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Nonlocal hydrodynamic transport and collective excitations in Dirac fluids
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We study the response of a Dirac fluid to electric fields and thermal gradients at finite wave numbers
and frequencies in the hydrodynamic regime. We find that nonlocal transport in the hydrodynamic regime is
governed by an infinite set of kinetic modes that describe noncollinear scattering events in different angular
harmonic channels. The scattering rates of these modes τ−1

m increase as |m|, where m labels the angular
harmonics. In an earlier publication, we pointed out that this dependence leads to anomalous, Lévy-flight-like
phase space diffusion [Kiselev and Schmalian, Phys. Rev. Lett. 123, 195302 (2019)]. Here, we show how this
surprisingly simple, nonanalytic dependence allows us to obtain exact expressions for the nonlocal charge and
electronic thermal conductivities. The peculiar dependence of the scattering rates on m also leads to a nontrivial
structure of collective excitations: Besides the well-known plasmon, second-sound, and diffusive modes, we find
nondegenerate damped modes corresponding to excitations of higher angular harmonics. We use these results to
investigate the transport of a Dirac fluid through Poiseuille-type geometries of different widths and to study the
response to surface acoustic waves in graphene-piezoelectric devices.

DOI: 10.1103/PhysRevB.102.245434

I. INTRODUCTION

In many instances, transport properties can be described
in terms of a local relationship between forces and currents.
Examples are Fourier’s law of heat conduction jε = −κ∇T ,
Fick’s law of diffusion jc = −D∇μ, and Ohm’s law of elec-
trical conduction jc = σE. Here the thermal conductivity κ ,
the diffusion coefficient D, or the electrical conductivity σ

establish a relationship between the value of the forces, such
as a temperature gradient or electric field, and the correspond-
ing current density at the same location. Such local relations
break down when the electron propagation is almost ballistic.
Important examples worked out in particular by Pippard are
the nonlocal current-field relations to describe the Meissner
effect in clean superconductors or the anomalous skin effect in
clean metals [1–3]. However, nonlocal transport relations are
not limited to the ballistic transport regime. Another example
for nonlocal transport occurs when hydrodynamic flow of
charge or heat sets in. Indeed, hydrodynamic flow patterns
are frequently identified by complex “nonlocal” flow lines.
It is therefore necessary to find closed expressions for the
nonlocal heat conductivity καβ (r − r′, t − t ′), electrical con-
ductivity σαβ (r − r′, t − t ′), or even nonlocal shear viscosities
η(r − r′, t − t ′) of many-body systems in the hydrodynamic
regime. In this regime, collisions between particles are not
weak, it merely holds that momentum relaxing collisions
are weak while momentum-conserving collisions are not. A
formulation in terms of nonlocal transport coefficients allow
for a microscopic description of hydrodynamic flow patterns
and goes beyond the usual description in terms of the lin-
ear Navier-Stokes equation. The latter corresponds to the
leading gradient expansion of the theory. In addition, the
inclusion of dynamical phenomena—here expressed in terms
of the dependency on the time difference t − t ′ between force

and current—allows us to determine the system’s collective
modes.

In this paper, we develop the theory of nonlocal transport in
Dirac systems at charge neutrality in the collision-dominated
hydrodynamic regime and find closed expressions for the
frequency and wave-vector-dependent charge and electronic
thermal conductivities as well as the nonlocal viscosity. Re-
markably, the calculations of this paper are exact in the limit
of a small graphene fine structure constant α in the regime of
linear response. This is made possible by the peculiar ∝ |m|
dependence of the scattering rates of collinear zero modes
in higher angular momentum channels m > 2—a behavior
that was shown to lead to a super-diffusive Lévy-flight-like
phase space dynamics in an earlier work [4]. Collinear zero
modes do not decay due to the strong collinear scattering that
gives rise to rapid equilibration and therefore dominates the
long-time dynamics. We make specific predictions for mea-
surements such as the velocity shift of surface acoustic waves
(SAWs), determine the flow of charge and heat in finite ge-
ometries, and determine the collective mode spectrum of the
system including plasma waves and second-sound-like ther-
mal waves. The dispersion relations of collective modes can
be derived from the poles of transport coefficients or found
from the solutions of the homogeneous quantum Boltzmann
equation. Here, focusing on the charge neutrality point, we go
beyond the phenomenological treatment of electron-electron
interactions of Refs. [5,6]. Our detailed analysis reveals a
complex structure of damped collective excitations. These
excitations are similar to the so-called nonhydrodynamic
modes that were shown to be relevant for the equilibration
of unitary Fermi gases [7] and QCD plasmas [8–10]. In fact,
the term nonhydrodynamic is somewhat misleading. What
is meant is that these modes correspond to excitations of
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high angular momentum components of the kinetic distribu-
tion function, which are not captured by the Navier-Stokes
equations.

Transport in a Dirac fluid is in many respects different from
the archetypical example of the Fermi liquid. One important
difference is that electric currents in a Dirac fluid are not
protected by momentum conservation and therefore decay
even in a perfectly clean system. Negatively charged electrons
and positive holes flowing in opposite directions sum up to a
finite electric current with zero momentum. Thus, even in the
absence of impurities, pristine graphene—the prime example
of a Dirac fluid—has a finite conductivity that is induced by
electron-electron interactions [11,12]. On the other hand, the
energy current is proportional to the momentum density and
therefore propagates ballistically [13,14]. Both phenomena,
the interaction induced conductivity and the ballistic transport
of energy, are relevant in the broader context of quantum
criticality [15–17]. Several experiments addressed the unique
transport properties of graphene at the charge neutrality point.
A violation of the Wiedemann-Franz law was observed in
Ref. [18], indicating the ballistic transport of energy. The
interaction-induced resistivity was recently measured at finite
frequencies [19] and shown to be in good agreement with the
theoretical prediction of Ref. [11]. Graphene has become one
of the most important host systems for electron hydrodynam-
ics in general, extensively studied in both experiments [20–24]
and theory [25–40].

An important experimental prerequisite for the realization
of hydrodynamic electron flow is the dominance of electron-
electron scattering over any momentum relaxing scattering
mechanism. Besides graphene, materials such as delafossite
metals [41,42] and Weyl semimetals [43] show nonlocal trans-
port patterns and have been identified as potential candidates
for the realization of hydrodynamic electron flows—a devel-
opment that boosted experimental and theoretical work on the
subject [44–64].

In a clean system, hydrodynamics prevails when the
electron-electron scattering rate lee is much smaller than
the system size lgeo. The ratio between these two lengths is the
Knudsen number Kn = lee/lgeo. In a Poiseuille-like geometry,
lgeo corresponds to the width of the sample. The geometry of
the system then sets a finite wave number q ∼ 2π/lgeo. There-
fore, for finite Knudsen numbers, the wave-vector dependence
of transport coefficients determines the behavior of the fluid.
Thinking in real space, this means that higher-order spatial
derivatives have to be included into the equations of motion
of the fluid, and the flow becomes highly nonlocal. A very
similar situation occurs when the system is subjected to spa-
tially modulated force fields, e.g., an electric field of the form
Eq = E0eiq·xe−iωt (see Fig. 1). The response of the fluid is
then determined by a nonlocal conductivity tensor σαβ (q, ω).
An important example that is treated in Sec. VI are SAWs
in piezoelectric materials, which produce spatially modulated
electric fields and can be used to study the longitudinal part of
the nonlocal charge conductivity.

II. MAIN RESULTS

In this paper, we focus on the nonlocal transport prop-
erties and collective excitations of graphene electrons at the

FIG. 1. Charge (upper row) and energy currents (lower row)
excited by wavelike longitudinal electric fields and temperature
differences.

charge neutrality point—prime example for a Dirac fluid. The
quantum Boltzmann method developed in Ref. [11] is used.
This method relies on the fact that, at low temperatures, the
graphene fine structure constant α is renormalized to small
values. Thermally excited electrons and holes therefore appear
as sharply defined quasiparticles, whose transport properties
can be studied by means of a kinetic equation. The solution
of this equation is facilitated by the presence of so-called
collinear modes, whose scattering rates are enhanced by a
large factor of ln (1/α). Here, the velocities of the interacting
particles are parallel to each other. Due to the linear graphene
spectrum, all particles travel at the same speed, regardless
of their momentum. Particles traveling in parallel have a
particularly long time to interact with each other, hence the
strong enhancement. Transport in the hydrodynamic regime,
however, is dominated by processes, which have the smallest
scattering rates [for details, see Eq. (27) and below]. Such
“slow” processes are represented by collinear zero modes—
functions that set the collinear part of the collision operator to
zero [11,12].

We solve the kinetic equation by reducing it to a ma-
trix equation in the space of collinear zero modes χ

(m,s)
k,λ =

λmeimθ {1, λ, λβvh̄k} (see Sec. III B). Here, θ is the polar angle
and k the modulus of the momentum variable k, λ = ±1 is the
band index, m labels the angular harmonics exp (imθ ), and
s ∈ {1, 2, 3} labels the three basis functions written in curly
brackets. To an excellent approximation, it is sufficient to
retain only the s = 1 and s = 3 modes. These modes describe
charge (c) and energy (ε) excitations, respectively. A numeri-
cal evaluation of the collision integral’s matrix elements with
respect to the modes χ

(m,s)
k,λ

(see Fig. 2) shows that the relax-
ation rates of these modes grow linearly with increasing m:

τ−1
ε/c,m ∼ |m|, (1)

for large m (see Secs. III B and IV B). This unusual behavior
allows us to solve the (linearized) Boltzmann equation exactly
in the limit of a small α. The details of this solution are given
in Sec. IV C.

It is an important feature of graphene at the neutrality
point that the hydrodynamic modes excited by electric and
thermal fields decouple in linear response, and in the absence
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FIG. 2. The matrix elements of the collision operator C of
Eq. (24) with respect to the collinear zero modes χ

(m,s)
k,λ =

λmeimθ {1, λ, λβvh̄k} of Eq. (32) grow linearly with increasing an-
gular harmonic numbers m. The linear fits of Eqs. (45) and (47)
are plotted as solid red and green lines. The linear behavior of the
matrix elements and scattering rates allows us to solve the quantum
Boltzmann equation exactly.

of magnetic fields [13,65]. The modes are characterized by the
distinct scattering, with all of them following Eq. (1). Using
our full solution of the Boltzmann equation, the nonlocal, i.e.,
wave-vector-dependent, charge and thermal conductivities as
well as the nonlocal viscosity were calculated. The longitudi-
nal and transverse nonlocal charge conductivities as functions
of wave-vector q and frequency ω are given by

σ‖ = σ0

1 − iτc,1ω + 1
4v2τc,1q2

(
2i
ω

+ 1
Mc (q,ω)−iω

) ,

σ⊥ = σ0

1 − iτc,1ω + 1
4 v2τc,1q2

Mc (q,ω)−iω

, (2)

where σ0 = 2e2 ln (2)kBT τc,1

π h̄2 is the conductivity at vanishing wave
numbers and frequencies [11]. Mc is a memory function con-
taining information on scattering in high angular momentum
channels m � 2:

Mc(q, ω) = τ−1
c,2 + 1

2
vq

I3+ ηc
γc

−iωτc
(τcvq)

I2+ ηc
γc

−iωτc
(τcvq)

. (3)

This result is a direct consequence of the dependence of the
scattering rate τ−1

c,m ∼ α2kBT |m| on the angular momentum
state of the Dirac electron. A similar τ−1

c,m ∼ |m| behavior was
found in Ref. [66] for scattering off a random magnetic field
and gives rise to similar expressions for the nonlocal conduc-
tivities, caused by rather different microscopic mechanisms.
In Eq. (3), τc, γc, and ηc determine the slopes and the offset in
Eq. (1) (see Sec. IV B). The results for the nonlocal thermal
conductivity and viscosity are given in Eqs. (65) and (70). The
transport coefficients show pronounced resonance features at
vq ≈ ω where q and ω are the wave number and frequency
of the applied electric field or thermal gradient (see Figs. 3
and 4) and v is the electron group velocity. The longitudinal
charge conductivity can be measured in experiments with
SAWs [67–72]. The transverse conductivity determines the
skin effect, which is, however, not a feasible measurement for
a two-dimensional graphene sheet. In Sec. VI, we consider

a simple device consisting of a graphene sheet laid on top
of a piezoelectric crystal. We calculate the velocity shift and
damping of SAWs induced by the graphene sheet and find
that, while damping effects are small, a substantial velocity
shift can be expected. The damping and the velocity shift mea-
sured as functions of temperature can give important insights
into the nature interaction effects in a Dirac fluid.

Nonlocal transport coefficients also determine transport in
confined geometries. This is illustrated in Sec. VII for the
electric conductivity, using the Poiseuille geometry as an ex-
ample. The constitutive relation linking the electric current
to the electric field along the channel is interpreted as a dif-
ferential equation [Eq. (87)] and solved with the appropriate
boundary conditions [Eq. (88)]. We find that the flow pro-
files strongly depend on the channel width w as compared
to the electron-electron scattering lengths in the m = 1 and
m = 2 channels: lc,1 = vτc,1, lc,2 = vτc,2. While lc,1 governs
the decay of charge currents, lc,2 determines the effectiveness
of current transfer from regions with high current density to
regions with low current density. This latter mechanism is
analogous to viscous momentum transfer. The flow profiles
in dependence on w can be separated into three regimes.
For w 	 lc,1 > lc,2, the samples are in the Ohmic regime,
where the current is dissipated uniformly across the sample.
The flow profile is flat. For lc,1 < w < lc,2, the profile cur-
vature is maximal, since on the one hand the current decay
due to electron-electron scattering in the m = 1 channel be-
comes inefficient, on the other hand the current transfer to the
boundaries of the sample, where the flow is slowed down, is
sufficiently strong. For even smaller widths w < lc,2, the pro-
file turns flat again, because the current transfer mechanism
associated with lc,2 ceases to be efficient. This characteristic
pattern is shown in Fig. 12. Current profiles are accessible
experimentally, e.g., through the scanning single electron tran-
sistor technique of Refs. [20,73].

Finally, we calculated the dispersions of the collective
modes of a Dirac fluid. As do the transport coefficients, the
collective modes separate into a sector of charge excitations
and a sector of energy and imbalance excitations (s = 2).
These two sectors are decoupled and can be studied sepa-
rately. We find that while the plasmon mode is gapped out at
small wave numbers due to the interaction induced resistivity
(see Fig. 6), a so-called second-sound mode, corresponding
to a wavelike propagation of energy, appears (Fig. 9). Dif-
fusive modes, corresponding to the diffusion of charge, heat,
and quasiparticles were found (see Figs. 5 and 7). Their dis-
persion relations were calculated and shown to agree with
known results [6,26,74]. Besides these well-studied modes,
an infinite set of damped modes connected to excitations in
higher angular harmonic channels was found (see Figs. 5 and
8). The dispersions of these modes are purely imaginary at
vanishing wave numbers and approach in the long wavelength
limit the values ωm(q = 0) = −i/τε/c,m for the mth angular
harmonic in the energy (ε) or the charge (c) channels. At
finite wave numbers, these modes show a complex structure
of merging branches. Similar modes play an important role
in the equilibration of unitary Fermi gases [7] and the QCD
plasma [8–10]. They also determine the unusual phase space
dynamics of graphene electrons which was the subject of an
earlier work [4].
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FIG. 3. Longitudinal (upper row) and transverse (lower row) electric conductivities of charge neutral graphene as functions of the electric-
field frequency ω as given by Eqs. (58). Different colors indicate different values of the wave number q. Frequencies and wave numbers are
normalized to the characteristic scattering times and lengths τc,1, lc,1 = vτc,1. σ0 is the interaction-induced conductivity at the neutrality point
[11,12]. The graphs show distinct resonant features at frequencies ω ∼ q/v, where v is the electron group velocity. Whereas the real part of
the longitudinal and the imaginary part of the transverse conductivities are peaked around ω ∼ q/v, the imaginary part of the longitudinal
conductivity exhibits a sign change indicating an abrupt phase change of the current response. The real parts approach σ0 for q → 0, ω → 0.
For q �= 0, ω = 0 the longitudinal conductivity vanishes. This general property of the charge conductivity follows from the conservation of
charge [see Eq. (60)].

A. Regime of validity

Transport in graphene is of interest to researchers with
diverse backgrounds. Here we want to discuss the validity
of our results in the context of other graphene-related re-
search. Our paper is concerned with the hydrodynmic regime,
where electron transport is governed by momentum con-
serving electron-electron collisions and the electron-electron
mean-free path is the smallest length scale [75]. In particu-
lar, momentum relaxing scattering of impurities and phonons
must be weak. This demand sets serious limitations on sample
sizes and on the temperature range.

1. The Dirac fluid of graphene at the charge neutrality point

Throughout the paper, we are interested in the low-energy
effective behavior of graphene electrons near the Dirac point.
Here, to a very good approximation, the electron dispersion is
given by the massless two-dimensional Dirac Hamiltonian of
Eq. (9) [76]. At T = 0, the lower Dirac cone is fully occupied
and the upper Dirac cone is empty. At finite temperatures,
electrons and holes in a region of size kBT around the Dirac
cone are created. These quasiparticles are carriers of electric
and thermal currents. Since their density is determined by
temperature, kBT is the only energy scale in the system. We
call this regime the Dirac fluid regime. The chemical poten-

tial is vanishingly small: μ � kBT . For the opposite case
of a large chemical potential μ 	 kBT , the system enters
the Fermi liquid regime. Here, the scattering rate is given
by τ−1h̄ ∼ T 2/μ [77–79] (up to logarithmic corrections in
2D [80]). For the quantum critical Dirac fluid, on the other
hand, the electron-electron scattering rate is determined by the
temperature alone,

τ−1 ∼ α2kBT/h̄, (4)

where α = e2/(εvh̄) is the graphene fine structure constant. v

is the electron group velocity and ε the dielectric constant.
Higher order interaction effects can be treated in terms of
the renormalization group. Integrating out high energy states
above the thermal cutoff kBT results in a logarithmic increase
of the electron’s group velocity [11,17]:

v = v0

(
1 + α0

4
ln

(
�

kBT

))
. (5)

Here, v0 ≈ 106 m/s and α0 are the unrenormalized, bare elec-
tron velocity, and the fine structure constant. � is an energy
on the eV scale at which the electronic bands begin to de-
viate from the linear Dirac-like shape. It is essential to our
theory that the fine structure constant α(T ) is renormalized
to small values when the temperature is lowered. The system
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FIG. 4. The figure shows the longitudinal (upper row) and transverse (lower row) thermal conductivities Eq. (58) as functions of
the electric-field frequency ω. Different colors indicate different values of the wave number q. The conductivities are normalized to
κ0 = 9Nπ 3kBζ (3)τε,2/2β2 h̄2. For small ω and vanishing q, the imaginary part of κ‖/⊥ diverges as 1/ω, whereas the real part vanishes - a
behavior indicating that thermal transport in the system is ballistic. The solid lines show the analytical result of Eqs. (65), the dashed lines
show the full numerical result including all modes and the exact scattering times.

is gradually approaching the free Dirac fermion fixed point,
thus ensuring the validity of the quasiparticle picture and the
Boltzmann approach chosen here to study the transport of
electrons. Equation (5) is a perturbative result valid to lowest
order in α. However, experiments show that the logarithmic
increase of the Fermi velocity at low energies is quite robust
and holds even in the case of suspended graphene where
α0 ≈ 2 as well as at intermediate temperatures [81]. Thus,
there is good reason to believe that even suspended graphene
is located sufficiently near the free Dirac fermion fixed point,
such that weak coupling results are physically meaningful;
much more so for graphene grown on substrates with larger
dielectric constants.

2. The quantum Boltzmann method

The quantum Boltzmann method is well established for
systems with sharply defined quasiparticles [82,83], the prime
example being the Fermi liquid [79]. Here, thermally excited
quasiparticles have energies of the order of εqp = kBT , such
that the ratio εqp/(h̄τ−1) ∼ μ/kBT 	 1 is large at tempera-
tures below the Fermi temperature. This condition, which is
based on phase-space arguments rather than the interaction
strength, ensures the validity of the quasiparticle picture and
the Boltzmann equation.

In the case of the Dirac fluid, the ratio of the characteristic
quasiparticle energy and the scattering rate is

εqp

τ−1
∼ α2(T ). (6)

Thus, the quasiparticle picture is valid only at small coupling
strengths. However, as discussed in the preceding section,
for small temperatures α(T ) decreases, and the Dirac fluid
asymptotically approaches the free Dirac fermion limit. In
this regime, the Boltzmann equation provides a powerful tool
for the study of transport phenomena. Coulomb interactions
between electrons enter through a long-range Vlasov term
which describes electrostatic forces due to an inhomogeneous
charge distribution, as well as through the collision operator
describing short-range electron-electron collisions. We use the
collision operator derived in Ref. [11], which includes all
scattering processes to second order in the fine structure con-
stant (Born approximation). While this approach is formally
exact in the small α(T ), low-temperature limit, we believe, as
argued above, that it should also provide reasonable results for
larger values of the fine structure constant.

In this paper, we consider the linear response of the Dirac
fluid to electric fields and thermal gradients at finite frequen-
cies. The Boltzmann approach limits our discussion to small
frequencies:

ω � kBT

h̄
. (7)
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At small frequencies, the system’s response is governed by
intraband processes which take place within one of the two
Dirac cones. Interband processes, on the other hand, in-
volve the creation of electron-hole pairs and therefore can
only be excited at energies comparable to kBT [84]. This
means that the off-diagonal elements of the density matrix
〈ψ†

λ,kψλ′,k〉, whereψ†
λ,k, ψλ,k are electron creation and anni-

hilation operators and the band index λ labels the two Dirac
cones, are strongly suppressed. Allowing us to interpret the
diagonal components as a distribution function,

fkλ = 〈ψ†
λ,kψλ,k〉,

which can be found by solving the Boltzmann equation
[82,83]. For further details on the quantum Boltzmann ap-
proach, we refer to Sec. III, Appendix A, and Ref. [11].

3. Impurities and Phonons

At the temperature of ∼50 K, and assuming ε ≈ 5, we
estimate the electron-electron mean-free path as lee = vτ ∼
2 μm. In clean graphene samples, impurity mean-free paths
of more than 10 μm can be achieved [85], such that transport
indeed will be dominated by electron-electron scattering. A
major concern in experiments with graphene near the charge
neutrality point are small variations of the local chemical
potential μ(x), which have been dubbed electron-hole puddles
[86,87]. While the origins and properties of electron puddles
and their influence on transport are the subject of many studies
(see, e.g., Refs. [88–91]), we choose not to include them in the
present theory, which is concerned with interaction effects in
a clean Dirac fluid. Our results are relevant for experiments
with graphene sheets in the hydrodynamic regime. Here, the
dominance of electron-electron scattering over any impurity
induced effects was clearly demonstrated in Ref. [19] by
showing that the electron scattering rates grow linearly in
accordance with Eq. (4) above a threshold temperature.

Electron-phonon scattering is a significant disturbance for
hydrodynamic electron flows at high temperatures, unless one
is in a regime governed by phonon drag, see, e.g., Ref. [92].
In graphene, the scattering of electrons by 2D graphene lattice
phonons is limited by the small size of the Fermi surface
[93], as well as by the high Debye temperature which lowers
the phonon density of states [93]. These limitations are even
more pronounced at the Dirac point, where due to momentum
conservation only phonons with momenta kph < kBT/v par-
ticipate in scattering events. However, scattering with surface
optical phonons of the substrate can lead to a significant
increase of the sheet resistance at higher temperatures. In
Ref. [94], this mechanism was reported to set in above 150 K
for graphene grown on SiO2. To a large extent, scattering
on surface acoustic photons determines the decay rates of
graphene plasmons at finite charge densities [95,96]. Experi-
ments on the hydrodynamics of Dirac fluids have been carried
out with graphene sheets encapsuled in hexagonal boron ni-
tride [18,19]. Here electron-phonon scattering is also reported
to set in at the relatively high temperatures of 70 K [18] or
even to be insignificant up to room temperatures [19].

4. Sample sizes

Currently, high-quality graphene sheets have sizes on the
order of tens of micrometers. On the one hand, this means that
the effects of boundary scattering can be important [97]. On
the other hand, it has been demonstrated that such samples are
sufficiently large to go well beyond the ballistic regime and to
observe hydrodynamic behavior [18–24].

In graphene nanoribbons, gaps opening at the Dirac point
can significantly influence the behavior of collective modes
[96,98]. These gaps can be estimated as � ≈ t/N , where t is
a characteristic tight-binding hopping amplitude on the 1 eV
scale and N is the number of unit cells over which the ribbon
extends. For hydrodynamic samples N ≈ 105, and therefore
the gaps are much smaller than quasiparticle energies at ex-
perimental temperatures.

Boundary effects on collective mode propagation will give
a larger correction of order lee/w, where w is the sample size
(see, e.g., Ref. [99]).

III. THEORETICAL FRAMEWORK

A. Kinetic equation

To clarify our notation, in this section we sketch the deriva-
tion of the quantum Boltzmann formalism for the Dirac fluid,
which was developed in Ref. [11]. We begin with the Hamil-
tonian of graphene electrons at the charge neutrality point,

H = H0 + Hint, (8)

where the free part is given by

H0 = vh̄
∫

k

∑
a,b,i

ψ
†
a,i(k)(k · σ )abψb,i(k), (9)

and the interaction part reads

Hint = 1

2

∫
k,k′,q

∑
a,b,i, j

V (q)ψ†
k+q,a,iψ

†
k′−q,b, jψk′,b, jψk,a,i. (10)

V (q) = 2πe2

ε|q| is the 2D Coulomb potential. The indices i, j =
1, 2 ..., N = 4 refer to the spin and valley quantum numbers
of an electron, whereas the two sublattices are labeled by the
indices a, b. The free-particle Hamiltonian H0 is diagonalized
by the unitary transformation

Uk = 1√
2

[
1 o∗

k
1 −o∗

k

]
, (11)

where ok = (kx + iky)/
√

k2
x + k2

y .

For the derivation of the quantum Boltzmann equation, it
is convenient to use the band representation of Dirac spinors
ψλ,k = Uk,λaψk,a with λ = ±1 labeling the upper and lower
Dirac cones. In this way, one can easily distinguish between
processes that involve the creation of particle-hole pairs and
those which do not. The thermally excited electron-hole pairs
occupy states in a window of kBT around the Dirac point.
Thus, if the applied fields have frequencies ω < 2kBT/h̄,
which is true in the hydrodynamic regime, processes that
create electron-hole pairs are unlikely and can be neglected.
This translates to neglecting the off-diagonal components of
the distribution function in the band representation, which is
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then given by its diagonal elements:

fkλ = 〈ψ†
λ,kψλ,k〉.

The quantum Boltzmann equation then reads

(∂t + vkλ · ∇r − (e∇ϕtot ) · ∇k + C) fkλ(r, t ) = 0. (12)

Here, vkλ = ∂εkλ/∂k is the group velocity and

ϕtot (r, t ) = ϕext (r, t ) + ϕind(r, t ) (13)

is the sum of the external electrostatic potential and the in-
duced potential which is the result of an inhomogeneous
distribution of charges. The term associated with ϕtot was sug-
gested by Vlasov [100]. It will be dealt with at the end of this
section. C represents the central part of the kinetic theory—
the Boltzmann collision operator describing electron-electron
Coulomb scattering. Details on the derivation of C are sum-
marized in Appendix A, based on Refs. [4,11].

Studying the linear response to ϕtot, we expand the distri-
bution function around the local equilibrium distribution f (0)

kλ
,

fkλ(r, t ) = f (0)
kλ

+ wkψkλ(r, t ), (14)

where f 0
k,λ is given by

f (0)
kλ

= 1

eβ(εkλ−u·k) + 1
. (15)

The product wk ≡ f (0)
k (1 − f (0)

k ) that will soon play the role
of a weight function in the scalar product, does not depend on
λ, and the corresponding index is dropped in Eq. (14) and in
the following.

Performing a Fourier transformation ψkλ(r, t ) →
ψkλ(q, ω) to frequency and momentum space, we obtain
the linearized Boltzmann equation:

(L + C)ψkλ(q, ω) = Skλ(q, ω). (16)

L is the Liouville operator and given by

L = −iω + iq · vkλ. (17)

The linearization of the collision operator can be expressed in
the form

Cψkλ ≈ 1

wk

∑
λ′

∫
k′

δ(Cψ )kλ

δψk′λ′
ψk′λ′ , (18)

where the weight function wk was introduced above.
Let ψk be an element of a function space with inner product

〈φ | ψ〉 =
∑

λ

∫
k
wkφ

∗
kλψkλ, (19)

such that

〈φ|C|ψ〉 =
∑

λ

∫
k
wkφ

∗
kλCψkλ

=
∑
λλ′

∫
kk′

φ∗
kλ

δ(Cψ )kλ

δψk′λ′
ψk′λ′ . (20)

One can show that the entropy production in the absence of
external driving terms is ∂S

∂t = kB〈ψ |C|ψ〉, which ensures that
the collision operator is positive definite. In fact, C is Hermi-
tian under the above scalar product. Therefore, its eigenvalues

are real and its eigenfunction form an orthonormal basis of the
function space.

The right-hand side of Eq. (16) is determined by the forces
acting on the system. The three force terms studied here are
due to electric fields, thermal gradients, and viscous forces.
For an electric field oriented along the x axis, E = E0êx, the
force term reads

SE = −eE0 cos θ (λvβ ), (21)

where θ is the polar angle of the momentum k. It is important
to notice that

E = −∇ϕtot.

The corresponding term for a thermal gradient ∇T is given by

ST = −k|∇T | cos θkB(vβ )2. (22)

A viscous force is present if the drift velocity u in the local
equilibrium distribution function Eq. (15) is a function of the
coordinate x. Then the drift term of the Boltzmann Eq. (12)
can be thought of as a force term,

SS = −vkX0,αβ

(
kαkβ

k2
− 1

2
δαβ

)
λβ

= −1

2
kX0 sin (2θ )(λvβ ), (23)

where the stress tensor is given by

X0,αβ = 1

2

(
∂uα

∂xβ

+ ∂uβ

∂xα

− 2δαβ∇ · u
)

.

In the following, we consider a flow with u(y) = u(y)êx and
therefore only include the component X0,xy, which is relevant
for the calculation of the shear viscosity.

The collision operator is given by

(Cψ )kλ = 2π

h̄

∫
k′q

δ(k + k′ − |k + q| − |k′ − q|)

× (
1 − f (0)

k

)(
1 − f (0)

k′
)

f (0)
|k+q| f (0)

|k′−q|

× {
γ

(1)
k,k′,q(ψk+q,λ + ψk′−q,λ − ψk′,λ − ψk,λ)

+ γ
(2)

k,k′,q(ψk+q,λ − ψ−k′+q,λ̄ + ψ−k′,λ̄ − ψk,λ)
}
.

(24)

The matrix elements γ
(1)

k,k′,q, γ
(2)

k,k′,q can be found in
Appendix A.

Another important term in the kinetic equation describes
the electrostatic forces that arise due to an inhomogeneous
distribution of charges. These forces are mediated by a self-
consistent potential ϕind, presented by Vlasov [100]. It reads

eϕind(r, t ) = αvN
∫

d2r′ ∑
λ

∫
d2k

(2π )2

δ fkλ(r′, ω)

|r − r′| , (25)

where we have used the abbreviation δ fkλ(r, ω) =
wkψk,λ(r, ω) and multiplied the potential by e for notational
convenience. A derivation of the term can be found in
Ref. [82] [Eqs. (7-3) and (9-16)]. Applying a Fourier
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transform to Eq. (25), one finds

eϕind(q, t ) = αvN
∑

λ

∫
d2k

(2π )2

2πδ fkλ(q, ω)

q
.

In Sec. V, we will not be interested in the response to the
total electric field E = −iqϕtot, but rather in solutions of the
homogeneous Boltzmann equation:

(L + V + C)ψkλ(q, ω) = 0.

Here, the Vlasov term,

Vψkλ = −iq · vkλeϕind, (26)

has to be included explicitly.

B. Collinear zero modes

In this section, we summarize how Eq. (16) is solved in
the limit of a small fine structure constant. A standard way
to deal with an integral equation like Eq. (16) is to expand
the function ψk,λ into a set of suitable basis functions. The
choice of this basis is facilitated by the fact that for small
values of the graphene fine structure constant α, the collision
operator Eq. (24) logarithmically diverges if the velocities of
involved particles are parallel to each other. This is a conse-
quence of the linear single-particle spectrum, and the resulting
momentum-independent velocity of massless Dirac particles.
Intuitively speaking, the scattering is enhanced because par-
ticles traveling in the same direction interact with each other
over a particularly long period of time. A more mathematical
picture of this so-called collinear scattering anomaly is pre-
sented in Appendix B. It is convenient to write the collision
operator as a sum of the collinear part Cc and the noncollinear
part Cnc:

C = ln (1/α)Cc + Cnc. (27)

The factor ln (1/α) is large at small α. Both operators, Cc

and Cnc, are Hermitian with respect to the scalar product of
Eq. (19). Let ϕn

k,λ be the orthogonal eigenfunctions of Cc such
that

(Ccϕ
n)k,λ = bnϕ

n
k,λ. (28)

ψk,λ is expanded in terms of these functions:

ψk,λ =
∑

n

γnϕ
n
k,λ. (29)

Suppose some of the orthogonal basis functions ϕn, namely,
those with n < n0, set the collinear part of the collision oper-
ator to zero, i.e.,

Ccϕ
n<n0 = 0. (30)

Then, inserting the expansion Eq. (29) into Eq. (16) and pro-
jecting it onto the basis functions ϕn′

, one finds

γn′>n0 = 〈ϕn′ | S〉 − 〈ϕn′ | (L + Cnc)ψ〉
bn′ ln (1/α)

. (31)

Hence, zero modes of Cc are enhanced by factor ln (1/α) [11].
These collinear zero modes can be found from the collision
operator given in Eq. (24):

χ
(m,s)
k,λ

= λmeimθ {1, λ, λβvh̄k}. (32)

Here, m labels the angular momentum, s ∈ {1, 2, 3} the modes
{1, λ, λβvk}, and θ is the polar angle of the momentum vector
k. All modes set the integral Eq. (24) to zero for collinear
processes (see Appendix B).

From Eq. (31), it follows that for small values of α, only the
collinear zero modes have to be retained in the expansion of
the entire collision operator Eq. (29), i.e., the kinetic Eq. (12)
can be solved using the restricted subspace of basis functions
of Eq. (32). The stronger collinear scattering processes give
rise to a rapid equilibration to the subset of modes given in
Eq. (32) which then dominate the long-time dynamics.

To proceed, the matrix elements of Eq. (16) in this basis
must be calculated. The matrix elements of the Liouville op-
erator L are given by

〈
χ

(m,s)
k,λ

∣∣L∣∣χ (m′,s′ )
k,λ

〉
=

(
−iωδm,m′ + 1

2
ivq

(
e−iϑqδm,m′+1 + eiϑqδm,m′−1

))

× (vβ h̄)−2Ls,s′ , (33)

where ϑq is the polar angle of the wave-vector q and

L =

⎡
⎢⎣

ln(2)
π

0 0
0 ln(2)

π
π
6

0 π
6

9ζ (3)
2π

⎤
⎥⎦. (34)

The rows and columns of the matrix notation refer to the mode
index s of Eq. (32).

We calculate the matrix elements of the collision operator
C numerically (some values are given in Appendix C). Due to
the rotational invariance of the low-energy Dirac Hamiltonian
Eq. (8), they are diagonal in the angular harmonic representa-
tion. Most importantly, the matrix elements rapidly approach
a linear behavior for large |m|:

〈
χ

(m,s)
k,λ

∣∣C∣∣χ (m′,s′ )
k,λ

〉 = δm,m′

v2β3h̄3 (|m|γs,s′ − ηs,s′ ). (35)

γs,s′ and ηs,s′ are numerical coefficients that are listed below
Eqs. (45) and (47). This surprising result is due to the lin-
ear Dirac spectrum of the system. It allows us to solve the
Boltzmann equation exactly, as will be seen later. The linear
behavior of the scattering rates is also shown in Fig. 2. To
find closed expressions for the nonlocal transport coefficients,
the scattering rates are approximated by Eq. (35) for m > 2.
In principle, the numerically exact scattering rates up to an
arbitrary m can be included. Here, the rates for m > 2 will be
assumed to follow Eq. (35) to keep the algebraic efforts to a
minimum. The projections of the force terms Eqs. (21)–(23)
onto collinear zero modes read

〈SE | χk,λ〉 = − eE0

2h̄2βv
δ|m|,1

⎡
⎣ ln(2)

π

0
0

⎤
⎦, (36)

〈ST | χk,λ〉 = |∇T |kBπ4

vβ h̄2 δ|m|,1

⎡
⎣ 0

π
6

9ζ (3)
2π

⎤
⎦, (37)
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〈SS | χk,λ〉 = − iX0

4(vβ h̄)2 sign(m)δ|m|,2

⎡
⎣ 0

π
6

9ζ (3)
2π

⎤
⎦. (38)

For the Vlasov term Eq. (26), one finds〈
ψ

(m,s)
k,λ

∣∣V∣∣ψ (m′,s′ )
k,λ

〉 = iαN
(
e−iϑqδm,1 + eiϑqδm,−1

)

×δ1,sδ1,s′δm′,0

2v2β3h̄3

⎡
⎣ ln(2)2

π2

0
0

⎤
⎦. (39)

The nonequilibrium part of the distribution function expanded
in the subset of collinear zero modes becomes

ψk,λ =
∞∑

m=−∞

3∑
s=1

am,s(ω, q)χ (m,s)
k,λ . (40)

Together, the expressions Eqs. (16), (33), and (35)–(40) pro-
vide a linearized kinetic equation restricted to the basis of
collinear zero modes that becomes exact for small values of
the fine structure constant α. Since no assumptions on the
spatial dependencies were made, except that they are within
the limits of the applicability of the kinetic equation, this
expansion can be used to derive the nonlocal transport coeffi-
cients in the linear-response regime, as well as the dispersion
relations of collective excitations.

IV. NONLOCAL TRANSPORT

A. Effects of electron-hole symmetry, momentum conservation,
and thermal transport

Within the kinetic approach, the charge current jc and the
heat current jε are given by

jc = e
∑

λ

∫
k
λv

k
k

fk,λ, (41)

jε =
∑

λ

∫
k
v2h̄k fk,λ. (42)

In these expressions, intraband processes that create particle-
hole pairs are neglected (see Appendix A). It follows from
Eqs. (41) and (42) that the even in λ part of the distribution
function fk,λ contains information about thermal transport,
whereas the odd part governs the transport of charge. Since
the electric field contribution to the kinetic Eq. (21) is odd in
λ, and the thermal gradient leads to a term that is even in λ

[Eq. (22)], the phenomena of thermal and charge transport are
decoupled to linear order in the external fields at the neutral-
ity point. This can be traced back to particle-hole symmetry
and is the ultimate reason why the Wiedemann-Franz law is
dramatically violated in a Dirac fluid [18]. The distribution
function shows a similar decoupling of charge and heat modes
for higher m: The collinear modes of Eq. (32) are proportional
to λm for s = 1 and to λm+1 for s = 2, 3. Consequently the
kinetic equation in the subspace of collinear zero modes is
block diagonal in the s = 1 and s = 2, 3 modes, as can be seen
from Eqs. (24), (33), and (36)–(38). In the following, this will
further simplify the calculation of transport coefficients.

Another important consequence of the linear graphene
spectrum is that the heat current jε is proportional to the mo-

mentum density g = ∑
λ

∫
k h̄k fk,λ and is therefore conserved.

The charge current, unlike in Galilean invariant systems, is
not conserved, and decays due to interactions, giving rise to a
finite resistivity in the clean system.

B. Scattering times

The matrix elements of the collision operator determine the
scattering rates of the three collinear zero modes in different
angular harmonic channels. In the absence of spatial inhomo-
geneities and external forces, the kinetic equation in the basis
of collinear zero modes Eq. (32) reads∑

s′

(
∂tδs,s′ + �s,s′

m

)
am,s′ = 0, (43)

where the am,s are the coefficients of the expansion Eq. (40).
Posed as an initial value problem, this equation describes
the exponential decay of collinear zero modes. This decay
governs the behavior of the system at long timescales because
modes that do not set the collinear part of the collision integral
to zero decay faster by a factor ln (1/α) [see Eq. (27)].

The scattering rates �s,s′
m are given by

�s,s′
m = (vβ h̄)2L−1

s,s′
〈
χ

(m,s)
k,λ

∣∣C∣∣χ (m′,s′ )
k,λ

〉
. (44)

Because of the definition of the scalar product in Eq. (19),
the matrix elements have dimension length2/time. Vanishing
scattering rates indicate conservation laws and the corre-
sponding modes are zero modes of the full collision operator
as well as its collinear part. These modes reflect the conserva-
tion of particle density, imbalance density, energy density, and
momentum density:

χ
(s=1,m=0)
k,λ = 1, χ

(s=2,m=0)
k,λ = λ,

χ
(s=3,m=0)
k,λ = λβvh̄k, χ

(s=3,m=1)
k,λ = λeiθβvh̄k.

The imbalance density is conserved only to order α2, as it
decays due to higher order interaction processes. An important
simplification stems from the fact that all scattering rates,
for large |m|, share the asymptotic behavior �m ∼ |m|. This
becomes a reasonable approximation for the scattering rates
with m � 2. In the next section, it is shown how this be-
havior allows us to obtain closed form expressions for the
nonlocal transport coefficients. As discussed in the previous
section, the matrix of scattering rates �s,s′

m is block diagonal in
the modes describing charge (s = 1) and thermal excitations
(s = 2, 3), i.e., �1,2

m = �2,1
m = �1,3

m = �3,1
m = 0. Therefore, the

scattering times determining the nonlocal electric conductiv-
ity are given by τc,m = 1/�1,1

m : τc,0 → ∞, τc,1 = 1
α2

h̄
kBT

ln 2
0.804π

,

τc,2 = 1
α2

h̄
kBT

ln 2
2.617π

as well as

τc,m ≈ 1

α2

h̄

kBT

ln 2

π
(γc · |m| − ηc)−1 if m > 2, (45)

where γc = 2.57 and ηc = 3.45 (see Appendix C for more
numerical values). It is also convenient to define an effective
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scattering time for the Vlasov term:

τV = 2π2β h̄

αN ln (2)
. (46)

Notice that τV /τc,m ∼ 1/α is large for small α.
In the thermal sector, there are two relevant modes. How-

ever, the s = 3 mode is physically more important, because
the vanishing of the corresponding scattering rates for the m =
0 and m = 1 channels indicate the conservation of energy
and momentum. In the following, it is shown that neglecting
the s = 2 imbalance mode in the calculation of the thermal
conductivity and viscosity, while significantly simplifying the
analysis, only results in a small numerical error. Therefore, for
the purpose of calculating the transport coefficients, only the
s = 3 energy mode will be considered. The scattering times
are then given by τε,m = 1/�3,3

m . Because of energy and mo-
mentum conservation, we have τε,m=0,1 → ∞, and for m = 2,
it is τε,2 = 1

α2
h̄

kBT
9ζ (3)

3.341·2π
. For m > 2, the linear approximation

can be used,

τε,m ≈ 1

α2

h̄

kBT

9ζ (3)

2π
(γε · |m| − ηε )−1 m > 2, (47)

with γε = 5.18 and ηε = 11.3.

C. Nonlocal transport coefficients

The linear, nonlocal response of a system to external forces
F (r) is characterized by constitutive relations of the form

J (r, t ) =
∫

dd r′dt ′ ν(r − r′, t − t ′)F (r′, t ′), (48)

where J (r, t ) is a current sourced by the field F (r′, t ′) and
ν(r − r′, t − t ′) is the corresponding transport coefficient. F
can be a scalar potential, a vector field (an electric field or
a thermal gradient), or a tensor. Equation (48) takes a much
simpler form in Fourier space:

J (q, ω) = ν(q, ω)F (q, ω). (49)

If the system is confined to a geometry of a characteristic size
lgeo, the relevant wave vectors q in Eq. (49) will be of the order
of qgeo ≈ 2π/lgeo. On the other hand, ν(q, ω) varies on scales
of the inverse mean-free path qmf ≈ 2π/lmf, where lmf = vτ

and τ is the relevant relaxation time. Thus if lgeo 	 lmf, we
can approximate ν(qgeo, ω) ≈ ν(q = 0, ω). We then have

ν(r − r′, ω) ≈ ν0(q = 0, ω)δ(r − r′) (50)

and the constitutive relation (48) reduces to its local form
J (r, ω) = ν0(ω)F (r, ω). The nonlocality of Eq. (48) matters

if lgeo � lmf. On scales comparable to the mean-free path,
transport is intrinsically nonlocal because particles lose their
memory of previous events through collisions with other parti-
cles or impurities—a mechanism that ceases to be efficient. A
good example is the Poiseuille flow through narrow channels
described in Sec. VII. We proceed with the calculation of
the nonlocal, i.e., wave-number-dependent electric conduc-
tivity, thermal conductivity, and viscosity using the kinetic
Eq. (12) and the collinear zero mode expansion summarized
in Sec. III B.

1. Electric conductivity

As mentioned in Sec. IV B, only the first collinear mode
s = 1 is involved in the calculation of the electric conductivity.
Inserting the expansion of the distribution function in terms of
collinear zero modes Eq. (40) into the kinetic Eq. (16) using its
matrix representation of Eqs. (33) and (35)–(39), the left-hand
side of Eq. (16) can be transformed into a recurrence relation
for the coefficients a1,m, where, for the rest of this section, the
s = 1 index is dropped. A similar analysis for electrons in a
random magnetic field was performed in Ref. [66]. For m > 2,
Eq. (45) can be used and the recurrence relation reads

am+1 = 2ie−iϑq

vq

(
iω − τ−1

c,m

)
am − e−2iϑq am−1. (51)

This recurrence relation has the form

am+1 = (α′m + β ′)am − eiδam−1, (52)

with α′ = − 2ie−iϑq

vq
kBT

h̄
π

ln 2γc, β ′ = 2ie−iϑq

vq (iω − ηc
kBT

h̄
π

ln 2 ), and
δ = −2ϑq. It has two solutions that can be given in terms of
modified Bessel functions. The physically interesting solution
is

am = c · ei δ
2 (m+ β′

α′ )I
m+ β′

α′

(
−2eiδ/2

α′

)
, (53)

where Iν (z) is the modified Bessel function of the first kind.
Another solution that diverges for m → ∞ is given by

cm = c · ei δ
2 (m+ β′

α′ )K
m+ β′

α′

(
2eiδ/2

α′

)
.

Kν is the modified Bessel function of the second kind. Making
use of the coefficients am for m > 2 as given by Eq. (53), the
kinetic equation can be reduced to a 5 × 5 component matrix
equation,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−iω + Mc(q, ω) 1
2 ivqeiϑq 0 0 0

1
2 ivqe−iϑq −iω + τ−1

c,1
1
2 ivqeiϑq 0 0

0 1
2 ivqe−iϑq −iω 1

2 ivqeiϑq 0

0 0 1
2 ivqe−iϑq −iω + τ−1

c,1
1
2 ivqeiϑq

0 0 0 1
2 ivqe−iϑq −iω + Mc(q, ω)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

a−2

a−1

a0

a1

a2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0
eE0βv

2
0

eE0βv

2
0

⎤
⎥⎥⎥⎥⎦, (54)
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where Mc(q, ω) = τ−1
c,2 + a3(q, ω)/a2(q, ω) is a memory

function containing information on scattering channels with
higher angular momentum numbers. Using Eqs. (52) and (53),
the memory function is written

Mc(q, ω) = τ−1
c,2 + 1

2
vq

I3+ ηc
γc

−iωτc
(τcvq)

I2+ ηc
γc

−iωτc
(τcvq)

, (55)

with the abbreviation τc = h̄
kBT

ln 2
π

γ −1
c . It is now straightfor-

ward to calculate the electric conductivity from the relation

jc,x(q, ω) = σxx(q, ω)Ex(q, ω). (56)

The nonlocal conductivity can be decomposed into a lon-
gitudinal part σ‖(ω, q) and a transverse part σ⊥(ω, q), both
depending on the modulus of q. The longitudinal and trans-
verse parts describe currents that flow in the direction of q, or
orthogonal to q, respectively:

σαβ = qαqβ

q2
σ‖(q, ω) +

(
δαβ − qαqβ

q2

)
σ⊥(q, ω). (57)

We assumed that the electric field is parallel to the x axis.
According to Eq. (57), σ‖(q, ω) can be read off from the x
component of the current density jc,x by letting q be parallel
to ex, and σ⊥(q, ω) by considering the case q ‖ ey. The con-
ductivities are then given by

σ‖ = σ0

1 − iτ1,cω + 1
4v2τc,1q2

(
2i
ω

+ 1
Mc (q,ω)−iω

) ,

σ⊥ = σ0

1 − iτc,1ω + 1
4 v2τc,1q2

Mc (q,ω)−iω

, (58)

where σ0 = N e2 ln (2)τc,1

2πβ h̄2 is the quantum critical conductivity
calculated in Ref. [11]. Note that σ‖(q �= 0, ω = 0) = 0 holds,
which also follows from formula Eq. (60). If this was not
the case, static currents with a finite wave-vector q would
lead to an infinite accumulation of charge at certain points,
which is forbidden by the conservation of charge. In Fig. 3, the
charge conductivities are plotted as functions of ω for different
values of q. The electric conductivity tensor σαβ (q, ω) of
Eq. (58) gives access to different electric response functions.
The current-current correlation function is given by

χJαJβ
(q, ω) = −iωσαβ (q, ω) , (59)

where α, β denote the components of the current vector (see,
e.g., Ref. [84]). With the help of the continuity equation, the
charge density-density correlation function is obtained from
Eq. (59):

χρρ (q, ω) = qαqβ

ω2
χJαJβ

(q, ω)

= q2

iω
σ‖(q, ω). (60)

The nonlocal conductivity is related to the dielectric constant
ε(q, ω), which is defined as [see Eq. (13)]:

ε = ϕext

ϕtot
. (61)

Observing that ϕind(q, ω) = V (q)δρ(q, ω), where δρ is the
induced charge density, we find

ε = 1 − V (q)
δρ

ϕtot
. (62)

In linear response, it is δρ = χρρ (q, ω)ϕtot, so we can write

ε = 1 − V (q)χρρ. (63)

Taking the divergence of Ohm’s law jα (q, ω) =
σαβ (q, ω)Eβ (q, ω), and using the continuity equation
iωδρ = iqα jα to express the electric current in terms of
the induced charge density, we obtain

ϕtot = iωδρ

q2σ‖
.

Inserting in Eq. (62), we have

ε(q, ω) = 1 − V (q)
q2

iω
σ‖(q, ω),

which is in accordance with Eq. (60). Notice that both the
longitudinal conductivity σ‖ and the charge susceptibility χρρ

describe the response to the total potential ϕtot. Hence the
Vlasov term does not enter these quantities explicitly [for
an in-depth discussion see Ref. [101], Chap. 3, in particular
Eq. (3.56)]. Finally, the charge compressibility K = ∂ρ/∂μ is
given by

K (q) = χρρ (ω = 0). (64)

The role of interaction effects for the compressibility were
discussed in Ref. [17].

2. Thermal conductivity

Next we present our analysis for the nonlocal thermal con-
ductivity. Since momentum conservation implies for a Dirac
fluid the conservation of the heat current, thermal transport is
expected to display classical hydrodynamic behavior, i.e., one
expects nonlocal effects to be even more important than for
charge transport [14,84].

As pointed out in Sec. IV B, the s = 3 energy mode must
be kept in the calculation of the thermal conductivity, whereas
the s = 2 imbalance mode can be neglected, contributing only
a small correction to the overall result. With only a single
mode involved, the calculation is formally analogous to the
calculation of the electrical conductivity in Sec. IV C 1, even
though there are crucial differences in the actual result, given
the distinct role of momentum conservation. The relaxation
time τc,m must be replaced by τε,m as given by Eq. (47). The
conservation of momentum is incorporated via τε,1 → ∞,
which follows from the Boltzmann approach. The resulting
longitudinal and transverse thermal conductivities read

κ‖(q, ω) = κ0

iωτε,2 − 1
4v2q2τε,2

(
2i
ω

− 1
Mε (q,ω)+iω

)
,

κ⊥(q, ω) = κ0

iωτε,2 + 1
4 v2q2τε,2

Mε,2(q,ω)+iω

, (65)

with the memory function

Mε(q, ω) = τ−1
ε,2 + 1

2
vq

I3+ ηε
γε

+iωτε
(τεvq)

I2+ ηε
γε

+iωτε
(τεvq)

.
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The abbreviation τε,2 = 1
α2

h̄
kBT

9ζ (3)
3.341·2π

is used. For conve-
nience, κ‖/⊥ is given in units of a thermal conductivity κ0 =
9Nπ3kBζ (3)τε,2/2β2 h̄2, however, τε,2 is the relaxation time
in the |m| = 2 channel, and should not be confused with an
alleged relaxation time of the energy current, which is infinite
due to the conservation of momentum.

In Fig. 4, the thermal conductivities are plotted as functions
of ω for different values of q. The fact that thermal currents are
protected by momentum conservation leads to a divergence of
the thermal conductivity at small frequencies: For q = 0, κ

is purely imaginary and shows the characteristic 1/ω Drude
behavior.

3. Nonlocal shear viscosity

The nonlocal viscosity is defined through a constitutive re-
lation of the form of Eq. (49), linking the shear force X0,αβ (r′)
to the momentum-current tensor ταβ :

ταβ (r, t ) =
∫

d2r′
∫

dt ′ ηαβγ δ (r − r′, t − t ′)X0,γ δ (r′, t ′).

(66)
Since the system is isotropic, the shear force can be chosen
such that the flow velocity is aligned with the x axis and its
gradient shows in the y direction. It is assumed that the shear
force is wavelike: X0,xy(r) = X0,xyeiq·r−iωt . The wave-vector q
can have an arbitrary direction in the xy plane, introducing
a preference direction to the system’s response. In addition
to τxy, this gives rise to nonzero components τxx, τyy, if q
does not align with the x or axes. The viscosity tensor ηαβxy

can be decomposed into transverse and longitudinal parts [see
Eq. (57)] analogously to the electric and charge conductivities.
Because ηαβxy is a fourth rank tensor, the decomposition is
slightly more involved and the reader is referred to Appendix
D for details. The general q-dependent viscosity tensor can be
constructed with the help of three rank two tensors:

e(1)
αβ = qαqβ

q2
,

e(2)
αβ = δαβ − qαqβ

q2
,

e(3)
αβ = 1√

2
(qα pβ + pαqβ )/(pq), (67)

where

pα = qγ εγα. (68)

The viscosity tensor is parameterized by two frequency- and
momentum-dependent functions, η1(q, ω) and η2(q, ω):

ηαβγ δ (q, ω) = η1(q, ω)
(
e(1)
αβe(1)

γ δ + e(2)
αβe(2)

γ δ

)
+ η2(q, ω)e(3)

αβe(3)
γ δ .

Let the flow be in the x direction, u(y) = u(y)êx, and let the
wave vector be parameterized by q = q(cos (ϑq), sin (ϑq))T ,
where θ is measured with respect to the x axis. For ϑq = 0 or
ϑq = π/2 follows e(1,2)

αβ = 0, ηxxxy = ηxxyx = 0, and ηxyxy =
η2/2. This corresponds to the familiar shear flow, in e.g.,
a Poiseuille geometry where τxx = τyy = 0. The momentum
current flows orthogonal to the direction of the momentum
density. For ϑq = π/4, the viscosity is determined by η1:
ηxyxy = η1/2.

As in the case of thermal conductivity, dropping the s = 2
imbalance mode produces only a small numerical correction
in the final result for the viscosity. With an external shear force
of the form of Eqs. (23) and (38) applied to the system, the
kinetic equation can be written as 5 × 5 component matrix
equation, similar to the case of an applied electric field [see
Eq. (54)]. The force acts in the |m| = 2 channels and the
equation reads

⎡
⎢⎢⎢⎢⎣

−iω + Mε(q, ω) 1
2 ivqeiθ 0 0 0

1
2 ivqe−iθ −iω 1

2 ivqeiθ 0 0
0 1

2 ivqe−iθ −iω 1
2 ivqeiθ 0

0 0 1
2 ivqe−iθ −iω 1

2 ivqeiθ

0 0 0 1
2 ivqe−iθ −iω + Mε(q, ω)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a−2

a−1

a0

a1

a2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

− iX0
4

0
0
0

iX0
4

⎤
⎥⎥⎥⎥⎦. (69)

Solving the matrix Eq. (69) for a±2, the viscosity is calcu-
lated with the help of Eq. (66), which takes the form τxy =
N

∑
λ

∫
k vxky fk,λ = ηxyxyX0,xy. As explained above, the vis-

cosity components η1 and η2 can be read off from the general
result ηxyxy(q = q(cos (ϑq), sin (ϑq))T , ω) by setting ϑq = 0
and ϑq = π/2:

η1(q, ω) = 2η0

−iτε,2ω − q2v2 iτε,2ω

2q2v2−4ω2 + τε,2Mε(q, ω)
,

η2(q, ω) = 2η0

−iτε,2ω − q2v2τε,2

4iω + τε,2Mε(q, ω)
. (70)

Here, η0 is the viscosity at q = 0, ω = 0, η0 =
N (kBT )3τε,2/(8h̄2v2), as was calculated in Ref. [13] including
both modes s = 2 and s = 3.

V. COLLECTIVE MODES

Collective modes are solutions to the homogeneous part of
the kinetic Eqs. (12) and (16) (see, e.g., Ref. [39]). Consider
Eq. (16). With the force terms set to zero, it holds

(L + V + C)ψ = 0.

Here, L and C have are the matrix operators of Eqs. (33) and
(35). Solutions to this equation exist only if

det (L + V + C) = 0 (71)
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holds. This is only the case for certain values of the variable
pairs ω, q. Equation (71) is an eigenvalue problem where the
eigenvalues ω(q) determine the dispersion relations of the
collective modes. On the other hand, collective modes can
be found from poles of response functions for an external
force S. The two methods are equivalent. Within the kinetic
equation formalism, response functions are calculated as av-
erages over the distribution function ψ = (L + V + C)−1S. If
the condition Eq. (71) is fulfilled, the operator (L + V + C)−1

is singular and thus singularities in the response to S appear.
We will use Eq. (71) to study the collective modes of a Dirac
fluid on an infinite domain.

As in the previous sections, the kinetic equation will be
expanded in terms of collinear zero modes Eq. (32): χ

(m,s)
k,λ =

λmeimθ {1, λ, λβvh̄k}. For m = 0, these modes correspond to
excitations of the charge, imbalance, and energy densities; for
|m| = 1 they correspond to the associated currents. At the end
of this section, it will be shown that including noncollinear
zero modes in the calculation does not change the result as
long as the fine structure constant α is kept small.

To get a feeling for the structure of collective modes in
the system, it is useful to begin with the case q = 0. In the
subspace of collinear zero modes, the kinetic equation reduces
to Eq. (43) and the condition Eq. (71) reads

det
(−iωδs,s′ + �s,s′

m

) = 0. (72)

This is an eigenvalue equation for the frequencies of collective
modes that can be solved independently for any m. Since,
as pointed out in Sec. IV A, �s,s′

m is block diagonal in the
subspaces of electric (s = 1) and imbalance/energy (s = 2, 3)
excitations, the above equation, as well as its extension to
q �= 0, can be solved independently in these two sectors. For
s = 1, the eigenfrequencies are ωm(q = 0) = −i/τc,m. Since
in this scenario the time evolution of the modes is given by
the factor e−iωmt , all but the m = 0 mode, which is protected
by charge conservation, exponentially decay at a rate inversely
proportional to their scattering time. The m = 0 zero mode
corresponds to the charge density, which is conserved, and
therefore does not decay. In the following two sections, the
collective charge, as well as energy and imbalance excitations
will be described at finite q. Figures 5–9 show the dispersion
relations of these modes.

A. Collective charge excitations

In general, conserved modes do not decay at q = 0, and
therefore their dispersion relations must vanish in a spatially
homogeneous system. The only conserved mode in the charge
sector is the charge density mode χ

(m=0,s=1)
k,λ = 1. In the limit

q � vτc,1, the memory matrix Eq. (55) reduces to Mc(q, ω) ≈
τ−1

c,2 and Eq. (71) can be solved analytically. The dispersions
of the two lowest modes are

ωcharge diff. ≈ ω± = − i

2τc,1
±

√
vq

τV
− 1

4τ 2
c,1

. (73)

The conserved charge density mode is described by ω−. The
dispersion relations of Eq. (73) have a nonvanishing real part

FIG. 5. The imaginary parts of the dispersion relations of collec-
tive charge excitations in different angular harmonic channels m are
shown. The wave-vector q is given in units of the inverse scattering
length vτ−1

c,1 . The grey symbols correspond to the numerical solution
of Eq. (71). The purely imaginary m = 0 diffusive mode is the only
mode approaching zero for small q—a behavior necessitated by
charge conservation. Modes with a higher m are damped and ap-
proach the values −i/τc,m for q → 0. The corresponding excitations
decay even in the absence of spatial inhomogeneities. At a value
q = q∗

pl [Eq. (74)], the dispersions of the diffusive mode and the
m = 1 excitation merge, giving rise to a plasmon mode, which has
a finite real part (see Fig. 6). This value is slightly overestimated by
the simplified expression of Eq. (74).

for

q > q∗
pl = τV

4vτ 2
c,1

. (74)

For wave vectors below q∗
pl, the plasmon is overdamped (see

Fig. 5). However, we have vq∗
pl ∼ α3kBT/h̄ such that the

FIG. 6. The figure shows the real parts of the dispersion rela-
tions of collective charge excitations in different angular harmonic
channels m. The wave-vector q is given in units of the inverse
scattering length vτ−1

c,1 . The grey symbols correspond to the numer-
ical solution of Eq. (71). The plasmon mode is gapped out by the
interaction-induced conductivity and only obtains a finite real part
around q = q∗

pl (the simplified value of q∗
pl given in Eq. (74) (red

dashed line) overestimates the branching point). At higher q, other,
strongly damped modes corresponding to higher angular harmonics
appear. The dampings of these modes are given by the m > 1 modes
of Fig. 5.
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FIG. 7. The figure shows the imaginary part of the dispersion
relations of second sound, heat diffusion, and quasiparticle (imbal-
ance) diffusion excitations. The wave-vector q is given in units of
the inverse scattering length vτ−1

c,2 . The grey symbols correspond to
the numerical solution of Eq. (71). The damping of second sound is
due to scattering in the m = 2 channel and follows the dispersion
Im(ωsec. sound ) ≈ 1

8 v2q2τε,2 (red curve). For small q, the imaginary
part of the second-sound dispersion and the dispersion of the quasi-
particle diffusion mode merge. A third diffusive mode corresponds
to the diffusion of heat (orange curve).

plasmon mode becomes more and more pronounced at low
temperatures.

The plasmon mode is gapped out due to the intrinsic
interaction-induced resistivity. At q = 0, it has a vanishing
real part and its decay rate is given by the scattering rate in
the m = 1 channel:

ωpl(q → 0) = −i/τc,1 (75)

(see also Ref. [26]). It is the most weakly damped of an infinite
set of modes corresponding to higher angular harmonics (see
Fig. 5). It is clearly seen that the modes relate to different

FIG. 8. The imaginary part of the dispersion relations of collec-
tive charge excitations in different angular harmonic channels m are
shown. The wave-vector q is given in units of the inverse scattering
length vτ−1

c,2 . The grey symbols correspond to the numerical solution
of Eq. (71). For small q, the modes approach values given by the scat-
tering rates −i/τc,m and are thus strongly damped. At larger values of
q, the dispersions tend to merge in a complex fashion. Figure 7 shows
the weakly damped modes (second sound and diffusive modes) for
small values of q.

FIG. 9. The real parts of the dispersion relations of collective
energy and imbalance excitations are depicted. The grey symbols
correspond to the numerical solution of Eq. (71). The linear disper-
sion of the second-sound mode given by vq/

√
2 for small q is shown

in orange color. The wave-vector q is given in units of the inverse
scattering length vτ−1

c,2 .

angular harmonic channels m. For q = 0, their dispersions
approach ωm(q = 0) = −i/τc,m. Such modes play a crucial
role in the relaxation mechanism of focused current beams
in graphene [4]. Similar collective modes have been argued to
influence the relaxation behavior of unitary Fermi gases [7]
and QCD plasmas [8–10].

B. Collective energy and imbalance excitations

In the energy sector spanned by modes s = 2, 3, Eqs. (71)
and (72) give rise to three zero eigenvalues. These corre-
spond to the conserved energy (χ (m=0,s=3)

k,λ
= λβvh̄k) and

quasiparticle (imbalance) densities (χ (m=0,s=2)
k,λ

= λ), as well

as momentum (χ (m=1,s=3)
k,λ

+ (−)χ (m=−1,s=3)
k,λ

= 2(i)βvh̄kx(y)).
The first two conservation laws lead to two diffusive
modes. The conservation of momentum gives rise to second
sound—ballistic thermal waves propagating through the two-
dimensional graphene plane [74]. This mode is the analog of
the density modes of a clean neutral Galilean invariant system.

Truncating the mode expansion of Eq. (71) at m = 2, which
is a good approximation for low wave numbers, yields the
dispersions

ωheat diff. ≈ 1
4v2q2τε,2,

(76)
ωqp diff. ≈ 1

8v2q2τε,2,

for the heat and quasiparticle (imbalance) diffusion modes,
respectively. The second-sound dispersion is given by

ωsec. sound ≈ vq√
2

+ iτε,2
v2q2

8
. (77)

Second sound mediated by phonons has been previously
observed in solids [102] and had a velocity comparable to
the velocity of sound. Here, the second sound is carried by
electrons and propagates with a velocity v0/

√
2. The above

dispersion relations are shown in Figs. 7 and 9.
The dispersion of the quasiparticle diffusion mode and the

imaginary part of the second-sound dispersion merge at low
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wave numbers. As in the case of charge excitations, there
exists an infinite number of damped modes associated with
scattering in higher angular harmonic channels. These modes
are depicted in Figs. 8 and 9. Note that modes associated with
imbalance excitations (s = 2) are damped stronger by an order
of magnitude as compared to energy excitations (s = 3).

C. Validity of the collinear zero mode approximation
for collective modes

The discussion so far was carried out in the restricted sub-
space of collinear zero modes. In this section, it is shown that
the results for collective excitations obtained within the re-
stricted subspace remain valid, if this restriction is lifted, and
noncollinear zero modes are added. These modes introduce
large corrections to the matrix of scattering rates �s,s′

m , and
it is not obvious that they can be neglected. It is sufficient to
consider the q = 0 case. The extension to finite wave numbers
is straightforward.

The scattering rate matrix �s,s′
m of Eq. (44) is extended to

include modes that are not collinear zero modes, which are
labeled with indices s > 3. It is useful to define the following
matrices:

S = (vβ h̄)2
〈
χ

(s<3)
k,λ

∣∣C∣∣χ (s′<3)
k,λ

〉
,

P = (vβ h̄)2
〈
χ

(s>3)
k,λ

∣∣C∣∣χ (s′<3)
k,λ

〉
,

Q = (vβ h̄)2
〈
χ

(s<3)
k,λ

∣∣C∣∣χ (s′>3)
k,λ

〉
,

R = (vβ h̄)2
〈
χ

(s>3)
k,λ

∣∣C∣∣χ (s′>3)
k,λ

〉
.

Here, χ
(s<3)
k,λ

are the familiar collinear zero modes Eq. (32).

χ
(s>3)
k,λ

are modes with a different |k| dependence, such that
the full set of modes forms a complete basis. Since C is Her-
mitian, we have Q = PT . The mode expansion of the Liouville
operator Ls,s′ of Eq. (33) also has to be enlarged by the s > 3
modes. However, we do not need to know the precise values
of the corresponding elements of L. The eigenvalue Eq. (72)
reads

det (−iωL − F ) = 0, (78)

where F is the composite matrix:

F =
[

S P
PT R

]
.

In the following, the Liouville matrix L will also be sepa-
rated into blocks corresponding to the same subspaces: L =
((LS, LP ), (LT

P , LS )). It follows from Eq. (27) and the Her-
miticity of the collinear part of the collision operator Cc that

S ∼ P ∼ 1,

R ∼ ln (1/α),

meaning that noncollinear zero modes are scattered faster by
a factor of ln (1/α). The determinant can be found using the
block matrix identity:

det

[
A B
C D

]
= det (D) det

(
A − BD−1C

)
. (79)

Applying this identity to Eq. (78) and noticing that for α → 0
the inverse matrix in the last determinant vanishes, one has

det (iωL + F ) ≈ det (iωLR + R) det (iωLS + S).

Equation (78) therefore separates into two independent
parts: det (iωLR + R) = 0 and det (iωLS + S) = 0. The sec-
ond equation is equivalent to the eigenvalue Eq. (72). In the
limit of a small fine structure constant, the weakly damped
collective modes can therefore be found by solving the kinetic
equation in the restricted subspace of collinear zero modes,
even if there is significant coupling between all modes.

VI. SURFACE ACOUSTIC WAVES

The longitudinal electrical conductivity σ‖ is accessible
through experiments with SAWs [70]. The simplest setup
to measure σ‖ is a sheet of graphene placed on top of a
piezoelectric material. Using interdigital transducers, SAWs
are induced in the piezoelectric. The real part of σ‖ then
determines the damping of the SAWs, while the imaginary
part changes the SAW velocity vs. Overall, for a small piezo-
electric coupling, the change of the SAW velocity �vs, where
the imaginary part describes the damping, can be written as
[67,68]

�vs

vs,0
= pe

1

1 + i σ‖
σM

. (80)

Here pe < 1 is an effective coupling constant and a σM a
reference conductivity. Both pe and σM depend on material pa-
rameters of the piecoelectric. A rough estimate for σM is given
by σM ≈ vsεeff [67,68], where εeff is the effective permittivity
at the surface of the piezoelectric. There has been experi-
mental work on the coupling between SAWs and graphene
[103,104]. LiNbO3 seems to be a suitable piezoelectric for
such experiments [103] because it provides a relatively large
coupling parameter pe ≈ 0.03 [71]. While there might be
better choices for the piezoelectric material, here we consider
LiNbO3, since the feasibility of a graphene-LiNbO3 device
has been demonstrated in Ref. [103]. The SAW velocity is
vs ≈ 4 × 103 m/s and the effective dielectric constant is given
by εeff ≈ 0.5ε0(

√
εT

xxε
T
zz + 2) ≈ 24ε0 (assuming that the di-

electric constant above the graphene sheet is ε0). One then
has

σM ≈ 10−6 S.

The fine structure constant is small due to the large dielectric
constant and renormalization effects. We estimate α ≈ 0.1.

Here and in the following estimations, we assume a tempera-
ture of 50 K.

Interdigital transducers induce SAWs with sharply defined
wave vectors q0. The frequency of the SAW ω0 is given by

ω0 = vsq0.

ω0 is much smaller than the characteristic hydrodynamic fre-
quency for a wave vector of the same magnitude ωhydro ≈ vq0,
where v ≈ 106 m/s. It is

ω0

ωhydro
≈ 0.005. (81)
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FIG. 10. The figure shows the damping coefficients and velocity shifts of LiNbO3 surface acoustic waves induced by a graphene sheet
laying on top of the crystal. Due to the ∼1/T dependence of the scattering times τc,m, changing the temperature alters the quantity vτc,mq,
where q is the SAW wave vector, such that the functional dependence of σ‖(q, ω = vsq) can be investigated without switching the SAW
frequencies. Here, vs is the SAW velocity. Left figure: Damping coefficients of SAWs for three distinct frequencies. The induced damping
is small (of the order of 1/cm). Middle figure: The damping coefficients at low temperatures depend sensitively on the scattering in higher
angular harmonic channels. Setting Mc = τ−1

c,2 , thus neglecting the scattering times τc,m>2, raises the damping by an order of magnitude. Upper
right panel: Relative velocity shifts �vs/vs. The velocity shifts are large (on the order of 1%). This is a consequence of the mainly capacitive
behavior of the graphene sheet at small frequencies (see main text).

As shown in Fig. 3, the longitudinal conductivity σ‖ is peaked
around ωhydro and vanishes in the limit ω = 0, q → 0. There-
fore, SAW experiments are confined to a highly “off-resonant”
regime due to the small ratio Eq. (81) and therefore cannot be
large.

The damping coefficient is given by

� = −ωIm

(
�vs

vs

)
= ωpe

Re(σ‖)/σM

1 + ∣∣ σ‖
σM

∣∣2 . (82)

The relative velocity shift is

Re

(
�vs

vs

)
= pe

1 + Im(σ‖)/σM

1 + ∣∣ σ‖
σM

∣∣2 . (83)

Since interdigital transducers excite SAWs of a fixed wave-
length, altering q0 is difficult. Instead, the q dependence of σ‖
can be tested by varying the temperature, and thus the product
of the wave vector and the scattering length and q0lc,m. Fig-
ure 10 shows the damping and the velocity shift induced by
the graphene sheet as a function of temperature, according to
Eqs. (82) and (83). As expected, the damping coefficients are
very small, on the order of 105 Hz, corresponding to damping
lengths of 1/cm. Such small dampings are measurable in
GaAs 2DEG structures [72], however, they might be hard to
observe with the more unconventional LiNbO3 device. On
the other hand, the low-temperature (large q) behavior of the
conductivity sensitively depends on the scattering rates in
the higher angular harmonic channels (see lower left panel
of Fig. 10), although the specific dependence τ−1

m>c,2 ∼ |m|
will be very hard to distinguish from, e.g., constant scattering
rates. Finally, we note, that here we considered the SAW
response in the hydrodynamic regime lc,1 � w, where w is
the sample size. For small sample sizes, the results will differ
due to boundary scattering.

VII. POISEUILLE PROFILES

The wave-vector-dependence of transport coefficients is
of importance when the currents in a system are spatially
inhomogeneous, either because the applied fields are inho-

mogeneous or because the inhomogeneity is imposed by the
geometry of the system. The simplest example for the latter
case is the Poiseuille flow. In undoped graphene, the energy
current is conserved due to the conservation of momentum,
however, it is dissipated by the uneven boundaries of the
sample [4]. In a Poiseuille geometry, which consists of an in-
finitely long, straight sample of width w, the boundaries slow
down the current flow. The current profile becomes parabolic
across the sample. On the other hand, charge currents decay in
the bulk of undoped graphene due to the interaction-induced
resistivity. In this case, there exists a crossover from an almost
flat current profile if w 	 vτc,1 to a more parabolalike shape
at w < vτc,1. However, as shown in Ref. [4], the slowing down
of the flow by the boundaries becomes inefficient when w �
vτc,2, again changing the profile. In this section, we investigate
the Poiseuille profiles of charge currents in undoped graphene
using the full nonlocal conductivity Eq. (58).

A. Flow equations and boundary conditions

The thermal and charge flow is governed by the constitutive
relations

κ−1(q, ω)αβ jε,β = −∂αT (84)

and

σ−1(q, ω)αβ jc,β = Eα, (85)

where jε,β is the thermal current and jc,β the electric cur-
rent. With the thermal and electric conductivities κ and σ

depending on wave vector q, these equations can be seen
as Fourier transforms of differential equations. Similar equa-
tions have been studied to describe nonlocalities induced
by vortices in type-II superconductors [105]. The tempera-
ture gradient −∂αT and the electric field Eα act as source
terms. In a Poiseuille geometry, the force fields act perpen-
dicular to the gradient of the flow velocity, i.e., it is E ⊥
q, ∇T ⊥ q. Therefore, the currents are determined by the
transverse conductivities. Let the sample be oriented in the
y direction and centered around x = 0. The equations then
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read

κ−1
T (qx, ω) jε,y(qx, ω) = −∂yT, (86)

σ−1
T (qx, ω) jc,y(qx, ω) = Ey. (87)

To solve the above equations, boundary conditions at the sam-
ple boundaries at ±w/2 are needed. As discussed in Ref. [97],
partial slip boundary conditions are appropriate:

jε/c,y(x = ±w/2, ω) = ∓ζ
∂ jε/c,y

∂x

∣∣∣∣
x=±w/2

. (88)

ζ is the so-called slip length parametrizing the momentum
charge (current) dissipation at the sample boundaries. If the
boundaries are sufficiently rough, ζ is of the order of the
mean-free path associated with the m = 2 scattering time: ζ ∼
vτε/c,2. In principle, Eqs. (86) and (87) represent infinite order
differential equations and require infinitely many boundary
conditions. However, this problem does not appear explicitly
in the calculation. The finite width of the sample w sets a
natural cutoff for wave numbers q, and therefore only the low
powers of q are relevant on the right-hand side of Eqs. (86)
and (87). For simplicity, the boundary condition Eq. (88) is
used, which is reasonable for not too small widths.

Equations (86) and (87) now can be solved by performing a
Fourier transform. The procedure we employ here is outlined
in Appendix E using the example of the simpler Stokes flow.
To fix the boundary conditions two pointlike delta-function
inhomogeneities are positioned at ±w. In real space, the equa-
tions take the form

κ−1
T (∂x, ω) jε,y(x, ω) = −∂yT − αδ(x − w) − βδ(x + w),

(89)

σ−1
T (∂x, ω) jc,y(x, ω) = Ey − αδ(x − w) − βδ(x + w). (90)

If the constants α, β are chosen such that Eq. (88) is satisfied,
the solution inside the sample will be identical to the solution
of the homogeneous equations with the matching boundary
conditions.

Here, the profiles of electric current flows through samples
of different widths will be calculated. Solving Eq. (89) in
Fourier space, one obtains

jc,y(qx, ω)

= (2πEyδ(qx ) − αe−iwqx − βeiwqx )σT (qx, ω). (91)

Inserting this result into Eq. (88) gives two algebraic equations
from which α and β can be determined:

ζ

∫
dqx

2π
(iqx )

(
αe−iqx

3w
2 + βeiqx

w
2
)
σT (qx, ω)

=
∫

dqx

2π

(
αe−iqx

3w
2 + βeiqx

w
2
)
σT (qx, ω)

− EyσT (0, ω)

ζ

∫
dqx

2π
(iqx )

(
αe−iqx

w
2 + βeiqx

3w
2
)
σT (qx, ω)

= −
∫

dqx

2π

(
αe−iqx

w
2 + βeiqx

3w
2
)
σT (qx, ω)

+ EyσT (0, ω).

FIG. 11. Poiseuille profiles of charge currents in undoped
graphene samples of different widths w. Although physically in-
correct, no-slip boundary conditions were assumed for clarity. The
profiles are normalized to the current at x = 0. At large widths
w > vτc,1, the flow profiles turn flat. In the bulk, they resemble
Ohmic flow. For small widths w < vτc,1, the momentum noncon-
serving scattering becomes inefficient. The electrons travel a distance
corresponding to several widths before losing their momentum. Con-
sequently, the profiles take a parabolic form, resembling classical
Poiseuille flow. The profiles were calculated from Eq. (91).

The above integrals are calculated with the fast fourier trans-
form (FFT) algorithm. Once α, β are found, a Fourier
transform the of the solution Eq. (91) gives the desired flow
profiles.

Figures 11 and 12 show the results for different widths
w. For demonstration purposes, no-slip boundary conditions
(ζ = 0) were assumed in Fig. 11. Here, for w > vτc,1, the flow
profile turns flat in the middle of the sample and steeply de-
scends to zero at the boundaries (as necessitated by the no-slip
boundary conditions). This behavior is due to the interaction-
induced conductivity that dissipates current uniformly across
the sample—at a distance d > vτc,1 away from the boundary,

FIG. 12. Poiseuille profiles of charge currents in undoped
graphene samples of different widths w, normalized to the current at
x = 0. Partial slip boundary conditions with a slip length ζ = vτc,2

were applied. At very small widths w � ζ , boundary scattering
ceases to be an efficient mechanism for the dissipation of electric
current. The profiles turn flat, as they do in the nearly Ohmic regime
w > vτc,1. In the crossover regime at widths w ∼ 0.5vτc,1, profile
curvature is most pronounced. The profiles were calculated from
Eq. (91).
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a uniform flow is restored. On the other hand, for w < vτc,1

the current-relaxing scattering processes in the m = 1 channel
become less and less important. The scattering in the m = 2
channel dominates. It acts in the same way viscous forces act
in ordinary flows. Current is transported from the middle of
the sample, where it is maximal, to the sample edges, where
it is dissipated. A finite slip length (as discussed, ζ = vτc,2

was chosen for simplicity) alters these results (see Fig. 12):
Whereas for widths w > vτc,1 the finite slip gives the current
a non-negligible velocity at the sample boundary, for small
widths w < vτc,2, the flow profiles are rendered flatter, and the
boundary effects become negligible. In the crossover region
w ∼ vτc,1, the profiles are curved and resemble a parabola.
This takes place around w ∼ 0.5vτc,2 and is in accordance
with the general expectations [97]: For w < vτc,2, the qua-
siviscous transport of currents from the middle of the sample
toward the boundaries becomes inefficient and the boundary
does efficiently dissipate the current. An interesting question
is how the collective modes investigated in Sec. V are changed
when the Dirac fluid is confined to a Poiseuille-type sample
with the boundary conditions of Eq. (88). For large sample
sizes, one can expect that, e.g., the charge modes will exhibit
a small correction of the order of lc,1/w. The effects for small
w should be more interesting. They are, however, beyond the
scope of the present paper.

VIII. CONCLUSION

In conclusion, we have developed a kinetic theory of non-
local charge and thermal transport in a clean Dirac fluid in the
hydrodynamic regime. We obtained closed analytic expres-
sions for the frequency and wave-vector-dependent charge
and thermal conductivities as well as the nonlocal viscosity
due to electron-electron Coulomb interactions. Our solution
is possible due to the dominance of so-called collinear zero
modes. In the limit of a small fine-structure constant of
graphene, all other modes relax more rapidly, limiting the
phase space of the collective excitations that dominate the
long-time dynamics. One aspect of the same physics, that
was discussed previously by us in Ref. [4], is the onset of
superdiffusion in phase space, where Lévy-flight behavior
on the Dirac cone emerges. Frequent small-angle scattering
events are interrupted by rate large-angle scattering processes.
We made specific predictions for measurements such as the
velocity shift of SAWs and for inhomogeneous flow pattern.
Those become identical to the one that follows from the so-
lution of the Navier-Stokes equations in the long wavelength
limit, but include higher order gradients that come into play
as the sample geometry becomes smaller. In particular, we
have demonstrated how the nonlocal transport coefficients
determine the profiles of a hydrodynamic flow through nar-
row channels. In addition, we determined the collective mode
spectrum of the system including plasma waves and second-
sound-like thermal waves. We find a complex structure of
damped collective excitations. These excitations are similar
to the so-called nonhydrodynamic modes that were shown to
be relevant for the equilibration of other collision-dominated
quantum fluids [7–10].
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APPENDIX A: THE COLLISION OPERATOR

Transformed to the band basis, the interaction part of the
Hamilton operator Eq. (8) reads

Hint = 1

2

∫
k,k′,q

∑
αβ

Tλμμ′λ′ (k, k′, q)ψ†
λ′ (k + q, t )ψ†

μ

× (k′ − q, t )ψμ′ (k′, t )ψλ(k,t ), (A1)

where the matrix elements Tλμμ′λ′ (k, k′, q):

Tλμμ′λ′ (k, k′, q) = V (q)
(
Uk+qU −1

k

)
λ′λ

(
Uk′−qU −1

k′
)
μμ′ . (A2)

U is the usual transformation from sublattice space to the
band space [see Eq. (11)]. For the derivation of the quantum
Boltzmann equation, the self-energies �

≷
λ and the Green’s

functions g≷λ′ are of interest (the small g is used for the Green’s
function transformed to the band basis g≷(X, T ; k, ω) =
UkG≷(X, T ; k, ω)U †

k , where (X, T ) are the center-of-mass
coordinates, and (k, ω) are the relative coordinates after the
Wigner transform). For details on the Wigner transform and
the definitions of G≷, �≷ see, e.g., Refs. [82,83,106]). The
of-diagonal elements of Green’s functions in band space
can be neglected if the frequencies of interest are smaller
than the energies of thermally excited particles: ω � kBT .
In the following, only the weak space and time depen-
dencies induced by external forces and represented by the
center-of-mass coordinates will be of interest. For sim-
plicity, the dependence on (X, T ) will be suppressed. The
Green’s functions g≷λ′ (k, ω) can be related to the distribution
function:

g>
λ (k, ω) = −i2πδ(ω − ελ(k) − Upot )(1 − fλ,k(ω)),

g<
λ (k, ω) = i2πδ(ω − ελ(k) − Upot ) fλ,k(ω). (A3)

To second order in perturbation theory, for the self-energies,

�
≷
λ

(k,ω) = N
∑
μμ′λ′

∫
d2qd2k′dω1dω2

(2π )6 |Tλμμ′λ′ (k, k′, q)|2

× g≷λ′ (k + q,ω1)g≷μ (k′ − q,ω2)

× g≶μ′ (k′,ω1 + ω2 − ω)

−
∑
μμ′λ′

∫
d2qd2k′

(2π )4

∫
dω1dω2

(2π )2 Tλλ′μ′μ

× (k, k′, k′ − q − k)Tλμμ′λ′ (k, k′, q)∗
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× g≷λ′ (k + q,ω1)g≷μ

× (k′ − q,ω2)g≶μ′ (k′,ω1 + ω2 − ω) (A4)

holds. N = 4 accounts for the spin-valley degeneracy.
The collision operator, as it appears in Eq. (12), can now

be determined from the self-energies �< and �>. It can then
be written in terms of the distribution function fλ(k):

Cλ(k) = −i�<
λ (k, ελ(k))(1 − fλ(k)) − i�>

λ (k, ελ(k)) fλ(k).
(A5)

The delta function δ(ω − ελ(k) − Upot (x)) sets the left-hand
side of the quantum Boltzmann equation to zero and there-
fore cancels out. Inserting Eqs. (A3) into the self-energies,
parametrizing the deviations of fλ(k) from the equilibrium
distribution function as shown in Eq. (14), and linearizing
in ψkλ(x, t ) leads to the collision operator of Eq. (24). The
matrix elements γ

(1,2)
k,k′,q of Eq. (24) are given by

γ1(k, k′, q) = (N − 1)|TA(k, k′, q)|2

+ 1
2 |TA(k, k′, k′ − q − k) − TA(k, k′, q)|2

−|TA(k, k′, k′ − q − k)|2

γ2(k, k′, q) = (N − 1)|TB(k, k′, k′ − k − q)|2

+ (N − 1)|TA(k, k′, q)|2

+|TA(k, k′, q) − TB(k, k′, k′ − q−k)|2, (A6)

with

TA(k, k′, q) = T++++(k, k′, q) = T−−−−(k, k′, q)

= T+−−+(k, k′, q) = T−++−(k, k′, q)

= V (q)

4

(
1 + (K + Q)K∗

|k + q|k
)(

1 + (K ′ − Q)K ′∗

|k′−q|k′

)

and

TB(k, k′, q) = T++−−(k, k′, q) = T−−++(k, k′, q)

= V (q)

4

(
1 − (K + Q)K∗

|k + q|k
)(

1 − (K ′ − Q)K ′∗

|k′−q|k′

)
.

(A7)

Upper-case letters like K = kx + iky etc. combine the two
components of the momentum vector onto a complex variable.

Since the quantum Boltzmann equation only accounts for
the diagonal in λ components of the distribution function, the
currents also have to be decomposed into contributions that
involve particle-hole pair creation (jinter ) and those who do
not (jintra ). Here, the identity

UkσU −1
k = k

k
σz − k × ez

k
σy (A8)

is useful. The charge current

jc = ev
∫

k
ψ†(k)σψ (k) (A9)

can be written as

jc = jc,intra + jc,inter, (A10)

where the two contributions are given by

jc,intra = ev
∫

k

∑
λ=±

λk
k

γ
†
k,λ

γk,λ,

jc,inter = iev
∫

k

k × ez

k

(
γ

†
k,+γk,− − γ

†
k,−γk,+

)
. (A11)

The energy current jε and the momentum current tensor τxy

can be decomposed in a similar manner. This leads to the
expressions Eqs. (41) and (42) of the main text and the ex-
pression that is used for τxy in Sec. IV C 3. As discussed
above, in the hydrodynamic regime, it is legitimate to focus
on the intraband contributions, which dominate the transport
behavior of the system.

APPENDIX B: COLLINEAR SCATTERING
AND COLLINEAR ZERO MODES

Here, the logarithmic divergence of the collision operator
for collinear processes is demonstrated following Ref. [11].
We then show that the m-dependent collinear zero modes are
those given in Eq. (32).

The essential mathematics behind the divergence is con-
tained in phase space density available for two particle colli-
sions. The phase space is restricted by the delta function en-
suring energy conservation: δ(k + k1 − |k + q| − |k1 − q|).
This can be seen from power counting in Eq. (24) using
Eqs. (A6) and (A7).

Choosing k = (k, 0) with k > 0, and writing k1 =
(k1, k⊥), q = (q, q⊥), collinear scattering occurs when k1 >

0, k + q > 0, k1 − q > 0 and q⊥ ≈ 0, k⊥ ≈ 0. For small q⊥,
k⊥, the argument of the delta function can be approximated as

k + k1 − |k + q| − |k1 − q|

≈ k2
⊥

2k1
− q2

⊥
2(k + q)

− (k⊥ − q⊥)2

2(k1 − q)
. (B1)

The right-hand side of this equation is a polynomial in q⊥, and
can be written in terms of linear factors as

k2
⊥

2k1
− q2

⊥
2(k + q)

− (k⊥ − q⊥)2

2(k1 − q)

= − k1 + k

2(k + q)(k1 − q)
(q⊥ − ζ1k⊥)(q⊥ − ζ2k⊥).

It is then easy to see by performing the q⊥ integration that∫
dk⊥dq⊥δ

(
− k1 + k

2(k + q)(k1 − q)
(q⊥ − ζ1k⊥)(q⊥ − ζ2k⊥)

)

∝
∫

dk⊥
k⊥

.

This behavior leads to a logarithmic divergence. The diver-
gence is, however, cut off by the screening of the Coulomb
potential [65],

V (|q|) → V (|q| + qTF),

where qTF is the Thomas Fermi screening length. In the case
of charge neutral graphene, qTF = αkBT/v. If the screening is
included, the integral of (24) vanishes in the infrared. Thus,
the contribution of collinear processes to the scattering rates
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is enhanced by the large factor:

ln (1/α).

It was demonstrated inSec. III B of the main text that re-
laxation processes in the hydrodynamic regime are dominated
by collinear zero modes. As demonstrated above, these modes
describe scattering events in which all particle velocities show
in the same direction. Examining the delta function respon-
sible for energy conservation δ(k + k1 − |k + q| − |k1 − q|),
we see that if all momenta are parallel to each other, en-
ergy is only conserved if the above conditions k > 0, k1 > 0,
k + q > 0, k1 − q > 0 apply (except for unimportant isolated
points in phase space). The exchange momentum q, however,
can be positive or negative. To find those ψkλ that correspond
to collinear zero modes, two terms in the collision operator
Eq. (24) have to be considered:

A(1)
k,k1,q,λ

= ψk+qλ + ψk1−qλ − ψk1λ − ψkλ,

A(2)
k,k1,q,λ

= ψk+qλ − ψ−k1+qλ̄ + ψ−k1λ̄
− ψkλ. (B2)

Using the parametrization

ψk,λ = aλ,m(k)eimθk (B3)

yields

A(1)
k,k′,q,λ

= (aλ,m(k + q) + aλ,m(k1 − q) − aλ,m(k1) − aλ,m(k))eimθk

A(2)
k,k′,q,λ

= (aλ,m(k + q) − (−1)maλ̄,m(k1 − q) + (−1)maλ̄,m(k1)

−aλ,m(k))eimθk . (B4)

For collinear zero modes,

A(1)
k,k′,q,λ

= 0,

A(2)
k,k′,q,λ

= 0

have to hold. A(1)
k,k′,q,λ

is set to zero by aλ,m(k) =
{1, λ, βvh̄k, λβvh̄k}. A(2)

k,k′,q,λ
is more restrictive. For even m,

its zero modes are given by aλ,m(k) = {1, λ, λβvh̄k}, for odd
m the zero modes are aλ,m(k) = {1, λ, βvh̄k}. Summing up,
the collinear zero modes are given by

aλ,m = λm{1, λ, λβvh̄k}eimθk .

APPENDIX C: MATRIX ELEMENTS OF THE COLLISION
OPERATOR

The values of some matrix elements are shown in Table I.
For m � 2, the values can be approximated by〈

χ
(m,s=1)
k,λ

∣∣C∣∣χ (m,s=1)
k,λ

〉 = 2.574 · |m| − 3.456,〈
χ

(m,s=2)
k,λ

∣∣C∣∣χ (m,s=2)
k,λ

〉 = 1.825 · |m| − 2.741,〈
χ

(m,s=3)
k,λ

∣∣C∣∣χ (m,s=3)
k,λ

〉 = 5.184 · |m| − 11.37,〈
χ

(m,s=2)
k,λ

∣∣C∣∣χ (m,s=3)
k,λ

〉 = 2.042 · |m| − 4.398. (C1)

All values are given in units of 1
v2β3 h̄3 .

TABLE I. Matrix elements of the collision operator Eq. (24) with
respect to the collinear zero modes χ

(m,s)
k,λ = λmeimθ {1, λ, λβvh̄k}.

The index m labels the angular harmonic and s one of the modes
in curved brackets.

m s s′ 〈χ (m,s)
k,λ |C|χ (m,s′ )

k,λ 〉 m s s′ 〈χ (m,s)
k,λ |C|χ (m,s′ )

k,λ 〉 m s s′ 〈χ (m,s)
k,λ |C|χ (m,s′ )

k,λ 〉

0 1 1 0 2 1 1 2.617 4 1 1 6.988
0 1 2 0 2 1 2 0 4 1 2 0
0 1 3 0 2 1 3 0 4 1 3 0
0 2 2 0 2 2 2 1.745 4 2 2 4.722
0 2 3 0 2 2 3 1.243 4 2 3 4.122
0 3 3 0 2 3 3 3.341 4 3 3 10.456
1 1 1 0.804 3 1 1 4.728 5 1 1 9.345
1 1 2 0 3 1 2 0 5 1 2 0
1 1 3 0 3 1 3 0 5 1 3 0
1 2 2 0.463 3 2 2 3.167 5 2 2 6.351
1 2 3 0 3 2 3 2.573 5 2 3 5.800
1 3 3 0 3 3 3 6.647 5 3 3 14.610

APPENDIX D: DECOMPOSITION OF THE VISCOSITY
TENSOR INTO LONGITUDINAL AND TRANSVERSE

PARTS

Consider a system with a preference direction introduced
by wave-vector q. It is useful to define the orthogonal tensor
basis,

e(1)
αβ = qαqβ

q2
,

e(2)
αβ = δαβ − qαqβ

q2
, (D1)

e(3)
αβ = 1√

2
(qα pβ + pαqβ )/(pq),

which is normalized according according to∑
αβ

e(i)
αβe( j)

αβ = δi j .

Here it is

pα = qγ εγα.

In this basis, the symmetric shear force tensor X0,αβ can be
written:

X0,αβ = X (1)e(1)
αβ + X (2)e(2)

αβ + X (3)e(3)
αβ. (D2)

The same holds for the momentum current (stress) tensor:

ταβ = τ (1)e(1)
αβ + τ (2)e(2)

αβ + τ (3)e(3)
αβ. (D3)

Since the system is fully isotropic, except for the preference
direction set by q, the response of the system to different
components of X0,αβ can only be distinct as far as these
components relate differently to the direction of q. Equations
(D2) and (D3) are decompositions of the shear force and
momentum current tensors into such components. The fourth
rank viscosity tensor ηαβγ δ is defined through the constitutive
relation:

ταβ = ηαβγ δX0,γ δ.
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In general, such a tensor connecting the quantities ταβ and
X0,αβ as given by Eqs. (D2) and (D3) can be written as
ηαβγ δ = ∑

i j e(i)
αβe( j)

γ δ η
(i j). However, it follows from an On-

sager reciprocity relation that ηαβγ δ has to be symmetric with
respect to an interchange of the first and last pairs of indices:

η(αβ )(γ δ) = η(γ δ)(αβ ).

This condition further restricts the form of ηαβγ δ to

ηαβγ δ =
∑

i

e(i)
αβe(i)

γ δη
(i). (D4)

Calculating the scalars η(i) using the quantum Boltzmann
equation, one finds η(1) = η(2) �= η(3). In the sense that ηαβγ δ

is spanned by projection operators onto the tensorial sub-
spaces which span the force and current tensors and are given
in Eqs. (D1), the decomposition (D4) is completely analogous
to the decomposition of a conductivity tensor into transverse
and longitudinal parts [see Eq. (57)].

APPENDIX E: FLOW PROFILES FROM THE NONLOCAL
CONDUCTIVITY

To illustrate our technique for obtaining Poiseuille-type
flow profiles from nonlocal conductivities used in Sec. VII,
we want to apply it to an analytically tractable example. See
also Ref. [107] for a similar discussion in the context of solid
state optics. We choose the Stokes flow through a channel of
width w. Here, the flow velocity u is a response of the fluid
to a uniform pressure gradient ∇p, just as the currents jε, jc
in Eq. (87) are the response to the applied uniform electric
field E = ∇φ or a thermal gradient ∇T . To make the analogy
complete, we introduce a decay rate γ for u. Thus, the fluid
flow is described by Stokes’ equation:

η
∂2u(x)

∂x2
− γ u(x) = −∇p. (E1)

Here, p is the pressure, η is the shear viscosity and γ is a decay
rate quantifying the decay of the u. We want to solve Eq. (E1)
subject to the partial slip boundary conditions:

ξ
∂u

∂x

∣∣∣∣
x=− w

2

= u
(
−w

2

)
,

ξ
∂u

∂x

∣∣∣∣
x= w

2

= −u
(w

2

)
. (E2)

Here, w is the width of the channel that is oriented parallel to the y axis and is centered around x = 0. These boundary conditions
are analogous to Eq. (88) of the main text. We consider a channel, hence two boundary conditions. The solution to Eq. (E1)
obeying the boundary conditions of Eq. (E2) is

u(x) =
ξ
√

γ η sinh
(

1
2w

√
γ

η

)
+ η cosh

(
1
2w

√
γ

η

)
− η cosh

(
x
√

γ

η

)
γ ξ

√
γ η sinh

(
1
2w

√
γ

η

)
+ γ η cosh

(
1
2w

√
γ

η

) ∇p. (E3)

In the limit of γ → 0, the solution of Eq. (E19) reduces to the
well-known quadratic Hagen-Poisuille flow profile [see, e.g.,
Ref. [97]]:

lim
γ→0

u(x) = ∇p

8η
(w2 + 4ξw − 4x2).

Now we will derive the solution given in Eq. (E3) using
the method in Sec. VII. We perform a Fourier transform on
Eq. (E1) while keeping in mind that the force ∇p is uniform,
we obtain

−ηq2u(q) − γ u(q) = −∇pδ(q). (E4)

Let us introduce, following the logic of our paper, the nonlocal
conductivity:

σ (q) = 1

γ + ηq2
. (E5)

Stokes Eq. (E4) now reads

σ−1(q)u(q) = −∇p. (E6)

To fix the behavior of u at the boundaries, we introduce
two sources outside the channel at x = ±w. Equation (E1)
becomes

η
∂2u(x)

∂x2
− γ u(x) = −∇p − αδ(x − w) − βδ(x + w).

(E7)
The constants α, β will be chosen such that the boundary
conditions Eqs. (E2) are satisfied. After a Fourier transform∫

dx e−iqx..., the equation reads

σ−1(q)u(q) = ∇p + αeiqw + βδe−iqw. (E8)

For the flow velocity u(q), we find

u(q) = σ (q)[∇pδ(q) + αeiqw + βδe−iqw]. (E9)

To determine the constants α and β, we use the fact that

u(x) =
∫

dq

(2π )
u(q)eiqx (E10)
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and write Eqs. (E2) as

ξ

∫
dq

(2π )
(iq)u(q)e−iq w

2 =
∫

dq

(2π )
u(q)e−iq w

2 , (E11)

ξ

∫
dq

(2π )
(iq)u(q)eiq w

2 = −
∫

dq

(2π )
u(q)eiq w

2 . (E12)

Inserting the u(q) of Eq. (E9), we can explicitly calculate the
integrals:∫

dq

(2π )
(iq)u(q)e−iq w

2

=
∫

dq

(2π )
(iq)

∇pδ(q) + αeiq w
2 + βδe−iq 3w

2

γ + ηq2

= βe− 3
2 w

√
γ

η + (∇p − α)e− w
2

√
γ

η

2η
, (E13)

∫
dq

(2π )
u(q)e−iq w

2 = βe− 3
2 w

√
γ

η + (α + ∇p)e− w
2

√
γ

η

2
√

γ η
,

(E14)

ξ

∫
dq

(2π )
(iq)u(q)eiq w

2 = (β − ∇p)e− 1
2 w

√
γ

η − αe− 3
2 w

√
γ

η

2η
,

(E15)

−
∫

dq

(2π )
u(q)eiq w

2 = −αe− 3
2 w

√
γ

η + (β + ∇p)e− w
2

√
γ

η

2
√

γ η
.

(E16)

It is now easy to solve for α, β:

α = − ∇pηe
3
2 w

√
γ

η

π (
√

γ η − γ ξ +
(√

γ η + γ ξ )ew
√

γ

η

) , (E17)

β = ∇pηe
3
2 w

√
γ

η (
√

γ η + γ ξ + (
√

γ η − γ ξ )ew
√

γ

η )

πγ (γ ξ 2(ew
√

γ

η − 1)2 − η(ew
√

γ

η + 1)2)
. (E18)

The full solution is then found inserting this constants into
Eq. (E9) and performing the inverse Fourier transform:

u(x) = ∇p
ξ
√

γ η sinh
(

1
2w

√
γ

η

)
+ η cosh

(
1
2w

√
γ

η

)
− η cosh

(
x
√

γ

η

)
γ ξ

√
γ η sinh

(
1
2w

√
γ

η

)
+ γ η cosh

(
1
2w

√
γ

η

) . (E19)

his solution is, of course, identical to Eq. (E3) and thus satisfies both Eq. (E1) and the boundary conditions of Eq. (E2).
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