with a reasonable success rate, the
reconstruction using [200] or [311] is unreliable. As a com-
parison, combining [200] with dislocation-insensitive peaks
dramatically improves the success rate, as the electron density
is forced to converge to the truth object. Adding [111] to the
combination can further increase the success rate due to the
use of an iteratively updated U : since the truth object corre-
sponding to [111] is reliably recovered, the phases retrieved
from [111] and the other two dislocation-insensitive peaks are
enough to reconstruct U . With the assistance of U , it is much
easier to solve the phase ambiguities in [200] and [311].

The workflow has another advantage that the dislocation-
sensitive peaks can be identified by monitoring χ2. As shown
in Fig. 3(b), [200] peak, which has the strongest phase among
the four peaks, shows the highest χ2 value in all MP iterations.
Higher χ2 values are observed when inverting peaks including
[311], as shown in Figs. 5 and 6. Utilizing this feature, we
can define a weighted multiple-peak approach, in which the
dislocation-insensitive peaks dominate the reconstruction of
the electron density. Assigning nonuniform weighting factors
in the estimation of U is more likely to result in the correct
shape of the crystal and facilitate the resolution of any phase
ambiguities in the dislocation-sensitive peaks.

The workflow not only improves the reliability of phase
retrieval but also enhance the effective sensitivity of crystal
deformation. In BCDI, diffraction peaks with larger momen-
tum transfer vectors are more sensitive to the deformation.
However, when applying BCDI on highly strained crystals,
such peaks are usually not selected, since they exhibit strong
phases and cannot be reliably inverted. In the workflow,

[022][022] [002][002] [311][311][111][111]

FIG. 5. Reconstructions from [022], [111], [002], and [311] of a crystal with a screw dislocation, using the multiple-peak approach. The
scale bar is 10 nm in length. The color bars are from 0 to 1 for magnitude, and from −π to π for phase.
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Inset: χ 2 values from the 180th iteration to the 250th iteration.

diffraction peaks with different levels of sensitivity can be
inverted together. Therefore, one can measure large deforma-
tion with high sensitivity, which is challenging in conventional
BCDI.

A practical challenge of the workflow is the computation
requirement. Due to the numerous interpolations, the work-
flow is more time-consuming than the conventional method.
A detailed discussion is given in Appendix D.

V. CONCLUSION

In summary, we propose a BCDI phase retrieval work-
flow that can reliably reconstruct highly strained crystals by
inverting multiple diffraction peaks simultaneously. We have
tested the workflow on simulated particles with different mor-
phologies and strain levels. By combining peaks that have
different levels of sensitivity of crystal deformation, the work-
flow significantly increases the success rate of phase retrieval.
The displacement field of the crystal can be fully resolved
if proper Bragg peaks are selected, allowing complete deter-
mination of the strain tensor. Meanwhile, the reconstructions
obtained from the workflow show more accurate electron den-
sity maps, in comparison with those from conventional BCDI
phase retrieval. Our workflow provides a reliable method to
perform BCDI on nanomaterials exhibiting large strains and
complicated phase structures. We expect that this method
will find widespread applications to functional nanomaterials
under working conditions or in extreme environments, such
as energy storage and conversion materials [34], electronic
or micromechanical devices [35,36], and engineered catalysts
[2,37].
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APPENDIX A: EXPERIMENT PARAMETERS OF BCDI
SIMULATIONS

In this study, the diffraction data are simulated to mimic
the realistic BCDI experimental conditions, while the inher-
ent instrument errors are ignored. Limited by the computing
resource, the simulated datasets are 64 × 64 × 64 matrices,
corresponding to a 64-frame rocking-curve scan with 64 × 64
pixels on each frame.

For a BCDI measurement, several factors are critical, such
as the spatial sampling rate, the data dynamic range, the
largest scattering angle that needs to be recorded, and the
aliasing effect. These factors determine the experiment param-
eters including illumination wavelength, detector pixel size,
sample-detector distance, and the angular step of the rocking-
curve scan. This section provides a detailed discussion of all
these factors.

1. Spatial sampling rate

CDI requires that the diffraction intensity is sampled above
the Nyquist frequency [38]. Although it has been shown that
3D objects can be successfully reconstructed using an over-
sampling ratio as low as 2.57 [39], recent work demonstrated
that a higher oversampling ratio can improve the quality of
reconstructions [40]. To eliminate the potential risk of de-
ficient sampling, we set an oversampling ratio above 3 in
each dimension, resulting in a 3D oversampling ratio of more
than 40.

2. Data dynamic range

Due to the well-known Q−4 power-law decay of the diffrac-
tion signal [41], the dynamic range of the intensity data
determines the quality of the accessible information in a
diffraction experiment. In practical experiments, data dynamic
range is commonly dictated by the radiation dose limits of
samples, temporal constraints of data collection, and the pho-
ton dynamic ranges of detectors. However, in this simulation
study, we only consider the effect of deficient data dynamic
range on the quality of reconstructed objects. Öztürk et al. [40]
have shown that an order of 6 in dynamic range is necessary
for the intensity measurements to reach ultimate reconstruc-
tion performance. To be conservative, we set the dynamic
range of simulated diffraction data to 107. The diffraction pat-
tern from a perfect crystal was generated as a reference. The
maximum pixel intensity was fixed to 107 photons, and the
intensities of rest pixels were rounded to non-negative inte-
ger numbers. Then, diffraction patterns from strained crystals
were normalized to the reference using integrated intensity.

3. Largest scattering angle

The largest scattering angle in the simulated diffraction
data affects the spatial resolution of the reconstructed objects.
The half-period resolution of a CDI measurement, 
x, is
dictated by the illumination wavelength, λ, and the largest
scattering angle of the collected diffraction signal, θmax, by

x = λ

2sin(θmax ) . In this study, since the simulated sample

crystals are around 25 × 25 × 25 nm3, a spatial resolution
of 2.5 nm or less is necessary to obtain reasonably good
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reconstructions. Meanwhile, the required spatial sampling rate
and the size of the data array set an upper limit on the scat-
tering angle. In the third dimension, the spatial resolution is
linked to the angular step of the rocking-curve scan, as well as
the momentum transfer vector of the Bragg peak.

4. Aliasing effect

This effect can occur when the continuous boundary con-
ditions of the Fourier transform are violated as the diffraction
intensity does not completely decay to zero within the de-
tection range. Since the diffracted power decays with spatial
frequency, this effect also affects θmax and the data dynamic
range.

Taking account of all factors discussed above, we set θmax

to 1.5 ° in both directions of the detector plane. The cor-
responding real-space in-plane resolution is approximately
1.9 nm in both directions. The detector pixel size is 220 μm
for a sample-detector distance of approximately 0.25 m and
an illumination wavelength of 1 Å. For each Bragg peak, a
proper angular step was selected so that the spatial resolution
in the third dimension is the same as the in-plane resolution.

The aliasing effect in the reconstruction is evaluated by
zero padding the data [42]. Diffraction simulations of [002],
[220], [311], and [111] from the low-strain crystal are zero
padded from 64 × 64 × 64 matrices to 96 × 96 × 96 matrices.
The padded arrays were reconstructed using the multiple-peak
approach described in the main text. The obtained objects
were compared with the ones reconstructed from the original
arrays, using visual inspection and the χ -squared error metric.
We did not observe any notable change in the quality of
the reconstruction except a resolution effect, as the spatial
resolution is artificially improved due to zero padding.

APPENDIX B: COORDINATE TRANSFORMATION
IN BCDI

In a typical rocking-curve scan, the coherent diffraction
pattern is measured by sweeping the Ewald sphere through
the Bragg peak. The obtained 3D diffraction intensity, which
is sampled uniformly on an orthogonal grid in the detector
frame, is actually on a nonuniform oblique grid when trans-
formed to the crystal frame. Thus, one obtains a skewed
object by directly inverting the collected diffraction data. In
conventional BCDI, the skewed object can be corrected via
coordinate transformation. Such methods exist in literature
[27,43–45].

Our coordinate transformation method follows the same
logic as those described above, with a slight alteration aimed
at reducing computation time. The traditional method is com-
putationally expensive due to the interpolation of 3D scattered
data. This is prohibitively time-consuming in the proposed
workflow, since the dataset from each Bragg peak must be
interpolated twice in every iteration. To accelerate the pro-
cess, we move the 3D interpolation to the detector frame by
mapping the orthogonal grid in the crystal frame to a new
oblique grid in the detector frame. As a result, the data that
need to be interpolated become a gridded array, reducing
the computational complexity dramatically. For example, it

typically takes 7–10 s to interpolate a scattered 64 × 64 ×
64 complex array, while the interpolation of a gridded array in
the same size takes only about 0.5 s.

The curvature of the Ewald sphere is also considered in our
coordinate transformation method. A rocking-curve scan can
be imagined as slicing the 3D coherent diffraction pattern with
the Ewald sphere. Traditionally, these slices are approximated
to a set of sheared parallel planes in the reciprocal space,
where the shearing effect is from the nonorthogonal nature
of the rocking-curve scan [6,45,46]. This approximation is
valid when the length scale of the sampled reciprocal space is
much smaller than the momentum transfer vector of the Bragg
peak. With this approximation, the coordinate transformation
is simply a linear transformation from nonorthogonal bases
in the reciprocal space to orthogonal bases in the real space.
However, this approximation is not necessarily valid for our
simulations due to the large scattering angles.

To investigate whether the approximation is valid in this
study, we tested the coordinate transformation and its in-
verse on an object reconstructed from the [111] diffraction
of a rectangular prism-shaped crystal. Figure 7(a) shows
the object obtained by directly inverting the [111] diffrac-
tion pattern. Since the object is in the detector frame, slices
through the object reveal significant shearing effects. Figure
7(b) demonstrates the object after applying the linear coor-
dinate transformation, i.e., the Ewald sphere is approximated
to a flat plane when calculating the coordinates in reciprocal
space. As a comparison, the object in Fig. 7(c) is obtained
from a coordinate transformation that takes the curvature
of the Ewald sphere into account. Obviously, the object in
Fig. 7(b) is still skewed, while the object in Fig. 7(c) is
transformed correctly. Figures 7(d) and 7(e) show the objects
after applying the inverse transformation with and without the
approximation, respectively. Both look almost identical to the
original object shown in Fig. 7(a).

APPENDIX C: NUMERICAL ERRORS INTRODUCED BY
3D INTERPOLATION

To evaluate the numerical error introduced by applying
interpolations during iterative phase retrieval, we conducted
two numerical experiments, namely a “fatigue test” repeatedly
applying coordinate transformation and its inverse on a recon-
structed object, and a “shuffle test” alternating the sequence
of Bragg peaks in the multiple-peak approach.

1. Fatigue test

This test is intended to reveal the numerical error that could
accumulate during the iterative phasing process, due to the
numerous interpolations. We use two error metrics to evaluate
the error in the object. One is the σ -squared error metric,
defined as

σ 2 = |F (ρn) − F (ρinitial )|2
|F (ρinitial )|2

, (C1)

where ρinitial is the initial object in the detector frame, ρn is
the object in the detector frame after applying full coordinate
transformation n times, and F denotes the Fourier trans-
form operation. A full coordinate transformation includes two
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FIG. 7. Coordinate transformation of a reconstructed object between detector frame and crystal frame. (a) The object in the detector frame,
obtained by directly inverting the [111] diffraction from a rectangular prism-shaped crystal. Three slices through the center of the object
along x-z (left), y-z (middle), and x-y (right) planes are shown. (b), (d) The object after applying coordinate transformation and the inverse
transformation, while the Ewald sphere is approximated to a flat plane. (c), (e) Similar to (b) and (d), respectively. However, the curvature of
the Ewald sphere is taken into account while calculating the coordinates of grid points.

interpolations: one is from the detector frame to the crystal
frame and the other is the inverse. Similar to the χ -squared
error metric used to monitor the convergence of the phase
retrieval algorithms, the σ -squared error metric tracks the
change in Fourier magnitudes of the object after multiple in-

terpolations. The other error metric tracks the marginal change
in Fourier magnitudes. It is defined as

η2 = |F (ρn) − F (ρn−1)|2
|F (ρn−1)|2 . (C2)
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FIG. 8. Behaviors of (a) σ -squared and (b) η-squared error metrics during the repeated coordinate transformations. Each full transformation
contains two interpolations, one from detector frame to crystal frame and the other is the inverse.
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TABLE II. Final χ 2 values of [002], [220], [311], and [111] reconstructed in different sequences.

After [002] After [220] After [311] After [111]

[002] 0.0821 ± 0.0009 0.0184 ± 0.0005 0.0052 ± 0.0004
[220] 0.0544 ± 0.0006 0.0210 ± 0.0005 0.0456 ± 0.0006
[311] 0.0173 ± 0.0003 0.0233 ± 0.0003 0.0124 ± 0.0002
[111] 0.0079 ± 0.0004 0.0686 ± 0.0009 0.0157 ± 0.0006

Figure 8 demonstrates the behaviors of σ -squared and
η-squared error metrics during the repeated coordinate
transformations. In Fig. 8(a), the initial σ 2 values of all
four peaks are around 0.001. The error metric increases
rapidly in a few tens of coordinate transformations, then
slows down after the σ 2 values are above 0.05. Figure
8(b) shows the behavior of the η-squared error met-
ric. The η2 values start from the highest value around
0.001 and decrease to 10−6 rapidly in less than 100
transformations.

The behaviors of σ 2 demonstrated in Fig. 8(a) is con-
sistent with the ones shown in Fig. 3. In Fig. 3(a), the χ2

values decrease rapidly after ceasing the coordinate transfor-
mation in the individual phase retrieval at the 211th iteration,
indicating that the numerical error from coordinate transfor-
mations increase the χ2 values by approximately 0.002. This
increment is close to the σ 2 values after one full coordinate
transformation. Figure 3(b) also shows a similar decre-
ment at the 211th iteration, suggesting these interpolation-
induced errors are independent of the strain level of
crystals.

2. Shuffle test

This test is aimed to investigate whether alternating the
sequence of peaks in the multiple-peak approach affects the
quality of obtained reconstructions. In this test, diffraction
patterns of [002], [220], [311], and [111] were inverted in
various sequences, using the multiple-peak approach with
only ER for 220 iterations. For each sequence, the phase
retrieval process was repeated 10 times with random seeds.
No significant change in the reconstruction quality was ob-
served in the visual inspection. However, we find that the
final χ2 value of each peak depends on the previous peak.
For example, in sequences [220]⇒[311]⇒[002]⇒[111] and
[002]⇒[220]⇒[311]⇒[111], peak [311] has the identical
final χ2, while the other three peaks give different final χ2

values. Table II summarizes the final χ2 of each peak when
it is reconstructed after different peaks. This interesting be-
havior suggests that the numerical error introduced by the

multiple-peak approach is caused by a mismatch between two
Bragg peaks, rather than the interpolation itself.

APPENDIX D: COMPUTATION REQUIREMENT
OF THE NEW WORKFLOW

A practical challenge of the workflow is the computation
time. It takes approximately 30 min for the workflow to invert
four 64 × 64 × 64 data arrays with 250 iterations of ER
and HIO, because of the numerous interpolations. As a com-
parison, inverting one array using the conventional method
takes only 57 s. However, phase retrieval from data in the
case of highly strained crystals is a difficult problem and usu-
ally requires a guided approach [47]. Typically, this involves
tens of random starts and several generations. The resultant
computational requirement commonly exceeds those of the
workflow.

The workflow will also encounter the time consumption
problem when the data arrays become larger. Since the inter-
polation has an O(n) complexity, interpolating a 128 × 128
× 128 array takes about 4 s, in comparison with 0.5 s for a
64 × 64 × 64 array. As a result, the time consumption of the
phase retrieval process will increase from minutes to hours.
A workaround is binning the data array, which decreases
the oversampling ratio. One can use the workflow to invert
the binned data arrays and acquire a reasonable support and
crystal deformation. Then, the original array can be inverted
in a conventional workflow, using the obtained support and
the crystal deformation as the seed.

It is worth mentioning that the workflow can invert diffrac-
tion datasets with different sampling conditions. One can
adjust the spatial sampling rate and the largest scattering angle
of a specific diffraction measurement, based on the complexi-
ties of the effective electron density and strain distributions.
Although it requires an additional binning step during the
multiple-peak phase retrieval process, this feature can ac-
celerate the interpolations dramatically. Therefore, assigning
nonuniform data collection conditions can significantly re-
duce the computation requirement.
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