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Twistons in graphene nanoribbons on a substrate
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Twisted nanoribbons from two-dimensional materials possess many unusual properties tunable by changing
the twist angle, for example, electro- and thermal conductivity, chemical properties, and stability against
buckling. New interesting phenomena can be observed when a twisted nanoribbon interacts with a substrate. Here
we report the results of a classical molecular dynamics study of a graphene nanoribbon twisted about its long
axis and interacting with a graphite substrate. Van der Waals interactions with the substrate lead to localization of
twisting and the formation of topological solitons called twistons. The topological charge of a twiston obtained
with the twist angle β multiple of π can be defined as q = β/π ; it can be positive or negative. Twistons can
move along the nanoribbon with very little radiation in the form of small-amplitude phonons. Scenarios of
twiston collisions are described depending on their topological charge and on the nanoribbon width. In narrow
nanoribbons twistons collide practically elastically, preserving their profiles and speeds after the collision, and
inelasticity of collisions increases with increasing nanoribbon width. Our results contribute to an understanding
of the behavior of two-dimensional material nanoribbons on a substrate.
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I. INTRODUCTION

Nanostructures composed of sp2 carbon, such as graphene
and carbon nanotubes, demonstrate a very high thermal con-
ductivity [1,2], outstanding mechanical properties including
record stiffness and tensile strength under tension [3,4], opti-
cal conductance [5], high electron mobility [6], and biological
compatibility [7].

Two-dimensional (2D) nanomaterials are easy to bend or
crumple, and they can be stabilized in such deformed states
by van der Waals forces. Secondary 3D structures of graphene
are presented by nanoscrolls or folds [8–12], windings around
carbon nanotubes [13,14], ripples and wrinkles [15–18],
crumpled graphene [19,20], kirigami and origami structures
obtained by cutting or folding [21–24], carbon nanotube
bundles [25–28], and others. Graphene can also be twisted
by applying external forces or spontaneously [29–36]. Graft
polymers have the form of a coil [37]. Actually, wrinkling,
folding, rolling, and twisting are common to any thin-sheet
material [38–41].

The prediction of materials’ behavior and properties in
the presence of twist deformation is an issue of particular
importance, e.g., for design of reliable materials for flexi-
ble electronics [42–44]. Note that in those works and in the
present study, graphene nanoribbons are twisted about the
long axis and here we do not discuss twisted bilayer graphene
[45].

The effect of twisting on the mechanical properties of
nanoribbons has been considered in the works [46–48]. The
relationship between the shear stress and the twist angle

was obtained for a graphene nanoribbon encapsulated in a
single-walled carbon nanotube [49]. Nanoribbon twisting in-
creases the area moment of inertia, which improves resistance
to lateral buckling under axial compression [47,48]. Struc-
tural transition in helicoidal nanosprings has been revealed
and explained by van der Waals interlayer interactions [50].
Electronic properties of twisted graphene, silicene, and black
phosphorus nanoribbons have been analyzed in Refs. [51–58].
The twisting of nanoribbons results in nonhomogeneous de-
formation across the nanoribbon, which leads to formation of
spatially localized phonon states [36]. The thermal conduc-
tivity of twisted nanoribbons was studied in Refs. [48,59–
62]. According to the study [48], the thermal conductivity
of twisted graphene nanoribbon as the function of the twist
angle first increases quadratically, then starts to decrease after
reaching a maximum. This is explained by the competition
of two factors: for small twist angles tensile strain is induced
along the nanoribbon edges, which enhances the contribution
to thermal conductivity from ZA phonons. For larger twist an-
gles, tensile strain reduces the rigidity of valence bonds, which
slows down phonon group velocity and reduces thermal con-
ductivity [48]. Decrease of thermal conductivity was observed
for folded [8], wrinkled [63], coiled [64], and twisted [65]
graphene. Kirigami graphene can demonstrate a considerably
enhanced thermal conductivity [66].

2D materials can support propagation of solitary waves,
for example, shock waves [67], wrinklons [16], ripplocations
[68–72], and discrete breathers [73–75].

Our aim here is to study the interaction of twisted graphene
nanoribbons with a graphite substrate and the emergence
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FIG. 1. The stationary state of a 2π twiston in a graphene
nanoribbon of N = 100 transverse cells (length Lx = 24.31 nm) and
K = 32 (width Ly = 3.26 nm) on the h-BN substrate.

of localized states, here called twistons. Note that the term
twiston was used earlier for long-wave phonon torsion vibra-
tions of carbon nanotubes [76,77]. However, in the present
study, this term is used for topological solitons that appear in
twisted nanoribbons interacting with a substrate; see Fig. 1.

Suppose the nanoribbon is twisted by the angle β multiple
of π . If the nanoribbon interacts with a substrate, the twisted
region will be localized and a twiston with the topological
charge q = β/π will be formed.

We describe the computational model in Sec. II and report
properties of equilibrium twistons in Sec. III. Twiston dynam-
ics are analyzed in Sec. IV, twiston collisions are investigated
in Sec. V, and Sec. VI concludes our work.

II. MODEL

Our simulations are performed with the use of classical
molecular dynamics based on the interatomic potentials de-
veloped in Ref. [78].

A rectangular graphene nanoribbon with a zigzag longitu-
dinal edge consisting of N × K carbon atoms is considered;
see Fig. 2(a). Here N is the number of transverse transla-
tional cells separated by the vertical dotted lines numbered
by index n, K is the even number of atoms in the cell in-
dexed by k, r0 = 1.418 Å is equilibrium valence bond length,
and the longitudinal period of the nanoribbon is a = √

3r0 =
2.456 Å. Nanoribbon length is Lx = (N − 1)a and width is
Ly = (3K/4 − 1)r0. Carbon atoms have a mass M0 = 12mp,
where mp = 1.6601 × 10−27 kg is the proton mass. It is as-
sumed that the atoms at the nanoribbon edges are chemically
modified by hydrogen atoms, which is taken into account by
setting the mass of the edge atoms M1 = 13mp.

The surface of crystalline graphite is used as a flat substrate
for the nanoribbon. The properties of graphite and other sub-
strates are discussed below.

The Hamiltonian of the system includes four terms,

H = T + P + V + Z, (1)

where T is the kinetic energy of atoms, P is the potential
energy of valence C-C interactions in the nanoribbon, V is
the energy of van der Waals interactions in the nanoribbon,

FIG. 2. (a) Graphene nanoribbon in the x, y plane with the x axis
(y axis) oriented along the zigzag (armchair) direction; r0 = 1.418 Å
is equilibrium valence bond length. The longitudinal period of the
nanoribbon is a = √

3r0. Transverse translational cells separated by
the vertical dotted lines are numbered by the index n = 1, 2, . . . , N
and the atoms in each cell are indexed by k = 1, 2, . . . , K (K is even).
Nanoribbon length is Lx = (N − 1)a and width is Ly = (3K/4 −
1)r0. The edge atoms shown in dark gray are chemically modified
by hydrogen atoms. (b) Interatomic interactions described by the
potential Eq. (4) including the energy of valence bonds, valence
angles, and cis- and trans-dihedral angles.

and Z is the potential energy of the van der Waals interactions
between the nanoribbon and the substrate.

Let

un,k (t ) = (xn,k (t ), yn,k (t ), zn,k (t )) (2)

be the radius vector describing the position of an atom with
the indices n, k at the time t .

Kinetic energy is calculated according to the expression

T = 1

2

N∑
n=1

K∑
k=1

Mn,k (u̇n,k, u̇n,k ), (3)

where the mass of the carbon atom Mn,k = M1 for the edge
atoms and Mn,k = M0 otherwise; the overdot denotes differ-
entiation with respect to time, so that u̇n,k is the atom velocity
vector and the round brackets represent the inner product.

The valence part of the potential depends on variations in
bond lengths, bond angles, and cis- and trans-dihedral angles
between the planes formed by four neighboring carbon atoms
[see Fig. 2(b)] and it can be written in the form

P =
∑
�1

U1 +
∑
�2

U2 +
∑
�3

U3 +
∑
�4

U4. (4)

Here summation over �i, with i = 1, 2, 3, 4, means the
summation over all valence bonds, valence angles, and cis-
and trans-dihedral angles of the nanoribbon, respectively [79].
Valence bonds are described by the Morse potential

U1(u1, u2) = ε1{exp[−α0(r − r0)] − 1}2, r = |u2 − u1|,
(5)

where ε1 = 4.9632 eV is the energy of the C–C valence bond
and bond stiffness is α0 = 1.7889 Å−1. For the valence angle
the potential reads

U2(u1, u2, u3) = ε2(cos ϕ − cos ϕ0)2, (6)

cos ϕ = (u3 − u2, u1 − u2)/(|u3 − u2| · |u2 − u1|), (7)
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where ε2 = 1.3143 eV, and the equilibrium value of the angle
is ϕ0 = 2π/3. The numerator of Eq. (7) is the inner product
of vectors u3 − u2 and u1 − u2, and the denominator is the
product of their moduli.

The potential for the cis- and trans-dihedral angles is

Ui(u1, u2, u3, u4) = εi(cos φ), (8)

cos φ = (v1, v2)/(|v1| · |v2|), (9)

v1 = (u2 − u1) × (u3 − u2), (10)

v2 = (u3 − u2) × (u3 − u4), (11)

where ε3 = ε4 = 0.499 eV and the equilibrium value of the
dihedral angle is π .

Nonvalence interactions of the carbon atoms of the
nanoribbon are described by the (6,12) Lennard-Jones poten-
tial [80]

U0(r) = εc{[(rc/r)6 − 1]2 − 1}, (12)

where εc = 0.002757 eV, rc = 3.807 Å.
The energy of van der Waals interactions in the nanoribbon

in Eq. (1) is

V =
∑
�0

U0, (13)

where summation over �0 means the summation over all pairs
of atoms which do not interact via any of the valence bonds
Ui, i = 1, 2, 3, 4.

The van der Waals interactions of the carbon atoms of the
nanoribbon with a substrate in Eq. (1) are described by the
Lennard-Jones potential (m, l ):

Z =
N∑

n=1

K∑
k=1

W (zn,k ),

W (z) = εz[m(z0/z)l − l (z0/z)m]/(l − m), (14)

where zn,k is the distance from the nanoribbon carbon atom
to the outer surface of the substrate, which is the plane z = 0.
W (z) in Eq. (14) is the interaction energy of a carbon atom of
the nanoribbon as a function of the distance to the substrate.
This energy was found numerically for different substrates
[68,81]. It was shown that the energy W (z) can be described
with high accuracy by the (m, l ) Lennard-Jones potential,
where the exponents satisfy l > m. The potential W (z) has
a minimum at z = z0 with W (z0) = −εz. This means that the
binding energy of a carbon atom with the substrate is εz and
z0 is the equilibrium distance from the plane of the substrate
surface.

Parameters of the potential W (z) for different substrates
are as follows [68,81]. For the ice crystal surface Ih, the
interaction energy is εz = 0.029 eV, the equilibrium distance
is z0 = 3.005 Å, and the exponents are l = 10, m = 3.5. For
the surface of the α-graphite crystal, εz = 0.0518 eV, z0 =
3.37 Å, l = 10, m = 3.75. For the surface of the hexagonal
boron nitride crystal (h-BN), εz = 0.0903 eV, z0 = 3.46 Å,
l = 10, m = 3.75.

Further information on the development of the interatomic
potentials used in this study can be found in the works [78,82].

The initial conditions are described below for each specific
problem.

III. EQUILIBRIUM STATES OF TWISTED NANORIBBONS
ON THE SUBSTRATE

To find the equilibrium state of a nanoribbon, the potential
energy minimization problem,

E = P + V + Z → min : {un,k}N, K
n=1,k=1, (15)

is solved numerically using the conjugate gradient method.
Initial configurations are created as follows. The nanorib-

bon is divided into three parts 1 � n � N1, N1 < n < N2,
N2 � n � N and the second (middle) part turns in vacuum
into a helicoid with a twist angle multiple of π . The first
and third parts remain flat and parallel to the substrate, which
is parallel to the x, y plane. Then, the following problem of
energy minimization is solved numerically,

P + V +
N∑

n=1

δn

K∑
k=1

W (zn,k ) → min :

δn = 1 for n � N1, n � N2; δn = 0 for N1 < n < N2,

(16)

where the interaction of the middle part of the nanoribbon
with the substrate is switched off. Thus, the stationary state
of the twisted nanoribbon was obtained, the ends of which
(n � N1, n � N2) are in contact with the flat substrate, and
the central (twisted) part (N1 < n < N2) is in a suspended
state. The solution to problem Eq. (15) was obtained from
the solution to problem Eq. (16) in the limit N1 → N/2,
N2 → N/2 + 1, i.e., when the length of the suspended part
of the nanoribbon vanishes.

In order to characterize the geometry and energy of
twistons we consider the total energy per atom in the nth
transverse cell of the nanoribbon,

En = Tn + Pn + Vn + Zn, (17)

where Tn, Pn, Vn, and Zn are the kinetic energy, valence and
van der Waals potential energy of the nanoribbon, and energy
of interactions between the nanoribbon and the substrate per
atom in the nth transverse cell of the nanoribbon, respectively.
These energies are calculated using the expressions given
above for T , P, V , and Z performing summations over the
nth transverse cell.

We define the energy density distribution along the
nanoribbon as

pn = En − E0∑N
n=1(En − E0)

, (18)

where E0 is the energy level of the system in the ground state
and the numerator gives the deviation of the total energy of the
transverse cell from the ground level. Then the x coordinate of
the center of the twiston can be found as the center of gravity
of pn,

x̄ = an̄ = a
N∑

n=1

npn. (19)
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TABLE I. Dependence of the normalized energy E/K , dimen-
sionless diameter D/a, and vertical amplitude A for the 2π twiston
on the number of atoms in the transverse cell of the nanoribbon K (on
the nanoribbon width) for a nanoribbon lying on a flat crystal surface
of ice Ih, α-graphite, and h-BN (energies are in eV, amplitudes in
nm).

K

8 16 32 64

E/K 1.0778 1.2619 1.4566 1.8593
Ice Ih D/a 11.16 13.82 18.90 31.35

A 1.600 1.876 2.214 2.829
E/K 1.4445 1.7071 2.0511 2.8081

α-graphite D/a 10.68 12.81 17.67 29.82
A 1.437 1.631 2.924 2.379

E/K 1.8876 2.3008 2.9337 4.2195
h-BN D/a 8.01 10.90 16.50 28.17

A 1.051 1.305 1.652 2.001

The diameter (width) of the twiston can be calculated as

D = a

⎧⎨
⎩1 + 2

[
N∑

n=1

(n − n̄)2 pn

]1/2
⎫⎬
⎭. (20)

The twiston profile is also characterized by the maximal
distance of the atoms in nth transverse cell from the substrate,

An = max
1�k�K

zn,k . (21)

The twiston vertical amplitude is

A = max
1�n�N

An. (22)

First we discuss the effect of the substrate on the equilib-
rium structure of the 2π twiston and then the main results are
presented for the α-graphite substrate.

A. Effect of the substrate

The result of relaxation for a nanoribbon of length Lx =
24.31 nm (N = 100) and width Ly = 3.26 nm (K = 32), lying
on the h-BN substrate, is shown in Fig. 1 for twist angle 2π .
The 2π -twiston is formed in the middle of the nanoribbon.

We calculate the normalized potential energy of the
twiston, E/K , the dimensionless diameter, D/a, and the
twiston amplitude A. These parameters are collected in Table I
for the three different substrates and for four different values
of K , which define the nanoribbon width.

Analyzing the data presented in Table I, one can con-
clude that, for any substrate, twiston energy, diameter, and
amplitude grow with increasing nanoribbon width (with K).
Comparison of the results for different substrates reveals that
the twiston energy is minimal for ice, maximal for h-BN,
and has intermediate value for graphite. This correlates with
the strength of interaction of graphene nanoribbon with the
substrate, εz, which is minimal for ice and maximal for h-BN.
On the other hand, twiston diameter and amplitude decrease
with increasing εz, being maximal for ice and minimal for
h-BN.

FIG. 3. The stationary states of π twistons in a nanoribbon
of N = 100 transverse cells (length Lx = 24.31 nm) and different
widths: (a) K = 8 (Ly = 0.7090 nm), (b) K = 16 (Ly = 1.560 nm),
and (c) K = 28 (Ly = 2.836 nm). Energy of twistons is E = 6.103,
22.533, and 60.597 eV. Twiston width is D = 2.149, 3.483, and
4.998 nm. (d) Tilted fold topologically equivalent to the twiston in
(c) formed from the twiston as the result of relaxation in the presence
of small perturbations; energy of the fold is 39.28 eV. A flat graphite
substrate is shown in green (gray).

B. Graphite substrate

In the rest of this work α-graphite is taken as the substrate.
The result of relaxation for nanoribbons of length Lx =

24.31 nm (N = 100) and different widths is shown in Fig. 3
and Fig. 4 for twist angles equal to π and 2π , respectively.

In Fig. 3, the nanoribbon width is (a) K = 8 (Ly = 0.709
nm), (b) K = 16 (Ly = 1.56 nm), and (c) K = 28 (Ly = 2.836
nm). Static π twistons in (a) to (c) have energy Eπ = 6.103,

FIG. 4. The stationary states of 2π twistons in a nanoribbon
of N = 100 transverse translational cells (length Lx = 24.31 nm)
and different widths: (a) K = 8 (Ly = 0.709 nm), (b) K = 16 (Ly =
1.56 nm), (c) K = 32 (Ly = 3.261 nm), and (d) K = 64 (Ly = 6.665
nm). Energy of twistons is E = 11.51, 27.19, 65.32, and 179.0 eV, re-
spectively. Twiston width is D = 2.623, 3.146, 4.340, and 7.324 nm,
respectively.
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FIG. 5. The stationary states of (a) two isolated 2π twistons (energy 2E2π = 38.236 eV) and (b) the bound state of two 2π twistons
(E2π+2π = 37.684 eV) in a nanoribbon with length N = 200, Lx = 48.87 nm, and width K = 12 (Ly = 1.134 nm).

22.533, and 60.597 eV, respectively. Twistons in (a) to (c) have
width D = 2.149, 3.483, and 4.998 nm, respectively. It turns
out that the twistons in relatively narrow nanoribbons, e.g.,
in (a) and (b), are stable. The π twiston in (c) is metastable
and after relaxation in presence of small perturbations it trans-
forms into the topologically equivalent tilted fold shown in
(d). The energy of the fold in (d) is E = 39.28 eV which is
about 2/3 of the twiston energy in (c).

In Fig. 4, the nanoribbon width is (a) K = 8 (Ly = 0.709
nm), (b) K = 16 (Ly = 1.56 nm), (c) K = 32 (Ly = 3.261
nm), and (d) K = 64 (Ly = 6.665 nm). The energy of static
2π twistons in (a) to (d) is E2π = 11.51, 27.19, 65.32, and
179.0 eV, respectively. The width of twistons in (a) to (d) is
D = 2.623, 3.146, 4.34, and 7.324 nm, respectively. In all
cases 2π twistons are stable with respect to small perturba-
tions.

Note that the 2π twiston is topologically equivalent to two
π twistons. Interestingly, the energy of a 2π twiston is always
smaller than the energy of two π twistons, E2π < 2Eπ . Thus,
the formation of a bound state of two π twistons leads to a
significant energy gain, especially for wide nanoribbons.

In Fig. 5, stationary states of (a) two separated 2π twistons
and (b) the bound state of two 2π twistons are shown.
In both cases the nanoribbon width is K = 12 (Ly = 1.134
nm), and length is N = 200 (Lx = 48.87 nm). The ener-
gies of the structures in (a) and (b) are 2E2π = 38.236 and
E2π+2π = 37.684 eV, respectively. The bound state has some-
what smaller energy meaning that the 2π twistons attract
each other even though their topological charge is the same.
Actually the bound state can be regarded as a 4π twiston
(binding energy 2E2π − E2π+2π = 0.552 eV).

The structure of other stationary 4π twistons is presented
in Fig. 6 in nanoribbons of different widths: (a) K = 12 (Ly =
1.134 nm, twiston energy E4π = 34.51 eV), (b) K = 20 (Ly =
1.985 nm, E4π = 66.43 eV), and (c) K = 40 (Ly = 4.112 nm,
E4π = 161.9 eV). The nanoribbon length here is N = 200,
Lx = 48.87 nm. We note that the energy of the 4π twiston
in (a) is smaller than the energy of the bound state of two
2π twistons shown in Fig. 5(b) (E4π < E2π+2π ). Twistons
in Figs. 6(a) and 6(b) produce a tilt angle for the nanorib-
bon ends, while the high-symmetry twiston in Fig. 6(c) does
not.

Figure 7 presents the effect of the nanoribbon width (K)
on (a) energy E , (b) width D, and (c) amplitude A of the π

twistons [see Figs. 3(a)–3(c)], 2π twistons [see Figs. 4(a)–
4(d)], and topologically equivalent tilted fold [see Fig. 3(d)].
Note that the energy in (a) is normalized to the nanoribbon
width K . Twiston width in (b) is normalized to the longitudi-
nal period of the nanoribbon a.

In Fig. 7, curves 1, 4, and 7 give the results for the 2π

twiston; curves 2, 5, and 8 stand for the π twiston; and curves
3, 6, and 9 for the tilted fold. As can be seen from (a),
the π twiston has the lowest energy in narrow nanoribbons
(K < 7) and for larger width the 2π twiston has the lowest
energy. The tilted fold has energy lower than the π twiston
for K > 14 meaning that in wide nanoribbons the π twiston
is unstable and transforms into the tilted fold, as illustrated in
Figs. 3(c) and 3(d). The driving force for this transformation is
the increase in the number of van der Waals bonds. Curves in
(b) increase monotonically for the π twiston (curve 4) and 2π

twiston (curve 5). On the other hand, the width of the tilted
fold (curve 6) has a maximum at K = 34 and decreases for

FIG. 6. The stationary states of 4π twistons in nanoribbons
of width (a) K = 12 (Ly = 1.134 nm, energy E4π = 34.51 eV),
(b) K = 20 (Ly = 1.985 nm, E4π = 66.43 eV), and (c) K = 40
(Ly = 4.112 nm, E4π = 161.9 eV). Nanoribbon in all three cases has
N = 200 transverse cells and length Lx = 48.87 nm.
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FIG. 7. Dependence of (a) energy, (b) width, and (c) amplitude
on the nanoribbon width K for 2π twiston (curves 1, 4, and 7), π

twiston (curves 2, 5, and 8), and tilted fold (curves 3, 6, and 9).
Potential energy in (a) is normalized to the nanoribbon width K ;
width of the solitons D is normalized to the longitudinal period of
the nanoribbon a.

larger K . The same is true for the amplitude of the considered
topological solitons, as follows from (c).

IV. PROPERTIES OF MOVING TWISTONS

It turns out that π and 2π twistons can move along the
nanoribbon. Let us describe how twistons are set in motion in
our calculations.

The Hamiltonian Eq. (1) defines the following set of equa-
tions of motion:

M
d2

dt2
un = − ∂

∂un
H, n = 1, 2, . . . , N, (23)

where un = {(xn,k (t ), yn,k (t ), zn,k (t ))}K
k=1 is a 3K-dimensional

vector that defines atom coordinates of the nth transverse unit
cell of the nanoribbon. Suppose that the set of equations of
motion Eq. (23) has a solution in the form of a traveling
solitary wave,

un(t ) = u(na − st ), (24)

where a is the longitudinal period of the nanoribbon and s is
the wave velocity. Then the second derivatives with respect to

FIG. 8. Dependence of (a) energy, (b) width, and (c) amplitude
on twiston velocity s for different nanoribbon widths K . Curves 1,
7, 13 and 2, 8, 14 give the dependencies for the π twiston and 2π

twiston, respectively, for the nanoribbon with K = 12. Curves 3, 9,
15 and 4, 10, 16 give the results for the π twiston and 2π twiston,
respectively, for the nanoribbon with K = 20. Curves 5, 11, 17 and 6,
12, 18 are for the π twiston and 2π twiston, respectively, for K = 40.

time can be discretized as follows:

d2

dt2
un = s2(un+1 − 2un + un−1)/a2. (25)

Substituting Eq. (25) in the set of the equations of motion
Eq. (23), one obtains a set of discrete equations whose so-
lution is the extremal point of the functional

F =
N∑

n=1

{
− Ms2

2a2

K∑
k=1

[(xn+1,k − xn,k − a)2

+ (yn+1,k − yn,k )2 + (zn+1,k − zn,k )2]

+ ∂

∂un
(P + V + Z )

}
. (26)

Thus, a solitary wave in a nanoribbon can be sought as a
solution to the minimization problem

F → min : {un}N
n=1. (27)

The numerical solution of the minimization problem
Eq. (27) has shown that solutions corresponding to π and 2π
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FIG. 9. Collision of (a) two π twistons, (b) π and −π twistons, (c) 2π and π twistons, (d) two 2π twistons, (e) 2π and −2π twistons,
and (f) 2π and −π twistons. The time dependence of the energy distribution E along the nanoribbon is shown (n is the translational cell
number). The nanoribbon consists of N = 300 cells, in each cell K = 12 atoms (Lx = 73.43 nm, Ly = 1.134 nm). The twistons have velocities
s1 = −s2 = 400 m/s = 4 Å/ps.

twistons exist for velocities s �= 0. If {(x0
n,k, y0

n,k, z0
n,k )K

k=1}N
n=1

is solution of the problem (27), then the solitary wave can be
excited with the following initial conditions:

xn,k (0) = x0
n,k, yn,k (0) = y0

n,k, zn,k (0) = z0
n,k,

ẋn,k (0) = −s
(
x0

n+1,k − x0
n,k − a

)
/a,

ẏn,k (0) = −s
(
y0

n+1,k − y0
n,k

)
/a,

żn,k (0) = −s
(
z0

n+1,k − z0
n,k

)
/a. (28)

We note that the twistons can move only if the nanoribbon
ends are parallel to each other. As can be seen from Figs. 3,
4, and 6, this condition is satisfied for π and 2π twistons, but
not always for 4π twistons. This condition is also not met for
the tilted fold shown in Fig. 3(d).

In Fig. 8, for moving π and 2π twistons we show the
dependencies of (a) twiston total energy, (b) width, and
(c) amplitude on propagation velocity s for three different
nanoribbon widths, K = 12, 20, and 40. Curves 1, 7, 13
and 2, 8, 14 are for π and 2π twistons, respectively, in the
nanoribbon with K = 12; curves 3, 9, 15 and 4, 10, 16 are
for π and 2π twistons, respectively, in the nanoribbon with
K = 20; curves 5, 11, 17 and 6, 12, 18 are for π and 2π

twistons, respectively, in the nanoribbon with K = 40.
Within the studied range of twiston velocities, they propa-

gate along the nanoribbon as topological solitary waves that
practically do not radiate energy. In particular, Figs. 9 and
10 show almost complete absence of radiation from traveling
twistons before the collisions, and radiation can be seen after
twiston collisions.

It can be seen from Fig. 8 that parameters of π twistons
depend very weakly on twiston velocity (see dashed curves),
especially in the narrow nanoribbon (curves 1, 7, 13 for K =

12 and curves 3, 9, 15 for K = 20). For the wider nanoribbon
(K = 40) the energy of the π twiston noticeably increases
with velocity; see curve 5 in (a). For 2π twistons all studied
parameters noticeably increase with increasing s; see solid
curves in Fig. 8.

V. TWISTON COLLISIONS

Since twistons can move as solitary waves practically ra-
diating no energy (see Figs. 9–11); it is tempting to see the
scenarios of twiston collisions.

Collisions will be called nearly elastic if the profile and
velocities of twistons after the collision are nearly the same
as those before the collision. If, as a result of a collision, the
properties of twistons change noticeably, such collisions are
considered inelastic.

Twiston collisions are simulated in the nanoribbon having
N = 300 transverse cells (length Lx = 73.43 nm). At the ini-
tial time t = 0, the first twiston with a topological charge q1

and velocity s1 = 400 m/s is centered on the cell n1 = 75. The
second twiston with a topological charge q2 having a velocity
s2 = −s1 is centered on the cell n2 = 225. The simulation was
carried out in a nanoribbon with clamped edges n = 1 and n =
N . Collisions of twistons with charges q1, q2 = ±π,±2π in
nanoribbons of width K = 12, 20, 40 are shown in Figs. 9–11,
respectively. Before the collision, the twistons move toward
each other at a constant speed maintaining their profiles.

In a narrow nanoribbon with K = 12, the collision of π

twistons (q1 = q2 = π ) occurs almost elastically; the twistons
are reflected from each other [see Fig. 9(a)]. Collision of
twistons of the opposite sign (q1 = π , q2 = −π ) leads to their
recombination [see Fig. 9(b)]. The collision of 2π twistons
(q1 = q2 = 2π ) leads to the formation of their bound state
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FIG. 10. Collision of (a) two π twistons, (b) π and −π twistons, (c) 2π and π twistons, (d) two 2π twistons, (e) 2π and −2π twistons,
and (f) 2π and −π twistons. The time dependence of the energy distribution E along the nanoribbon is shown (n is the translational cell
number). The nanoribbon consists of N = 300 cells, in each cell K = 20 atoms (Lx = 73.43 nm, Ly = 1.985 nm). The velocity of twistons is
s1 = −s2 = 400 m/s = 4 Å/ps.

[stationary 4π twiston; see Fig. 9(d)]. Collision of 2π twistons
of the opposite signs (q1 = 2π , q2 = −2π ) leads to their
inelastic reflection accompanied by intense phonon emission
[see Fig. 9(e)]. For twistons with topological charges q1 =
2π , q2 = π a collision leads to the formation of their bound
state, accompanied by intense energy release [see Fig. 9(c)].

For q1 = 2π , q2 = −π the collision of the twistons leads to
their inelastic reflection [see Fig. 9(f)].

An increase in the width of the nanoribbon does not
lead to a qualitative change in the collision scenarios, only
the inelasticity of collisions is enhanced. So in a nanorib-
bon with K = 20 and 40, the collision of twistons with

FIG. 11. Collision of (a) two π twistons, (b) π and −π twistons, (c) 2π and π twistons, (d) two 2π twistons, (e) 2π and −2π twistons,
and (f) 2π and −π twistons. The time dependence of the energy distribution E along the nanoribbon is shown (n is the translational cell
number). The nanoribbon consists of N = 300 cells, in each cell K = 40 atoms (Lx = 73.43 nm, Ly = 4.112 nm). The velocity of twistons is
s1 = −s2 = 400 m/s = 4 Å/ps.
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topological charges q1 = π , q2 = −π leads to the formation
of a fold (ripplocation [68]) having a zero topological charge
[see Fig. 10(b) and Fig. 11(b)]. In a nanoribbon with K = 40,
the collision of twistons with the same charges q1 = q2 = π

already leads not to their repulsion, but to the formation of
a stationary bound state with a topological charge q = 2π

[see Fig. 11(a)]. Collision of 2π twistons of the same sign
already leads to their inelastic reflection from each other [see
Fig. 11(d)], and the collision of 2π twistons of the opposite
sign results in the formation of a stationary vertical fold [see
Fig. 11(e)].

VI. CONCLUSIONS

Using molecular dynamics simulations, it was shown that
the spatial localization of twisting in a twisted nanoribbon
occurs due to interaction with the substrate. Localized twisted
regions behave like topological solitons, called twistons here.
Energy, width, and amplitude of static π and 2π twistons were
determined as the functions of nanoribbon width; see Fig. 7.

It was demonstrated that twistons can be set in motion; see
Sec. IV. For the velocities less than 4 Å/ps, π and 2π twistons
propagate practically radiating no energy. Energy, width, and
amplitude of moving π and 2π twistons were determined
as the functions of propagation velocity for different values
of nanoribbon width; see Fig. 8. Parameters of π twistons

depend very weakly on the velocity, while for 2π twistons the
effect of propagation velocity on twistons’ properties is more
pronounced.

Collisions of twistons with various positive and negative
topological charges were analyzed. In narrow nanoribbons,
collisions are more elastic and more reminiscent of collisions
of topological solitons in Klein-Gordon systems [83–88]. In
particular, in narrow nanoribbons, π twistons of the same
charge repel each other like Klein-Gordon kinks, while they
attract each other and annihilate in the case of opposite charge,
like a Klein-Gordon kink and antikink. In wider nanoribbons
collisions are less elastic and twistons of the same and oppo-
site charge tend to form bound states, which is unusual for the
Klein-Gordon solitary waves.

Static and dynamic properties of twistons and their col-
lisions reported here for graphene nanoribbon on graphite
substrate can be similar to those for nanoribbons and sub-
strates of different chemical composition.
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