
PHYSICAL REVIEW B 102, 245430 (2020)

Coulomb blockade oscillations of heat conductance in the charge Kondo regime

D. B. Karki
Division of Quantum State of Matter, Beijing Academy of Quantum Information Sciences, Beijing 100193, China

(Received 1 September 2020; revised 16 November 2020; accepted 17 December 2020; published 29 December 2020)

We develop a method of theoretically investigating the charge, energy, and heat transport in the presence of
the charge Kondo correlations. The Coulomb blockade oscillations of heat conductance in the single-electron
transistor exhibiting charge Kondo effects are investigated. We explore the Wiedemann-Franz ratio in both
charge-single-channel and charge-two-channel Kondo regimes. The close connections of our findings with the
recent experiments on multichannel charge Kondo effects are discussed.
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I. INTRODUCTION

The rapid progress of quantum technologies has led to new
experiments in addition to the development of new theoretical
approaches to understand quantum transport phenomena at
the nanoscale [1]. A prototypical nanoscale device of common
interest is a single-electron transistor (SET), which contains a
metallic grain, the quantum dot (QD), tunnel coupled to two
electronic reservoirs [1,2]. The transport characterization of
such a SET is mainly governed by the Coulomb blockade
(CB) phenomena [3]. Consequently, the electronic conduc-
tance and the thermopower of a SET show the CB oscillations
as a function of the gate voltage as reported in the seminal
work [4]. The theory of CB oscillation based on the sequential
tunneling approach originally developed in Ref. [3], however,
does not consistently explain the low-temperature transport
characteristics of a SET since the corresponding transport is
dominated by the inelastic cotunneling mechanisms [5,6].

The complete theory of low-temperature thermoelectrics of
a SET came after the seminal works [7–11]. These studies
have investigated the CB oscillations of thermoelectric coef-
ficients of a SET with the QD strongly coupled to one of the
leads by a quantum point contact as in the experiment reported
in Ref. [6]. Interestingly, the SET setup with the QD strongly
coupled to one of the leads was shown to be associated
with the single-channel Kondo (1CK) and two-channel Kondo
(2CK) effects [7]. The Kondo effect involving the Coulomb
blockade in a QD arises from the two possible charge states
in the QD which are adjusted to the same energy by tuning
the gate voltage to the critical point [8]. These two charge
states then behave fundamentally the same as the effective
spin eigenstates, and hence, the electron spin plays the role
of two Kondo channels [12]. Therefore, the spin polarization
by magnetic field results in the charge-1CK effects, and the
electrons with an effective spin 1/2 provide the realization of
charge-2CK effects in the original formulation [7].

The Kondo paradigm provides a valuable tool for under-
standing the physics of strongly correlated systems both in
Fermi-liquid (FL) and non-FL (NFL) regimes [13–22]. So
far, much progress has been made toward understanding spin

Kondo effects that stem from a localized spin at a discrete
energy level in QD nanostructures [23]. Although both charge
Kondo effects and spin Kondo effects can be observed in
the QD, their behaviors and the corresponding fundamental
mechanisms are strikingly different [12]. Consequently, one
expects different scaling behaviors of the transport properties
in the spin and charge versions of the Kondo effects.

The charge-1CK falls into the FL universality class; the
description of charge-2CK is beyond the scope of FL the-
ory [17,19]. Therefore, the theoretical advancements made
in Refs. [7–11] also provide a viable way of experimentally
accessing the NFL regime, as reported in recent experiments
on the charge-2CK effect [24]. In addition, since the first
proposal [7], various transport properties in charge-1CK and
charge-2CK regimes have been intensively investigated by
different theoretical methods [8–11,25–28]. In recent years,
the interest in charge-2CK has been expanded to the study
of energy and heat transport [29,30], which can be measured
with existing experimental setups [24,31].

For a QD-based SET in the presence of the voltage bias
and temperature gradient, various measures of thermoelectric
response have been the subject of recent experimental and the-
oretical studies [1]. It has been almost two decades since the
development of a full-fledged theory of thermopower in the
charge-2CK regime of a QD [9]. The original theory has been
extended to more complex geometries exhibiting charge-2CK
effects [25,26]. However, a lot less attention has been paid to
the investigation of heat response in the charge-2CK regime,
although it is within experimental access [24,30]. In this work,
we aim to fill this gap by developing a general theoretical
framework dealing with the charge, energy, and heat transport
in the charge Kondo regime based on the original proposal [9].
In particular, we focus mainly on the aspects of heat transport
in the presence of the charge Kondo correlation because the
corresponding charge and energy transport were thoroughly
investigated in Refs. [9,10].

This paper is organized as follows. In Sec. II, we dis-
cuss briefly the common measures of thermoelectric transport,
including the electronic conductance G, thermopower S (See-
beck coefficient), and electronic thermal conductance K.
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In addition, we present the connection between G and S
as predicted by the semiclassical Cutler-Mott relation. We
also discuss the impact of the Kondo correlation on the
Wiedemann-Franz ratio connecting G, S, and K. We present
the model description and an outline of the calculation of the
transmission coefficient, the fundamental quantity character-
izing the transport of charge, energy, and heat, of a QD-based
SET in Sec. III. Section IV is devoted to the investigation of
the charge, energy, and heat transport in the case of spinless
electrons exhibiting the charge-1CK effects. The transport in
the charge-2CK regime is explored in Sec. V. Section VI
contains the conclusion of our work together with possible
future research plans based on the present work.

II. THERMOELECTRIC TRANSPORT COEFFICIENTS

The general setup for the thermoelectric transport contains
the quantum impurity (QD) tunnel coupled to two external
electron reservoirs. The left (L) and right (R) reservoirs are
in equilibrium, separately, at temperatures Tγ (γ = L, R) and
chemical potentials μγ . Once the temperature gradient �T ≡
TL − TR and the voltage bias e�V ≡ μL − μR are established
across the setup, the heat current Ih and charge current Ic start
to flow. For simplicity of the presentation, henceforth, we use
the system of atomic units e = kB = h̄ = 1. The charge and
heat currents in the linear response theory are then connected
by the Onsager relations [32,33],(

Ic

Ih

)
=

(
L11 L12

L21 L22

)(
�V
�T

)
. (1)

The Onsager transport coefficients Li j in Eq. (1) provide all
the thermoelectric measurements of interest in the linear re-
sponse regime [34]. To further deal with the coefficients Lij,
we set up the transport integrals in terms of the transmission
coefficient T (ε, T ) [35–38]:

Ln ≡ 1

4T

∫ ∞

−∞
dε

εn

cosh2
(

ε
2T

) T (ε, T ), n = 0, 1, 2, (2)

where T is the reference temperature.
The transport integrals Ln are then directly connected to

the Onsager transport coefficients Li j , namely, L11 = L0 and
L12 = L1/T [39]. In addition L12 and L21 are related by the
Onsager reciprocity relation, and the coefficient L22 relates the
electronic thermal conductance with L11 and L12 [1]. While
the electronic conductance directly follows from L0, the ther-
mopower or the Seebeck coefficient is usually obtained as
S = L1/L0T . In the case of noninteracting electrons in a
metal, the Cutler-Mott relation [40] connects the thermopower
SCM with the logarithmic derivative of the energy-dependent
electronic conductance G(E ) with respect to the energy E

SCM = π2

3
T

d ln G(E )

dE
. (3)

The deviation of S from SCM amounts to strong electron cor-
relation in the system [41]. In addition to the Seebeck effect,
the Peltier effects are also of common interest in generic
thermoelectric experiments [1]. The Peltier effect describes
the generation of a heat current Ih due to the charge current
Ic driven in a circuit under the isothermal condition TL = TR

by an applied voltage bias �V . The Peltier coefficient �γ

associated with the γ reservoir is defined as �γ = Iγ

h /Ic|TL=TR

[42]. This coefficient provides valuable information about the
characterization of how good a material is for thermoelectric
solid-state refrigeration or power generation [1]. In addition,
the linear response (LR) Peltier coefficient �0 is related to
the corresponding Seebeck coefficient S = SLR via the Kelvin
relation �0 = T S [39].

Investigations beyond thermopower are usually done by
electronic thermal conductance K. The Wiedemann-Franz
(WF) law connects the electronic thermal conductance K to
the electrical conductance G in the low-temperature regime
of a macroscopic sample by a universal constant, the Lorenz
number L0, defined as L0 ≡ K/GT = π2/3 [1,35]. However,
transport through nanodevices is generally expected to violate
the WF law even in the FL regime [1]. Interestingly, the WF
law was recently reported to be satisfied even in the NFL
regime of Kondo effects [30,43]. The violation or the vali-
dation of the WF law is usually accounted for by studying the
Lorenz ratio R, which is expressed in terms of the transport
integrals [44],

R(T ) ≡ L(T )

L0
= 3

(πT )2

[
L2

L0
−

(
L1

L0

)2]
. (4)

Any deviation of R from unity, therefore, amounts to the
violation of the WF law.

From the preceding discussion, it is apparent that the
fundamental quantities for characterizing the LR transport
properties of a SET considered in this work are the transport
integrals Ln. Furthermore, Ln are the function of the trans-
mission coefficient T (ε, T ), which depends on the detail of
the model. In the following section, we discuss in detail the
calculation of the transmission coefficient applicable to both
the charge-1CK and charge-2CK regimes of a QD-based SET.

III. MODEL HAMILTONIAN

We consider a QD (metallic island) coupled to the two
electronic reservoirs, the left (L) lead and the right (R) lead.
While the coupling between the QD and left lead is provided
by a tunneling junction, that with the right lead is achieved
by a single-channel quantum point contact (QPC) with re-
flection amplitude |r| (see Ref. [7] for details). In addition,
the conductance of the tunneling junction connecting the QD
to left lead GL is assumed to be much smaller than that of
the other junction GR. This results in the thermal equilibrium
between the QD and the right lead. For this case, namely, the
QD coupled weakly to the left contact and strongly to the
right contact, the explicit form of the low-energy Hamiltonian
H = H0 + HL + HR + HC is well known in the language
of bosonization [9] (for clarity of presentation, in the fol-
lowing we write the Hamiltonian from Ref. [9]). Here the
noninteracting part of the Hamiltonian reads [9,10]

H0 =
∑
kσ

εkσ c†
kσ

ckσ +
∑

σ

εσ d†
σ dσ

+ vF

2π

∑
σ

∫ ∞

∞

{
π2�2

σ (x) + [∂xφσ (x)]2
}
dx, (5)

where the operator ckσ annihilates an electron in the momen-
tum state k with spin σ =↑,↓ in the left lead, dσ annihilates
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an electron of spin σ in the QD, and vF stands for the
Fermi velocity. The bosonized displacement operator φσ and
corresponding conjugated momentum operator �σ satisfy
the usual commutation relation connecting the δ function:
[φ(x),�(y)] = iδ(x − y). The Hamiltonian HL describing
the tunneling from the left lead to the QD is given by

HL =
∑
kσ

(tkc†
kσ

dσ + H.c.), (6)

with tk being the tunneling amplitude. The backscattering in
the QPC is accounted for by the Hamiltonian

HR = −D

π
|r|

∑
σ

cos[2φσ (0)], (7)

where D is the bandwidth. In addition, the Coulomb interac-
tion in the QD is described by the Hamiltonian

HC = EC

[
n̂ + 1

π

∑
σ

φ(0) − N

]2

. (8)

Here n̂ is the integer-valued operator that commutes with the
electron annihilation operator of the left contact ψL, N is a
dimensionless parameter proportional to the gate voltage, and
EC is the charging energy of the island (see Ref. [10] for
details).

IV. TRANSMISSION COEFFICIENT IN THE CHARGE
KONDO REGIME

In the following we describe the tunneling through the left
contact within the second order of perturbation in the corre-
sponding tunneling matrix element tk . Under this assumption
the electron transport processes are explained in terms of the
tunneling density of states (DOS) of the left lead νL(ε) and
that of the QD νD(ε) [9]. In addition, due to the weak energy
dependence, henceforth, we consider the case of νL(ε) = νL.
We then define the finite-temperature T transmission coef-
ficient T (ε, T ) characterizing the charge, energy, and heat
transport through the left contact by the following relation
[7,8]:

T (ε, T ) = −GL

ν0
νD(ε, T ). (9)

In Eq. (9), GL ≡ 2πνLν0〈|tkk′ |2〉 is the conductance of the
left barrier for noninteracting electrons in the QD, and ν0

stands for the DOS in the QD which is no longer renormal-
ized by the electron interactions. The tunneling DOS of the
QD is then given in terms of the electron Green’s function
(GF) [7,8],

νD(ε, T ) = − 1

π
cosh

( ε

2T

)∫ ∞

−∞
G
(

1

2T
+it

)
eiεt dt, (10)

where G(τ ) = −〈TτψL(τ )ψ†
L(0)〉 is the Matsubara GF defined

in terms of the operator ψL, which annihilates an electron in
the QD at the position of the left contact [8].

Rescaling the operator ψL ≡ ψLF in terms of another
operator F which lowers n̂ by unity (which means the com-
mutation relation [F, n̂] = F has to be satisfied), we define the
GF G(τ ) given in Eq. (10) as the product of the noninteracting

part G0(τ ) and the correlator K (τ ) accounting for the electron
interactions in the system [7–11],

G(τ ) = G0(τ ) K (τ ) = − πν0T

sin(πT τ )
K (τ ). (11)

Here the time order correlator K (τ ) is defined in terms of
F (τ ) such that K (τ ) ≡ 〈Tτ F (τ )F †(τ )〉, with Tτ being the
corresponding time ordering operator.

Plugging the transmission coefficient given by Eq. (9) into
the transport integrals (2), followed by using the exact inte-
grals calculated by the method of contour integration

In ≡
∫ ∞

−∞

xn ei2T tx

cosh x
dx, I0 = π

cosh(πT t )
,

I1 = i
π2

2

sinh(πT t )

cosh2(πT t )
, I2 = π2

4

[ 2π

cosh3(πT t )
−I0

]
, (12)

we obtain the most general form of the transport coefficients
in terms of the electron correlator K (τ ):

L0 = −πT
GL

2

∫ ∞

−∞
dt K

(
1

2T
+it

)
1

cosh2(πT t )
,

L1 = − i(πT )2 GL

2

∫ ∞

−∞
dt K

(
1

2T
+it

)
sinh(πT t )

cosh3(πT t )
,

L2 = − (πT )3 GL

2

∫ ∞

−∞
dtK

(
1

2T
+it

)
2

cosh4(πT t )
−(πT )2L0.

(13)

Computation of thermoelectric transport coefficients in
Eq. (13) essentially needs the explicit form of the electron
correlator K (τ ). In addition, K (τ ) also depends on the number
of conduction channels in the contact which connects the left
lead and the QD. For our purpose of investigating the single-
channel and two-channel charge Kondo effects, it is, however,
sufficient to consider a single-channel contact connecting the
left lead and the QD. Furthermore, since the electron spin
behaves fundamentally the same as the Kondo channels, the
transport mechanism for spinless electrons and that for the
spin-1/2 electrons are strikingly different. In the following
we discuss the case of spinless electrons and that with spin
1/2 separately.

V. THE CHARGE-1CK REGIME: SPINLESS ELECTRONS

In the case of spinless electrons, which is generally
achieved by applying the magnetic field, the SET setup ex-
hibits the charge-1CK effect. The time order correlator in the
charge-1CK regime has been shown to possess a compact
analytical expression [10],

K

(
1

2T
+it

)
=

(
π2T

γ EC

)2 1

cosh2(πT t )

[
1−2γ ξ |r| cos(2πN )

− i4π2ξγ |r| T

EC
sin(2πN ) tanh(πT t )

]
,

(14)

where ξ 	 1.59 is a constant and the symbol γ is related
to the Euler constant C such that ln γ = C. In addition, we
explicitly assumed the low-temperature regime satisfying the
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condition T 
 EC. Substitution of the correlator (14) into
Eq. (13) results in the following expressions for the transport
integrals:

L0 = 2

3
GL

(
π2T

γ EC

)2

[1 − 2γ ξ |r| cos(2πN )],

L1 = −8π7ξGL

15γ
T

( T

EC

)3

|r| sin(2πN ),

L2 = 2

5
GL(πT )2

(
π2T

γ EC

)2

[1−2γ ξ |r| cos(2πN )]. (15)

To obtain the compact form of the transport integrals (15),
we integrated out the t variable by the method of contour
integration. Namely, we used integrals of the form

On ≡
∫ ∞

−∞
dt

eiat

coshn(πT t )
; (16)

for n = 4 and n = 6

O4 = − aπ

6(πT )4

(a2 + 4π2T 2)

sinh(a/2T )
,

O6 = − aπ

120(πT )6

(a4+20π2a2T 2+64π4T 4)

sinh(a/2T )
. (17)

The transport coefficients given by Eq. (15) result in the
expressions of the thermopower and the Lorenz ratio

S = −4π3ξγ

5EC
|r| sin(2πN ) T, (18)

R = 9

5
− 3

π2
S2. (19)

To obtain the thermopower expression (18), we used only
the leading term in the conductance. We note that the ex-
pression of thermopower presented in Eq. (15) was already
established in Ref. [9]. The quadratic temperature scaling of
the electronic conductance L0 and the linear suppression of
thermopower with temperature as well as the reflection coeffi-
cient as seen from Eqs. (14) and (18) signify the FL behavior
is similar to the single-channel spin Kondo effects. More-
over, at the particle-hole (PH) symmetric point (S = 0) the
Lorenz ratio attains a universal constant of 9/5 even at finite
temperature [45].

In addition, from the Lorenz ratio given in Eq. (18), one
can analyze the low-temperature behavior of the electronic
thermal conductance K ∝ L0RT . Since G ∝ T 2 and S ∝ T ,
the leading temperature scaling of the conductance is K ∝ T 3.
This cubic temperature scaling of K is in contrast to the single-
channel spin Kondo effects where the leading temperature
scaling behavior of K is linear due to the presence of unitary
conductance.

VI. THE CHARGE-2CK REGIME: ELECTRONS
WITH SPIN

The SET setup with electrons having an effective spin
1/2 exhibits the charge-2CK effect in the low-temperature
regime T 
 EC. The time order correlator accounting for the
interactions in the case of spin-1/2 electrons as computed in

Ref. [9] is given by

K

(
1

2T
+it

)
= π�T

2γ EC
I0−2T

EC
|r|2 sin(2πN ) ln

( EC

�+T

)
I1,

In = 1

cosh(πT t )

∫ ∞

−∞
dx

xn

x2+�2

eitx

cosh(x/2T )
,

(20)

where we defined the gate voltage dependent parameter
� ≡ 8γ EC|r|2 cos2(πN )/π2. By substituting Eq. (20) into
Eq. (13), we obtained the following expressions of the trans-
port integrals:

L0 = �GL

8γ EC
P0, L2 = GL�

48γ EC
T 2J ,

L1 = −GL

6π

T 2

EC
|r|2 sin(2πN ) ln

( EC

� + T

)
P1. (21)

The coefficients appearing in Eq. (21) are expressed in the
form of integrals,

Pn =
∫ ∞

−∞
dx

x2n(π2+x2)

x2+(�/T )2

1

cosh2(x/2)
, n = 0, 1,

J =
∫ ∞

−∞
dx

x4 + 4π2x2 + 3π4

x2 + (�/T )2

1

cosh2(x/2)
. (22)

To arrive at Eq. (21), we integrated out the t variable
exactly by using the method of contour integration on the
following integrals:∫ ∞

−∞
dt

eixt

cosh5(πT t )
= −π

x4 + 10(πT )2x2 + 9(πT )4

24(πT )5 cosh(x/2T )
,

∫ ∞

−∞
dt eixt sinh(πT t )

cosh4(πT t )
= − iπx

6(πT )4

x2 + (πT )2

cosh(x/2T )
,

∫ ∞

−∞
dt

eitx

cosh3(πT t )
= − π

2(πT )3

x2 + (πT )2

cosh(x/2T )
. (23)

The general behavior of the transport integrals in Eq. (21)
can be studied by numerical integration of Eq. (22). Nonethe-
less, the most interesting behavior of the transport integrals
is obtainable by an exact analytical procedure. Since the inte-
grals in Eq. (22) possess two parameters, T and �, we define
two asymptotic regimes, T � � and T 
 �. To calculate an-
alytically the asymptotes of P0 and J in the regime of T � �,
we use the Lorentzian approximation of the δ distribution,
δ(x) = lima→0

a
π

1
x2+a2 , to obtain

�

T
P0

∣∣∣∣
T ��

= π3,
�

T
J

∣∣∣∣
T ��

= 3π5. (24)

The similar result for P1 is obtained, however, by expanding
the corresponding integrand in the Taylor series with respect
to �/T and using the Sommerfeld integrals

P1|T �� =
∫ ∞

−∞
dx

x2 + π2

cosh2(x/2)
+O

(
�

T

)2

= 16

3
π2. (25)

In addition for the calculation of P1 in the regime T � �, we
also expanded the logarithmic factor in Eq. (22). Exploiting
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these procedures, we obtain the following analytical asymp-
totes of the transport integrals:

L1|T �� = −8πGL

9

T 2

EC
ln

(EC

T

)
|r|2 sin(2πN ),

L0|T �� = π3GLT

8γ EC
, L2|T �� = π5GLT 3

16γ EC
. (26)

From the transport integrals presented in Eq. (26), we obtain
the expressions for the thermopower and Lorenz ratio:

S|T �� = −64γ

9π2
ln

(EC

T

)
|r|2 sin(2πN ), (27)

R|T �� = 3

2
− 3

π2
( S|T �� )2. (28)

We note that the thermopower equation (27) (originally
uncovered in Ref. [9]) diverges for vanishingly small tem-
perature due to the assumed asymptotic behavior T � �.
However, the thermopower vanishes in the middle of the
Coulomb blockade valley N = 1/2, which corresponds to the
exact PH symmetric point. At this PH symmetric point, the
Lorenz ratio becomes a universal number R = 3/2, and hence,
the electronic thermal conductance acquires the quadratic
temperature scaling behavior K|T ��,N=1/2 ∝ T 2.

To obtain the correct behavior of thermopower in the very
low temperature regime, in the following we consider the
opposite limit T 
 �. We use a technique similar to that
exploited for the discussion of the T � � regime; namely, we
Taylor expand the integrand of the integrals P0,1 and J given
in Eq. (21) with respect to the small parameter T/� and retain
the lowest-order term. Then, using the Sommerfeld integrals,
we obtain the asymptotic forms of the transport integrals in
the low-temperature regime satisfying T 
 �,

L1|T 
� = −π7GL

60γ 2
T

( T

EC

)3 1

|r|2
sin(πN )

cos3(πN )
ln

(EC

�

)
,

L0|T 
� = 2GLπ2

3γ EC�
T 2, L2|T 
� = 2GLπ4

5γ EC�
T 4. (29)

Therefore, the thermopower and the Lorenz ratio in the limit
of T 
 � read [46]

S|T 
� = −π3

5

T

EC
tan(πN ) ln

[
π2/8γ

|r|2 cos2(πN )

]
, (30)

R|T 
� = 9

5
− 3

π2
( S|T 
� )2. (31)

From the last equation it is seen that the Lorenz ra-
tio also attains a universal number at the PH symmetric
point similar to the single-channel situation (for the corre-
sponding discussion of spin-2CK effects, see Ref. [43]). The
beyond-asymptotic behavior of the Lorenz ratio is obtained
by numerically solving Eq. (22) for R, which is presented
in Fig. 1, showing the interplay of R between the regimes
T 
 � and � 
 T . The T 2 scaling of the conductance and
the linear temperature scaling of the thermopower in the low-
temperature regime T 
 � result in the cubic temperature
scaling behavior of the corresponding electronic thermal con-
ductance K|T 
� ∝ T 3.

The temperature scaling behavior and complete interplay
of other thermoelectric measures such as the power factor Q ≡

10

Lo
re

nz
 ra

tio

Gate voltage N

3
2

9
5

0.4

0.2

0.1

0.05

0.025

0.0125

0.00125

FIG. 1. Variation of the Lorenz ratio with gate voltage at the
strong-coupling regime T 
 � of the charge-2CK effect for fixed
temperatures.

S2G and the dimensionless figure of merit ZT ≡ S2GT/K
(neglecting the phonon contribution to the thermal conduc-
tance) can be easily obtained from Eqs. (26) and (29). Since
the power factor Q depends linearly on the conductance of the
left contact GL 
 GR, the model of the charge-2CK regime
suggested in Ref. [9], however, suffers from the smallness of
the power factor from an application point of view. Given that,
however, the figure of merit to the lowest order of approxima-
tion does not depend on GL, thus providing the appreciable
value of ZT .

To study the deviation of thermopower from that predicted
by the Cutler-Mott relation given in Eq. (3), first, we express
the conductance Eq. (21) in terms of the polygamma function.
In particular, the integral P0 in Eq. (21) is expressed as

P0

4
=

(
πT

�

)2

+
[

1− �

2πT
ψ (1)

(
1

2
+ �

2πT

)][
1−

(
πT

�

)2]
,

where the trigamma function is defined as ψ (1)(y) =∑∞
n=0 (y + n)−2. For the SET considered in this work, we have

the gate voltage E ≡ 2ECN , which results in the Cutler-Mott
thermopower SCM [47]:

SCM = − π2

6

T

EC

d ln G

dN
=

[
2γ |r|2 sin(2πN )

3

× 4− 4�
πT ψ (1)

(
1
2+ �

2πT

)+[
1−(

�
πT

)2]
ψ (2)

(
1
2+ �

2πT

)
2�
πT +[

1−(
�

πT

)2]
ψ (1)

(
1
2 + �

2πT

)
]
,

(32)

with ψ (2)(y) ≡ ∂
∂y ψ

(1)(y) being the tetragamma function. The
discrepancy between the thermopower calculated by the for-
mula S = L1/T L0 from Eq. (21) and that calculated from the
Cutler-Mott formula (32) is shown in Fig. 2. The significant
deviation of thermopower at low temperature from that pro-
vided by the Cutler-Mott relation signifies the prominent role
of strong electron correlation in the system. Similar behavior
of the thermopower was reported in an experimental study of
the single-channel spin Kondo effect [41].
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FIG. 2. Gate voltage variation of thermopower for the charge-2CK effect obtained from the Cutler-Mott relation SCM and by the explicit
calculation of thermopower S at different temperatures as indicated in the corresponding plots. For each plot we chose the reflection amplitude
to be |r|2 = 0.1.

VII. CONCLUSIONS

We investigated the heat transport through a SET in the
charge-1CK (FL) and charge-2CK (NFL) regimes by ex-
tending the original theory of thermopower developed in
Ref. [9]. In addition to the electronic conductance and the
thermopower, we obtained compact analytical expressions for
the Cutler-Mott thermopower and the WF ratio for both the
charge-1CK and charge-2CK effects. We characterized the
different transport regimes of a SET exhibiting charge Kondo
correlations and explored the universal value of the WF ratio
at the corresponding particle-hole symmetric point. The exact

asymptotes and the temperature scaling behavior of electronic
thermal conductance of a SET in charge-1CK and charge-2CK
regimes were explored. Significant deviation of thermopower
from the semiclassical Cutler-Mott relation was investigated
and explained in terms of the charge Kondo correlations. An
interesting direction for future work would be to investigate
the heat transport in the presence of the charge Kondo corre-
lation considering more complex setups [28] and to extend the
presented calculations to the beyond-linear response regime.
Investigations of the impact of channel asymmetry on the heat
transport in the charge Kondo regime also appears to be a valid
avenue for future research.
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[34] T. A. Costi and V. Zlatić, Phys. Rev. B 81, 235127 (2010).
[35] V. Zlatic and R. Monnier, Modern Theory of Thermoelectricity

(Oxford University Press, Oxford, 2014).
[36] D. B. Karki and M. N. Kiselev, Phys. Rev. B 96, 121403(R)

(2017).
[37] D. B. Karki and M. N. Kiselev, Phys. Rev. B 100, 125426

(2019).
[38] D. B. Karki and M. N. Kiselev, Phys. Rev. B 100, 195425

(2019).
[39] T.-S. Kim and S. Hershfield, Phys. Rev. B 67, 165313 (2003).

245430-6

https://doi.org/10.1016/j.physrep.2017.05.008
https://doi.org/10.1134/1.1130849
https://doi.org/10.1103/PhysRevB.46.9667
https://doi.org/10.1209/0295-5075/22/1/011
https://doi.org/10.1103/PhysRevB.55.R10197
https://doi.org/10.1103/PhysRevLett.81.5197
https://doi.org/10.1103/PhysRevB.51.1743
https://doi.org/10.1103/PhysRevB.52.16676
https://doi.org/10.1103/PhysRevLett.86.280
https://doi.org/10.1103/PhysRevB.66.045301
https://doi.org/10.1103/PhysRevB.65.115332
https://doi.org/10.1143/JPSJ.74.59
https://doi.org/10.1143/PTP.32.37
https://doi.org/10.1088/0022-3719/3/12/008
https://doi.org/10.1103/PhysRevB.1.1522
https://doi.org/10.1103/PhysRevB.1.4464
https://doi.org/10.1007/BF00654541
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1051/jphys:01980004103019300
https://doi.org/10.1080/00018738300101581
https://doi.org/10.1016/0550-3213(90)90440-O
https://doi.org/10.1103/PhysRevB.48.7297
https://doi.org/10.1088/2058-7058/14/1/28
https://doi.org/10.1038/nature15384
https://doi.org/10.1103/PhysRevB.82.113306
https://doi.org/10.1103/PhysRevB.92.045125
https://doi.org/10.1103/PhysRevLett.120.186801
https://doi.org/10.1103/PhysRevB.97.085403
https://doi.org/10.1103/PhysRevLett.125.026801
https://doi.org/10.1103/PhysRevB.102.041111
https://doi.org/10.1126/science.aan5592
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1103/PhysRev.38.2265
https://doi.org/10.1103/PhysRevB.81.235127
https://doi.org/10.1103/PhysRevB.96.121403
https://doi.org/10.1103/PhysRevB.100.125426
https://doi.org/10.1103/PhysRevB.100.195425
https://doi.org/10.1103/PhysRevB.67.165313


COULOMB BLOCKADE OSCILLATIONS OF HEAT … PHYSICAL REVIEW B 102, 245430 (2020)

[40] M. Cutler and N. F. Mott, Phys. Rev. 181, 1336 (1969).
[41] R. Scheibner, H. Buhmann, D. Reuter, M. N. Kiselev, and L. W.

Molenkamp, Phys. Rev. Lett. 95, 176602 (2005).
[42] E. N. Bogachek, A. G. Scherbakov, and U. Landman, Phys. Rev.

B 60, 11678 (1999).
[43] D. B. Karki and M. N. Kiselev, Phys. Rev. B 102, 241402(R)

(2020).
[44] D. B. Karki, Phys. Rev. B 102, 115423 (2020).
[45] Note that the original proposal in Ref. [9] is limited to the

temperature, which should be larger than the tunnel coupling
strength to the left lead. Therefore, the exactly zero temperature
limit cannot be reached in our work.

[46] This expression of thermopower was predicted in Ref. [9]. The
contribution of our work is therefore the analysis of heat trans-
port, namely, the behavior of the Lorenz ratio in the presence of
the charge Kondo correlation.

[47] To obtain the analytical form of the Cutler-Mott thermopower,
we first defined the integrals Mn = 1

4

∫
s∞
−∞dx xn+2

x2+a2
1

cosh2(x/2)
=

1
a Re[Zn+2(−ia)], with the function Z satisfying Zn(x) =
ibn−1 + xZn−1(x) for n � 1. The constant factors bn are
obtained as bn ≡ 1

4

∫ ∞
−∞ dx xn

cosh2(x/2)
, b0 = 1, b2 = π2

3 , b4 =
7π4

15 , . . . . Then we used Z0(x) = 1
2π

ψ (1)( 1
2 + ix

2π
), ψ (1)(y) =∑∞

n=0
1

(y+n)2 .

245430-7

https://doi.org/10.1103/PhysRev.181.1336
https://doi.org/10.1103/PhysRevLett.95.176602
https://doi.org/10.1103/PhysRevB.60.11678
https://doi.org/10.1103/PhysRevB.102.241402
https://doi.org/10.1103/PhysRevB.102.115423

