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Heat, particle, and chiral currents in a boundary driven bosonic
ladder in the presence of a gauge field
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Quantum systems can undergo phase transitions and show distinct features in different phases. The corre-
sponding transport properties can also vary significantly due to the underlying quantum phase. We investigate
the transport behavior of a two-legged bosonic ladder in a uniform gauge field, which is known to have a
Meissner-like phase and a vortex phase in the absence of dissipation. The ladder is coupled to bosonic baths
at different temperatures, and we study it using the nonequilibrium Green’s function method. In particular, we
show the presence of a chiral current and how it is affected by the temperature bias and the dissipation strength.
We also demonstrate that the opening of a gap between the lower and upper energy band results in the possibility
of tuning heat and particle transport through the ladder. We show that for system parameters for which the ground
state is in a vortex phase, the system is more sensitive to external perturbations.
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I. INTRODUCTION

Low-dimensional systems can present interesting transport
properties such as ballistic, superdiffusive, diffusive, subdiffu-
sive, and insulating [1-3] behaviors. An interesting research
direction is to tune the transport properties by varying ex-
ternal parameters so that systems can be better suited for
applications such as energy conversion [4]. One possibil-
ity to strongly change the transport through a system is to
rely on the underlying presence of phase transitions, whether
in the ground state [5-8], or out of equilibrium [9-14]. In
this work, we analyze in detail the transport properties of
a low-dimensional system coupled to two bosonic baths as
we tune the system and bath’s parameters. In particular, we
consider a ladder of noninteracting bosons, which can un-
dergo a quantum phase transition by varying the magnitude
of the gauge field. More precisely, the system can be in a
Meissner phase, in which the ground state is characterized
by a current that flows on the boundary of the system and
not inside it, or in a vortex phase, in which the ground
state presents vortices of currents. The ground-state proper-
ties of bosonic ladder with a gauge field have been studied
thoroughly also in the presence of interactions [15-32]. Its
ground-state properties have been studied experimentally first
with Josephson junction arrays [33,34], and thanks to the
possibility of generating synthetic gauge fields [35,36], also
in ultracold atoms [37,38]. We note that synthetic gauge
fields can potentially be generated also in trapped ions
experiments [39].

However, the nonequilibrium properties of bosonic ladders
with gauge fields driven by bosonic baths at their edges are
far less explored. In the presence of local density baths, it was
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shown that transport is not only affected by the quantum phase
transition, but also by the possibility of a gap opening between
the two energy bands [40]. In Ref. [41] the authors con-
sidered larger two-dimensional geometries and the presence
of defects. The interplay of the gauge field and interactions
under boundary driving has, so far, only been considered in
Ref. [42] in which the authors analyzed hard-core bosons and
studied the transport properties as a function of the average
density. However, the above studies were performed within
the framework of Gorini-Kossakowski-Sudarshan-Lindblad
master equations [43,44], which have shown to have limita-
tions when analyzing currents within systems [45-49]. We
thus focus here on using the nonequilibrium Green’s functions
formalism [50-59], which is known to be able to repre-
sent exactly the nonequilibrium properties of noninteracting
systems, even in presence of strong system-environment
coupling.

In this work, we perform a thorough analysis of the trans-
port properties by considering the four possible emerging
scenarios: whether the ground state has a Meissner or vortex
phase, and whether the energy spectrum is gapped or not.
The Green’s function approach allows us to study exactly
the current flowing through each bond, and this allows us to
recognize the reminiscence of the current patterns typical of
the Meissner or vortex phases and how the system transits
from one to the other. We also consider the overall particle
and heat currents through the system, unveiling which regions
of the parameter space result in larger currents as we vary
the temperatures in the baths and the strength of the coupling
to them. By analyzing the effect of strong system-bath cou-
pling, we show that the parameter space regions for which the
ground state is in the Meissner phase are more robust against
the dissipation from the system-environment coupling.

The paper is organized as follows. In Sec. II we introduce
the setup, summarize the key aspects of the energy band
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structure of the bosonic ladder, and present the nonequilib-
rium Green’s function method we use. Our analysis of chiral
currents is presented in Sec. III, while particle and heat trans-
port properties are detailed in Sec. IV. Finally, we draw our
conclusions in Sec. V

J

II. MODEL AND METHODS
A. Two-legged Bosonic ladder

The system we study is a two-legged ladder of nonin-
teracting bosons subjected to a uniform magnetic field with
Hamiltonian,

A i +1 ~ ~ AF A At A
Hs = — J” Ze‘l( D"/ a;,pa1+1,,, + JJ' Za;’lal,z +Hc | +V Zal’pal’p, (1)

Lp

where a; , (&; p) is the bosonic annihilation (creation) operator

at the /th rung and pth leg of the ladder, J! and J* are the
tunnelling amplitude along the legs and rungs, respectively. In
the presence of a gauge field, the bosons acquire a phase ¢
by tunneling around a plaquette, with a sign that depends on
the direction of the field circulation as shown in Fig. 1. V is
the local potential of the system. Throughout the paper, we
consider a ladder with a length L = 32 and a local potential
v/ =81

B. Energy structure of two-legged bosonic ladder

The single-particle Hamiltonian in Eq. (1) with periodic
boundary condition can be diagonalized using the Bogoliubov
transformation and has a two-band structure [15],

Hs = ZEki&/:i&k,:ts 2)
k

with eigenenergies

Ef =V —2J" cos (¢/2) cos (k)

+ I 2 1 (2T sin(¢/2) sin(k)]2. A3)

!Simulations for longer systems, even L = 64 and different local
potentials V/J! have also been performed and are consistent with the
results here obtained.
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FIG. 1. A schematic representation of our setup. The ladder con-
sists of two coupled legs, with local bosonic excitations described
by a;,, (&; p), the annihilation (creation) operators at rung /, where
p =1, 2 refers to the top or bottom leg. J* and J; are the tunneling
amplitude on the rungs of the ladder and along the legs, respectively.
A gauge field imposes a phase factor ¢ when hopping around a
plaquette. The coupling to the left and right bath are represented
by the blue and red double arrow. Each bath is characterized by
temperatures 7p, or Tz and a common chemical potential w. The
length of the ladder considered throughout the paper is L = 32.

1 L,p

(

Here, &y + (&Z’ ) is the annihilation (creation) operator of the
quasiparticle at momentum k in the upper (+) or lower (—)
band. Depending on the choice of J*/J! and ¢, the energy
spectrum of the ladder can be classified into four typical
scenarios, as shown in Fig. 2.

(1) Energy bands have a single minimum at k = 0, and an
energy gap separates the two bands. This is seen when J+/J
is large and the ¢ is small.

(2) Energy bands have a single minimum at k¥ = 0, and no
energy gap separates the two bands. This is typical for small
values of J+/J! and ¢.

(3) Lower band is double-well shaped with two minima,
and no energy gap separates the two bands. This is seen in the
limit of very large ¢.

(4) Lower band is double-well shaped with two minima,
and an energy gap separates the two bands. This is seen in the
limit of very large values of J*/J! and ¢.

Meissner — ( ) I}
Regime Q \./ 1
H

J+/Jl

FIG. 2. Energy band structures of a two-legged bosonic ladder
as a function of J+/J! and ¢. The red dotted line corresponds to
Eq. (4) and the dashed line to Eq. (5). Together they divide the
parameter space into four distinct regions (I) to (IV). Each region
is characterized by a qualitatively different energy band structure.
In each subplot, we show the energy band structure, i.e., Ef/J!
from Eq. (3) versus the quasimomentum k. The dashed lines in the
subplots indicate the energy levels of max(E; /J!) and min(E;! /J!).
The Meissner to vortex quantum phase transition occurs across the
red dashed line corresponding to Eq. (5).
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The opening of the energy gap occurs at the critical value
for the perpendicular tunneling J2;

JE =2J"cos (¢/2), 4)

and is denoted by dotted lines in Fig. 2 whereas the degener-
acy of ground state occurs at a tunneling amplitude J3 given
by

J5 =2Jtan (¢/2)sin (¢/2) (5)

and is denoted by the dashed lines. For J*= < J%, the ground
state of the system is in the Meissner phase, in which a particle
current only occurs along the edges of the ladder with no inner
rung current. This parameter space is denoted in Fig. 2 in red.
With J* > J3, the ladders enters a vortex phase with finite
inner rung current. This parameter space is denoted in Fig. 2
in blue. The focus of our paper is to study how these phases
affect the transport properties of the system. We also show that
the presence of energy gap between the two bands can be used
to alter transport properties. In the following, we work in units
for whichJ! = ky = = 1.

C. Nonequilibrium setup

The ladder is coupled to two bosonic baths at different
temperatures at its edges as shown in Fig. 1. The baths are
modeled by a collection of noninteracting bosons with Hamil-
tonian,

Hir = ZEk,L/R BZ,L/REk,L/R- (6)
X

Here, l;k,L/R (IA);L /R) is the annihilation (creation) operator
for a bosonic excitation with energy E;p, in the left (L)
or right (R) bath. The baths are assumed to be at thermal
equilibrium characterized by the Bose-Einstein distribution at
temperature 7i,r. In our studies we keep the left bath at a
fixed temperature 71, = 0.1, which is low enough so that the
currents will be affected by the properties of the system near
the ground state. We also fix the bath chemical potentials p
such that the ground-state occupation is

) 1 1
io(T) = =7 = a7 (7)

where A = Ey — = 0.1 for all system parameters J* and
¢ for a given temperature 7. Ej is the ground-state energy
of the system. By fixing A, the occupation of the excited
states solely depends on the temperature and energy difference
between the excited state and the ground state. In this way, we
can gain a clearer understanding of the roles of temperature
and energy band structure in the nonequilibrium ladder.
The system-bath coupling is defined by the Hamiltonian,

Hiir = Z Ck,L/R(&i/RlAJk,L/R + EZ’L/R&L/R)a (8)
k

where ¢ g denotes the strength of the coupling and
aL R, &E SR are the system operators at the edges of the ladder
as indicated by Fig. 1. Note that the total number of bosons
within the system and bath is conserved for this particular
choice of system-environment interaction.

D. Green’s function formalism

To study the transport in our system, we use the nonequi-
librium Green’s function formalism [50-59], which we briefly
describe in this section. The central object of this formalism
is the retarded and advanced Green’s function G**(E)

1
E —Hs — %E) — TgME)

G"(E) = C))

where X7 (w) are the self-energy terms that model the ef-
fects of the baths on the isolated system and can be written
in terms of the free Green’s function of the baths g =

(E +ie — I-?L/R)_1 and the coupling Hamiltonian I-?,,L/R,

EffR(E) = ﬁl,L/Rgi?R(E)ﬁ;L/R~ (10)

The bath spectral density, also known as the level-width
function, can be defined as,

FLR(E) =i(2fr— =) =27 Y lecLr*8(E — Expm),

k
an

which characterizes the coupling between the system and
baths. In the following we consider baths with Ohmic spectral
density I't g (E) = yE, where y is the effective system-bath
coupling strength for each bath [60].

We can thus write the steady-state single-particle density
matrix p as

Pm,n = <&jn&n>
1 o0 ’
= g/ dE{[G"(E)TL(E)G*(E)lpmf(E, Tr, it)

+ [GY(E)TR(E)G(E)lnmf(E, Tr, 1)}, 12)

where f(E,T,pn) = 1/(e®~/T — 1) is the Bose-Einstein
distribution function and u is the chemical potential of the
baths, which we take to be identical for both baths.

It follows that the particle current Jp and heat current Jp
are given by Landauer formula [61,62]

1 oo
Ip = E/ dE T(E)[f(E,TL, ) — f(E, Tr, )], (13)

and

o0
Jo = %/ dE(E— )T (ESfE, T, p)— f(E, Tr, p)],
h (14)
where T(E) = Tr[G"(E)T'L(E)G*(E)I'r(E)] is the transmis-
sion function [50]. It is important to note that Eq. (13) and
Eq. (14) are valid for two-terminal devices even when a mag-
netic field is present [63].

III. CHIRAL CURRENT PROPERTIES

In this section, we study the steady-state chiral current of
the ladder driven by two bosonic baths. The chiral current J,
is defined as

Je =Y (Jin— J2)/L. (15)
!

where L is the length of the ladder, J; ; and J; » are the local
particle currents in the upper and lower legs of the ladder.
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FIG. 3. (a) The chiral current 7, as a function J* and ¢. The
white dotted and dashed lines are identical to the red lines in Fig. 2.
The solid white line indicates the location of a horizontal cut at J* =
2.0. The four markers specify the location of the different system
parameters used in Fig. 4 and Fig. 5. (b) J. of the horizontal cuts at
various Tg and y. The solid lines correspond to coupling strengths
y = 0.1 and dashed lines correspond to y = 0.5. The left and right
bath potential is 4 = Ey — A with A = 0.1 and the length of the
ladder is L = 32. The other bath parameters are y = 0.1, 7. = 0.1
and Ty = 2.0.

The local currents 7, can be obtained from the continuity
equations

d(n
(8’;‘) T S (16)
a{n
(8;’2) =TJ-12— T2 — J12-1. (17)

Here, J;.1-.2 is the current in the /th rung of the ladder and
can be computed as

Tiam = (4] a2 + Hel), (18)
and

Tip = (19207 4,01 + Heel). (19)

A. Steady-state chiral current

In Fig. 3(a), we plot the chiral current 7. as a function of
J+ and ¢. The system-bath couplings are chosen to be y =
0.1 whereas the temperatures of the left and right bath are kept
at T, = 0.1 and Tg = 2.0, respectively. Figure 3(a) shows that
the chiral current is maximum around the dashed line, which
marks the transition from a single minima band structure to
a double minima band. This is similar to the chiral current
behavior for the ground state.

The dependence on temperature bias and system-bath cou-
pling is studied in Fig. 3(b). Interestingly, the chiral current
increases with the increase in temperature bias, while its de-
pendence on system-bath coupling strength is influenced by
the energy band structure of the system. In particular, we
observe that the chiral current is much more robust against
changes in the coupling strength when the underlying ground
state is in the Meissner phase. For the region where the under-
lying ground state is in the vortex phase, the chiral current can
change significantly with the coupling strength.

<« < <« <
1 <« < < < 1
Qe et = T I S g DT
'\50—~_—~,___z\_ SO ............................
-1 -1
10 15 20 25 10 15 20 25
l l

FIG. 4. Local particle current, 7 ,, along the 20 most central
sites of a L = 32 ladder, where [ indicates the index of the site
along the leg. The system parameters for (a)—(d) are ¢ = 1.6, J* =
2.0,1.2,0.8, 0.5, respectively. These parameters correspond to the
four markers in Fig. 3(a). Among the four sets of parameters, (a) is
located before the Meissner to vortex transition and (b)—(d) are
located after the transition. The dashed and dotted lines represent
J,.p along the upper and lower legs, respectively. The ladder inset
offers a visualization of J; , pattern, where the arrow points in the
direction of 7, , and the intensity of color represents the strength
of J,,. The bath parameters are y =0.1, T, = 0.1, Tx = 2, and
w=Ey,— A with A = 0.1.

B. Reminiscence of Meissner and vortex phases

As discussed in Sec. II B, by manipulating the tunneling
amplitude along the rungs J* and the phase ¢, a quantum
phase transition between the Meissner and vortex phases oc-
curs in the ground state of the noninteracting bosonic ladder.
As shown in Fig. 3, even in this nonequilibrium scenario we
can observe signatures of the underlying phase transition. To
probe further the reminiscence of Meissner/vortex phases in
the driven ladder, we study the local particle current, 7, p,
along the 20 most central sites of the ladder in Figs. 4 and 5.
We use the term “forward current” to denote the current flow-
ing along with the temperature bias (from right to left) and
“backward current” to denote the current flowing opposite to
the temperature bias. In Fig. 4 we consider y = 0.1, T, = 0.1,
Tk =2, u = Ey — A with A = 0.1. For parameters at which
the ground state of the ladder is in the Meissner phase, we
find strong forward and backward currents in different legs of
the ladder with little current modulation. One such scenario is
depicted in Fig. 4(a). Figures 4(b)—4(d) show modulations in
the current in both legs, a characteristic of the vortex phase.
Note that these panels correspond to parameters in the vortex
phase in the ground-state phase diagram. In addition, we find
a weaker backward current in the legs that completely disap-
pears in Fig. 4(d) for which the current 7; , in both legs are
in the forward direction. Note that each panel of Fig. 4 has
a schematic inset depicting the intensity and direction of the
current (current flows in the direction of the arrows and the
magnitude increases with the intensity of the color).
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FIG. 5. Identical analysis as for Fig. 4, except with a stronger
system-bath coupling y = 0.5.

In Fig. 5, we consider the case of stronger system-bath
coupling y = 0.5. Our results show that the structure of the
local current can be very different when the coupling is in-
creased. The local current structure in the parameter space for
which the ground state is in the Meissner phase, as shown
in Fig. 5(a), does not change significantly with the cou-
pling strength. On the other hand, the current modulations in
Fig. 5(b)-5(d) are suppressed and a stronger backward current
is found in the parameter space for which the ground state
is in the vortex regime. These observations suggest that the
parameter space for which the ground state is in the vortex
phase is more sensitive to changes in y. The behavior of the
local currents is in agreement with our findings in Sec. Il A,
in which we already observed that, compared to the parameter
space for which the ground state is in the vortex phase, the cur-
rent structure is more robust against changes in the coupling
strength in the parameter space for which the ground state is
in the Meissner phase.

IV. TRANSPORT ACROSS THE SYSTEM

In this section, we study the total particle current Jp and
heat current Jp across the ladder. We show that depending
upon the energy band structure of the ladder and system-bath
coupling, we see a different response of the particle and heat
currents. We will consider two different system-bath coupling
strengths ¥ = 0.1 and y = 0.5, respectively, in Secs. IV A
and IV B.

A. System-bath coupling strength y = 0.1

The temperature dependence of the currents in the ladder
is shown in Fig. 6. First, we analyze the scenario for which
the system-bath coupling strength y = 0.1. The top panels
correspond to the low temperature bias where the particle and
heat current have a similar pattern. This is because when the
temperature bias is small and the temperature of the baths
are low, most particles transported have energy close to the
ground state.

x107%

NW

0.5
0.4
0.3
0.2
0.1

0 /2 ™ /2 T
¢ ¢

FIG. 6. (al), (bl), (c1) Total particle current Jp, and (a2), (b2),
(c2) heat current Jp, as a function of J L and ¢. The bath parameters
are y = 0.1, T, = 0.1, and (al), (a2) Tx = 0.2, (bl), (b2) Tr = 2.0,
and (cl), (c2) Tx = 5.0. The left and right bath chemical potential is
uw = Ey — A with A = 0.1 and the length of the ladder is L = 32.

As the temperature bias is increased, the particle and heat
currents exhibit different responses for the different regions
(D—(V) presented in Fig. 2. In particular, we observe that in
region (IV) a relatively large Jp is accompanied by a rela-
tively weak Jp and vice versa in region (II). This discrepancy
can be understood in terms of the energy band structure. In
region (IV), the two energy bands are narrow and are sepa-
rated by a gap. At a moderate temperature [Figs. 6(b1)-6(b2)]
the upper band is inaccessible because of the gap. Most of
the particles transported are in the lower narrow band, which
has energy close to the ground state. Hence, a large particle
current and a low value of heat current are obtained in this
regime. For region (II), the energy bands are gapless and
wide. The absence of gap results in the occupation of upper
bands, which are higher in energy. Although the occupation
of the upper bands is small compared to the lower band, the
particles in these bands have much larger energy compared
to the ground-state ones. Hence, these particles contribute to
stronger Jp. Similarly, we see strong heat current in region (I)
with a weak particle current when the temperature is increased
to Tr = 5.0 as the upper band separated by a finite gap is
populated.

To corroborate our understanding we further plot the Jp
and Jp contributions from each energy band for different
values of J*- when ¢ = 0.5 in Fig. 7. Here, we focus on region
(D) in which the energy spectrum contains a gap. In Figs. 7(al),

245433-5



XING, XU, BALACHANDRAN, AND POLETTI

PHYSICAL REVIEW B 102, 245433 (2020)

al a2
9 (a) (@2)
- Jp k. -Jo
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FIG. 7. Approximated current contribution from the energy
bands in region (I) with coupling y = 0.1. The left panels (al) and
(b1) correspond to particle current Jp and the right panels, (a2)
and (b2), correspond to the heat current J,. The top panels (al)
and (a2) are for Tr = 2.0 while the bottom panels (b1l) and (b2)
are for 7Ty = 5.0. The red (blue) dotted line represents the current
contribution from the lower (upper) band, and the magenta dotted
line is the sum of the current contribution from the two bands.
The dashed line shows the total current in the ladder obtained from
Egs. (13), (14). The baths chemical potential is u = Ey — A with
A = 0.1 and the length of the ladder is L = 32. The other bath
parameters are 7;, = 0.1 and y = 0.1.

7(b1) we depict the particle current Jp, while in Figs. 7(a2),
7(b2) the heat current 7. Furthermore, Figs. 7(al), 7(a2) are
for a smaller hot bath temperature 7x = 2.0, while Figs. 7(b1),
7(b2) have a larger one at 7gx = 5.0. In order to compute
the contribution of the current from the different bands we
divide the single-particle density matrix, written using the
energy eigenbasis from the lower to the higher energy, in four
sectors as depicted in Fig. 8. The top left block includes the
occupation and coherences for eigenstates in the lower band.
The bottom right block includes occupation and coherence for
eigenstates in the upper band. The two off-diagonal blocks
describe the coherence between the two bands. One can thus

(@lan)  (alas) 1. (a]an-1)  (aan)
(@han)  (adag) 1. (alan-1)  (adan)
(G181} (Gn182) - (@no1Bno) (A idn)
(@har)  (ahae) i (ahan-1)  (Gfan)

FIG. 8. The single-particle density matrix in the single-particle
energy eigenbasis. First diagonal quadrant: occupation and coher-
ence within the lower band. Second diagonal quadrant: occupation
and coherence within the upper band. Off-diagonal quadrants: co-
herence between states in different bands.

x1073 Jo %1073

12

FIG. 9. Identical analysis as for Fig. 6, except with a stronger
system-bath coupling y = 0.5.

compute the particle or heat current that would result from
only considering the lower band (red dotted lines), only the
upper band (blue dotted lines), or the sum of the two (magenta
dotted lines) in Fig. 7, while the total current (considering also
interband coherence) is given by the black dashed line. In all
panels, we observe that the interband coherence does not play
a major role in these parameter regions when the energy gap
is present. We also observe that only for the heat current J
and for high enough temperature, the current from the lower
and the upper band is similar [see Fig. 7(b2)], despite the
particle current in the lower band being larger than that in
upper band [see Fig. 7(b1)]. This is because the particles in the
upper band carry more energy than in the lower band, and high
temperatures allow the upper band to be partially populated.

B. System-bath coupling strength y = 0.5

In Fig. 9, we explore the transport through the system for
a larger system-bath coupling y = 0.5. Figure 9 shows that
the pattern of Jp and Jp at y = 0.5, is significantly different
from y = 0.1. In particular, we observe that in regions (III)
and (IV), which correspond to an underlying vortex phase,
transport is much more suppressed compared to the case y =
0.1 in Fig. 6. We also observe that the transport is favoured
in region (I) where the presence of the energy gap in general
hinders the transport.

In order to understand the role of the system-bath coupling
y in transport properties, we investigate the variation of Jp
with y in Fig. 10. The top panel corresponds to values of J+
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FIG. 10. Jp versus y for different values of J' =

0.5,1.5,2.5,3.5,4.5. (a) ¢ =0.5, for which the ground state
is in the Meissner phase. (b) ¢ = 2.5, for which the ground state
is in the vortex phase. The left and right bath chemical potential is
uw=Ey— A with A =0.1 and the length of the ladder is L = 32.
The other bath parameters are 7}, = 0.1, Ty = 2.0.

and ¢ for which the underlying ground state is in Meissner
phase, regions (I) and (IT). The bottom panel corresponds to
the underlying vortex phase, regions (III) and (IV). In both
scenarios, the current is nonmonotonous, reaching a maxi-
mum for an intermediate value of the coupling y, and tends
to zero in the limit of extremely weak and strong coupling.
This behavior is expected as for small y the current would
increase for larger interactions with the baths, but when the
baths are too strongly coupled one faces quantum-Zeno-like
dynamics [64—67]. However, the dependence of current on
couplings is different in the two phases. In particular, we
see that Jp is more robust to changes in y in the Meissner
phase, especially at larger values of J*, when compared to the
vortex phase. Similar observations are drawn from the plots of
chiral current and local current in Fig. 3 and Fig. 5, where we
find that the vortex regime is more susceptible to changes in
coupling strength.

To analyze this further, we consider the Hamiltonian of the
ladder Ag from Eq. (1) and we introduce a small perturbation
on the sites coupled to the baths to investigate the changes in
the eigenstates of Hs. We consider an external perturbation
given by h

h=—£"("7a] ar1 + %) aLy)
+JH@] a1 +a) aco) + Hel, (20)

where § is a small perturbation. The perturbed Hamiltonian
Hpery = Hs + h is thus given by the ladder Hamiltonian Hg

(b) Region (II)
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FIG. 11. Probability distribution of the ground state of the system
in the top leg of the ladder as a function of the site number / for the
four different regions shown in Fig. 3. The amplitude for the bottom
leg is not shown for clearer illustration. The black lines represent
the ground state of the original unperturbed Hamiltonian Hg given
in Eq. (1). The red lines represent the ground state of the perturbed
system Hamiltonian I:Ipm.

plus an enhanced tunneling terms, which involve the sites that
are coupled to the baths.

In Fig. 11, we plot the ground state of Hg and ﬂpen in the
four different regions for & = 0.1. In regions (I) and (II), the
ground states are in the Meissner phase. In regions (III) and
(IV), the ground states are in the vortex phase. From Fig. 11
we observe that the vortex phase is much more susceptible
to the perturbations. We thus expect that the properties of
the systems in regions (III) and (IV) change more drastically
under the influence of the baths.

V. CONCLUSIONS

To conclude, we have studied the interplay between bound-
ary driving and gauge field using the minimal model of a
noninteracting bosonic ladder coupled to two bosonic baths
at its edges. The ground state of the bosonic ladder subjected
to the artificial gauge field exhibits a quantum phase transition
from the Meissner phase, with zero rung current, to the vortex
phase, which has finite rung current. The transition stems from
the change in the geometry of the two-band energy structure
of the bosonic ladder, where the number of minima increases
from one to two. Using the nonequilibrium Green’s function
method, we study the robustness of this phase transition in
the presence of bosonic baths. Our results show that the struc-
ture of the chiral currents are robust against the dissipative
environment when the ground state of the ladder is in a
Meissner phase. Despite the nonequilibrium setup, we find
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maximal chiral current across the ground-state phase transi-
tion boundary. Meanwhile, the chiral current can be enhanced
with increasing temperature bias. For moderate couplings, the
remnants of the signatures of the underlying Meissner and
vortex phases were observed, although at strong couplings the
vortexlike behavior is suppressed.

We have also discussed particle and heat transport across
the nonequilibrium ladder with temperature bias. When both
baths are at low temperatures, we find that the steady-state
phase diagram of particle and heat currents have similar pat-
terns. When increasing the temperature bias, the particle and
heat currents have different responses. In particular, we find a
strong particle current with weak heat current and vice versa.
We explain these intriguing behavior in terms of the two-band
energy structure of the bosonic ladder and the opening of a gap
between the two bands. Furthermore, we demonstrate a strong
dependence of system-bath coupling y on transport. Finally,
using a perturbed Hamiltonian we show that the ladder is more
resilient to coupling to the bath when the ground state is in the
Meissner phase as compared to the case when the ground state
is in the vortex phase.

Our study has shown that the energy band structure in
the ladder can be tuned to steer and control the particle,
heat, and also chiral currents. The inclusion of repulsive

on-site interactions on a two-leg bosonic ladder in the
presence of a uniform gauge field can realize many more
interesting states and phases depending on the strength of
interaction and the density of the bosons, such as Meissner-
Mott insulator, Meissner superfluid, vortex-Mott insulator,
and vortex superfluid [29,30]. However, the transport prop-
erties of this system remain largely unexplored. In general,
the introduction of on-site interactions may significantly alter
the transport properties of the driven system, as shown in
Ref. [42] for very different baths. It would thus be interesting
to investigate, in the future, the role of on-site interactions. In
addition, the effect of various system-bath coupling geometry
is another direction to explore.
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