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Band flattening in buckled monolayer graphene
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The strain fields of periodically buckled graphene induce a periodic pseudomagnetic field (PMF) that modifies
the electronic band structure. From the geometry, amplitude, and period of the periodic pseudomagnetic field, we
determine the necessary conditions to access the regime of correlated phases by examining the band flattening.
As compared to twisted bilayer graphene the proposed system has the advantages that (1) only a single layer of
graphene is needed, (2) one is not limited to hexagonal superlattices, and (3) narrower flat bandwidth and larger
separation between flat bands can be induced. We, therefore, propose that periodically strained graphene single
layers can become a platform for the exploration of exotic many-body phases.
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I. INTRODUCTION

Recently, twisted bilayers became a hot topic in 2D ma-
terials research due to the emergence of correlated phases
when the rotation angle between the two layers is close to so
called “magic angles” [1–5]. Theory predicted that by rotating
two lattices the moiré modulation will influence the interlayer
electron tunneling within the moiré supercell leading to the
formation of moiré bands [6–11]. The width of the bands de-
pends on the rotation angle. However, this dependence is not
monotonic. Bistritzer and MacDonald showed that at certain
angles the band velocity drops to zero leading to extremely
flat bands [7], i.e., “magic angles.” This led to the discovery of
superconducting [1] and Mott insulator [2] phases in twisted
bilayer graphene rotated by approximately 1.1◦.

However, adjusting the angle between the two monolayers
is nothing but a challenging task. The process is slow and
lacks sufficient control over the rotation angle. On the other
hand, flat bands are not a phenomenon solely related to twisted
bilayer graphene. Recently, researchers found that in the case
of ABC-stacked trilayer graphene one can create flat bands
just by placing a hBN layer on top of it [12–14]. The already
flat, low-energy cubic bands of the trilayer become signif-
icantly narrower due to a moiré induced modulation even
without twisting two materials. Furthermore, it was shown
that the bandwidth can be controlled by electrostatic gating.

In previous examples, because of the hexagonal graphene
and hBN lattices, only hexagonal moiré lattice structures
can be realized. This moiré modulation had a key role in
the formation of flat bands. But this is not the only way
to create flat bands. In fact, any periodic modulation that is
strong enough to localize electrons will result in modulated
superlattice bands whose width will depend on parameters
of that modulation. For example, a periodic magnetic field is
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predicted to result in flat bands [15–18], where the bandwidth
depends both on the period of the field and its magnitude.
The advantage of such an external induced periodic magnetic
field is that one is not restricted to the symmetries of the
lattice of the material like in the case of twisted structures.
This provides additional degrees of freedom to manipulate
electron densities and control electron correlations. However,
it comes with a price. Usually, extremely strong fields of order
of tens (or hundreds) of Tesla are needed to sufficiently reduce
the band width to make it smaller than the strength of the
interparticle interactions.

More promising approaches are based on the use of pseu-
domagnetic fields (PMFs) rather than real fields. In a recent
study, Jiang et al. reported the emergence of flat bands and
a Mott insulating phase in a periodically buckled graphene
lattice [19]. The periodically buckled graphene can appear
because of different reasons: due to different thermal expan-
sion coefficients of the graphene and its substrate [20], during
the growth due to defects in the substrate [21], doping of the
substrate [22], straining its lattice [23], or even due to strains
in twisted structures [24]. Zhang et al. showed theoretically
that 2D buckling modes appear in case of graphene on hBN in
the presence of strong biaxial strain [25]. The induced poten-
tial acts as a pseudomagnetic field on electron motion, which
provides additional knobs to tune the bandwidth. Unlike real
magnetic fields, strain-induced pseudomagnetic fields have
been shown to generate strong fields of few hundreds of Tesla
[26]. Hence, the fast development of the field and the lack
of theoretical studies motivated us to perform an extensive
study of the appearance of flat bands in periodically strained
structures.

This paper is organized as follows. In Sec. II we introduce
the theoretical model and present the numerical methods that
are used to simulate buckled systems. In Sec. III we give the
results for the triangular PMF mode. Results for the hexagonal
and herringbone buckling modes are given in Sec. IV. We
calculate the spatial LDOS maps as well as current plots
for the three low-energy flat bands in the case of triangular
PMF and the hexagonal buckling modes. These results are
shown in Sec. V. In Sec. VI we study the influence of a
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homogeneous real magnetic field on flat bands. Our final
remarks and conclusions are given in Sec. VII.

II. METHODS

To calculate the electronic properties of buckled two-
dimensional sheets we use the nearest-neighbor tight-binding
(TB) model given by

H =
∑
i, j

ti j (r)c†
i c j, (1)

where c†
i (ci ) is the creation (annihilation) operator for an elec-

tron at site i and ti j is the hopping energy between sites i and
j. The numerical results presented in this paper are calculated
using two user-friendly software packages: Pybinding [27]
and KITE [28], designed for fast generation of tight-binding
Hamiltonians and supported with efficient solvers for calcula-
tions of different electronic properties of TB systems. Notice
that ti j in Eq. (1) is a spatially dependent function. The spatial
distribution of the hopping integral is solely determined by
the straining configuration which defines the profile of the
pseudomagnetic field. The change of the equilibrium positions
of atoms in a graphene sheet by strain is mirrored in the
change of the hopping energies as

ti j (r) = t0e−β(ri j/a0−1), (2)

where t0 = −2.8 eV is the equilibrium hopping energy, a0 =
0.142 nm is the length of the unstrained C–C bond, and ri j =
|ri − r j | is the length of the strained bond between atoms i and
j. The decay factor β = ∂ log t/∂ log a |a=a0≈ 3.37 describes
the change of the hopping energy with the modulation of the
bond length [29].

The spatial variation of the hopping energy is equivalent
to the generation of a pseudomagnetic vector potential, A =
(Ax, Ay, 0), which can be evaluated around the K point using
[29]

Ax − iAy = − 1

evF

∑
j

δti je
iK·rij , (3)

where the sum runs over all neighboring atoms of atom i,
vF = 3ta0/2 is the Fermi velocity, and δti j = (ti j − t0). It is
known that by using a linear expansion of Eq. (3) one can
easily connect the vector potential to the strain tensor ε in the
following way [30]:

A = A0

(
εxx − εyy

−2εxy

)
, (4)

where εi j are the elements of the strain tensor and A0 =
− h̄β

2eacc
. Such a linear expansion has been shown to be a good

approximation up to strain of 10% [31]. The pseudomagnetic
field is then obtained as

Bps =
�

×A. (5)

Here we will consider three different geometries of PMFs
generated by three different buckling profiles: triangular PMF
mode, hexagonal buckling mode, and herringbone buckling
mode.

The triangular PMF mode has been experimentally ob-
served in Ref. [19] where the authors reported on the existence

of flat bands due to periodic PMF generated by the two-
dimensional buckling in graphene, and, therefore, we will
study this configuration in detail. The hexagonal buckling
mode is chosen since the out-of-plane deformation of the
hexagonal monolayers stacked on top of each other (e.g.,
graphene on hBN, twisted-bilayer graphene, etc.) has hexago-
nal symmetry [32–34], while the herringbone mode is shown
to be the lowest-energy solution of all buckling modes in the
case of large straining [25] and consequently, of high interest
for buckled structures.

The deformation fields given by these different modes are
plugged into the Hamiltonian by changing the hopping energy
using Eq. (2). In the case of a triangular PMF profile the
deformation fields are unknown. Hence, we need to reverse
the problem for this case and starting from the pseudomag-
netic field obtain the vector potential. The procedure is similar
to the one given in Ref. [36], and the details can be found
in Appendix. Due to the gauge invariance, the solution for
the deformation field is not uniquely defined. Nonetheless,
the choice of the gauge shouldn’t be of importance in the
low-energy spectrum where the scattering mechanism is de-
fined by the PMF. This is unlike the high-energy regime, e.g.,
beyond 1 eV, where the gauge choice defines the position of
the van Hove singularities.

III. TRIANGULAR PMF MODE

We start by showing in Fig. 1(a) the profile of the triangular
PMF mode. It is given by

B(r) = B0

3∑
i=1

cos(Kir), (6)

where B0 is the amplitude of the field, K1 = K 2√
3 �ey, K2 =

K (�ex + 1√
3 �ey), K3 = K1 + K2, and K = 2π/aB, with aB be-

ing the period of the PMF unit cell which is shown by the
white rhombus in Fig. 1(a). In real space, unit vectors of
the PMF unit cell are given by a1,2 = nagr

1,2 where agr
1 =

(
√

3a0, 0) and agr
2 = (a0/2,

√
3a0/2) are the unit vectors of

graphene and n is an integer that satisfies n|agr
1,2| = aB. Con-

sequently, in our calculations we use discrete values of aB that
correspond to multiple integers of the length of the unit cell
of graphene. Notice that the average field is zero and that the
maximum (minimum) of the periodic field is 3B0 (−1.5B0).
The band structure of this system is given in Fig. 1(b) for the
case of no buckling (black curve) and for B0 = 50 T (blue
curve), 75 T (green curve), and 100 T (red curve) using
aB = 15 nm. One can see that the slope of graphene’s linear
bands decreases as the amplitude of the field is increased. The
mechanism is the same as in the case of real magnetic field or
by the induced potential in case of twisted bilayers, i.e., the
periodic potential (in this case imposed by strain) modifies
the linear graphene band structure into a series of minibands
separated by relatively large gaps between adjacent subbands.
In contrast to the twisted bilayer case, extremely flat bands do
not occur at a discrete set of angles but rather, the band width
continuously decreases with the strength of the amplitude of
the field, as shown by the different curves in Fig. 1(b). Since
gaps appear, it is also interesting to know what happens with
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FIG. 1. (a) Profile of the pseudomagnetic field given by Eq. (6) with a unit cell shown by the white rhombus with aB = 15 nm. The field is
given in units of B0. (b) Corresponding band structure for a few different values of B0 shown in the inset. (c) Band structure, for B0 = 100 T,
showing three low-energy minibands marked by green, blue, and orange rectangles. Blue and red color curves show bands belonging to
different valleys of graphene.

the widths of higher energy bands. In Fig. 1(c) we show three
lowest energy bands for B0 = 100 T and aB = 15 nm. Higher
bands are much narrower than the lowest band, hence, of
potential interest for the physics of correlated states. Further-
more, the pseudomagnetic field breaks the valley symmetry
of the system and lifts the degeneracy between the states
belonging to different valleys (red and blue curves). In the
following, we will examine these three bands in more detail.

The width of the lowest energy band versus the period of
the buckling, aB, and the amplitude of the pseudomagnetic
field is shown in Fig. 2(a). Notice that band flattening occurs
with increasing magnitude of the magnetic field (for constant
aB) or by increasing the period of buckling (for constant B0).
For small values of the pseudomagnetic field the spectrum is
continuous. In Fig. 2(a) this regime is located below the green
curve, however, for plotting purposes we set the value of the
band width here to be zero [the same for plots in Figs. 2(c)
and 2(d)]. The value of the field at which the band gap opens
between the lowest and the next band (green curve) can be
fitted by following formula:

Bgap
1 = 0.4

�0

S
, (7)

where �0 is the magnetic flux quantum and S = √
3a2

B/2 is
the area of the unit cell. On the other hand, in order to have
significant electron interactions in flat bands their width has to
be smaller (or comparable to) the characteristic energy scale
for the interactions [3] given by EI = e2/4πε0εaB. In Fig. 2(a)
we marked by black dots values of B0 at which the band width
of the lowest band is equal to this value (here we use ε = 3
which corresponds to graphene on hBN). The plot shows fast
decay with the period of the unit cell and the dependence can
be fitted by

Bint
1 = 6.5

�0

S
, (8)

as shown by the white curve. The band flattening is fol-
lowed by a decrease of the Fermi velocity, which is shown in
Fig. 2(b). Here we plot the Fermi velocity calculated around
the K point and scaled with its unstrained value. The curves
of different colors show the values of the PMF for which the
Fermi velocity reaches 50%, 25%, 10%, and 1% of its original
value.

We apply a similar approach for the second and the third
miniband from Fig. 1(c). We find that the corresponding

values of the critical field for the band-gap opening (Bgap
n )

and the field at which the band width becomes smaller that
the interaction energy (Bint

n ) can be also fitted by a func-
tion of type Bx

n = cx
n�0/S. In the case of the second band,

the band gap opening occurs at cgap
2 = 1.7 [green curve in

Fig. 2(c)]. At these fields, the band gap between third and
the higher bands has already appeared, thus, we will use
this value as the reference one. The second band becomes
narrow enough for the electron interactions to be of sig-
nificance at cint

2 = 4.4 [white curve in Fig. 2(c)], which is
well below the value for the lowest band. In the case of the
third band [see Fig. 2(d)], we find that as soon as the band
gap appears (at 1.7�0/S), its width is already below this
criterion.

To further investigate effects of the periodic strain on the
electronic properties of graphene we numerically calculate
the density of states (DOS) versus the magnitude of the field
and energy for three different periods of the PMF and the
results are shown in Figs. 3(a)–3(c) for aB = 15, 18, and
20 nm, respectively. These values are chosen since they agree
well with the periods reported in Ref. [19]. In all three plots,
one can spot series of well-defined levels in the low-energy
spectrum. These levels are different from Landau levels (LL)
which are given by EN = ±v f

√
2eh̄NB0, where N is the LL

index. The three lowest Landau levels, calculated using this
analytic formula, are shown in the plots by black dotted lines.
The zeroth and first LL are clearly visible in these plots while
the trace of the second LL is visible only at very high fields
and for larger periods of the superlattice. Notice that as the
period of the unit cell is increased, the zeroth LL develops
at lower field. The reason for this is the fact that the PMF
varies fast over the unit cell and, consequently, Landau levels
cannot develop. In order for Landau levels to appear, one
needs to have a fairly constant field on the length scale of a
few magnetic lengths [37,38].

Unlike the Landau levels, well defined energy levels exist
between them and decrease with the increase of the magnetic
field until they eventually merge with the zeroth LL. This
behavior resembles the field dependence of eigenstates of a
graphene quantum dot [39] in an external magnetic field. Cuts
of the DOS at a constant energy of E = 0.2 eV are shown in
Fig. 3(d) and constant magnitude of the PMF of B0 = 100 T in
Fig. 3(e). In both cases, an increase of the period results in a
decrease in the separation between the peaks. To strengthen
our analogy with quantum dots, we point out that Libisch
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FIG. 2. (a) Contour plot of the width of the lowest energy band, �E1, (in eV) versus the length of the magnetic unit cell, aB, and strength of
the PMF. Black dots show values of B0 at which the band width becomes smaller than EI and the white curve shows corresponding numerical
fit. The green curve shows the value of the magnetic field at which the gap opens between the subbands. (b) Reduced Fermi velocity versus
aB and B0 of the lowest energy band at the Dirac point. The blue, orange, green, and maroon curve show the values of B0 at which the Fermi
velocity is reduced to 50%, 25%, 10%, and 1% of its original value, respectively. (c) The same as (a) but for the second band. (d) The same as
(a) but for the third band.

et al. reported in Ref. [40] the appearance of equidistant peaks
in the DOS of a graphene quantum dot. The peaks are the
consequence of the quantum well confinement in a system
with a linear energy spectrum which results in equidistant
energy levels with separation given by

�E = h̄vF π

W
, (9)

where vF is the Fermi velocity and W is the characteristic
confinement length. The analogy between quantum dots and
our system is justified since the strong periodic straining can
be used to confine electrons, e.g., experiments on quantum
emission in 2D materials on pillars [41–44]. The idea is that
the spatially varying vector potential generated by Eq. (4)
modifies locally the electronic properties of the material and
creates traps for electrons. In other words, strain is used as
an instrument to form and control localized states in the sys-
tem. The principle is illustrated in Fig. 4(a) where we show
cuts of the pseudomagnetic field along the dashed line in
Fig. 1(a) which form a PMF-defined well that acts as a trap for
electrons. In our case, spatially varying field has a profound
influence on the electronic behavior as electrons try to avoid
energetically unfavorable regions of high PMF amplitude. The

width of the well at B = 0 [dashed line in Fig. 4(a)] is 22, 25,
and 29 nm for aB = 15, 18, and 20 nm, respectively. The peaks
that we observe in Fig. 3(e) are almost equidistant as Eq. (9)
predicts (except in vicinity of Landau levels) and the depen-
dence on the band index is fairly linear, as shown in Fig. 4(b).
The small deviations from linearity are due to the fact that the
boundaries of our confined region are not rigid since they are
defined by the induced potential which depends on B0 and the
energy. Applying the previous formula to the average value of
the peak separation from Fig. 3(e) we obtain W ≈ 22, 26, and
30 nm for aB = 15, 18, and 20 nm. This compares to the width
of the PMF well at B = 0, shown in Fig. 4(a).

Having in mind our previous discussion and the results
shown in Fig. 2 one can infer that the peaks in the DOS corre-
spond to the flat bands as is evident from Fig. 3(f) where we
plot DOS for B0 = 100 T and aB = 18 nm together with the
band structure for the same system. The two plots match per-
fectly. Thus, the levels in Figs. 3(a)–3(c) show the evolution
of flat bands with the magnetic field. It is noteworthy to stress
that these quasilocalized states forming the flat bands are not
Landau levels. As will be shown later, these are scattering
states, scattered by the strong PMF regions, and localized in
the low magnetic field regions.
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FIG. 3. Density of states (DOS) versus the amplitude of the PMF and energy for a unit cell with period (a) aB = 15 nm, (c) aB = 18 nm,
and (a) aB = 20 nm. Black dotted lines show Landau levels obtained using the analytic expression. (d) Cuts of the DOS at E = 0.2 eV for
three different values of aB shown in (a–c). (e) Cuts of the DOS at B0 = 100 T for three different values of aB shown in (a–c). (f) DOS (blue
curve) and the band structure (red curves) calculated using aB = 18 nm and B0 = 100 T. DOS is calculated using energy broadening of 5 meV.

IV. HEXAGONAL AND HERRINGBONE
BUCKLING MODES

Next, we turn to the hexagonal buckling mode. The out-of-
plane deformation field is given by

z(x, y) = h0

[
cos(Kx) + 2 cos

(
1

2
Kx

)
cos

(√
3

2
Ky

)]
,

(10)

where h0 is the amplitude of the deformation in the z direction
and K = 2π/aB is the wave number. This in-plane deforma-
tion field was introduced in Ref. [25]. The previous equation
implies that the characteristic wave numbers are K/2 in the x
direction and

√
3/2K in the y direction. Hence, the unit cell is

a rectangle with length 2aB in the x direction and 2aB/
√

3 in
the y direction, as shown in Fig. 5(a) by the white rectangle.
To ensure commensurability with the graphene’s unit cell, the
unit vectors of the PMF unit cell are given by a1 = n1agr

1 and
a2 = n2agr

2 , where n1,2 are integers and agr
1 = (

√
3a0, 0) and

FIG. 4. (a) The profile of the pseudomagnetic field along the path shown in Fig. 1(a) by the dashed white line for three different values of
aB given in (b). Horizontal dashed line shows B = 0 cut. (b) The energy position of the peaks in the DOS for B0 = 100 T versus peak index
for three different values of aB shown in the inset. Solid lines show corresponding linear fit to En = n�E with �E = 84, 73, and 66 meV for
aB = 15, 18, and 20 nm, respectively.
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FIG. 5. (a) The out-of-plane deformation for the hexagonal buckling mode for aB = 7.5 nm. (b) The pseudomagnetic field profile for the
buckling mode from (a) using h0 = 0.2 nm. The units are in Tesla. (c–f) The band structure of the unit cell from (a) for different values of h0

given in the inset.

agr
2 = (0, 3a0) are the unit vectors of the four-atom unit cell of

graphene. Notice that the out-of-plane deformation generated
by this mode resembles the PMF of the previous buckling
mode shown in Fig. 1(a). The induced pseudomagnetic field
generated by this buckling mode is shown in Fig. 5(b) and
consists of alternating regions of positive and negative PMF
of the same strength and with zero field in the center of
the bump, similar to the ones obtained for Gaussian bumps
[45,46] and bubbles [47]. Using Eqs. (4) and (5) together with
the expressions for the deformation field given in Ref. [25] we
obtain an analytical expression for the pseudomagnetic field
given by

BPMF (x, y)

= A0

64
K3h2

0

{
− 24 cos(

√
3Ky) sin(Kx)

− 6[P1 + P2 + 2P1 cos(Kx)] cos

(√
3

2
Ky

)
sin

(
Kx

2

)

+ 2
√

3

[
3P2 cos

(
Kx

2

)
+ (−32 + 9P1) cos

(
3Kx

2

)

+ 8[4 + 3 cos(Kx)] cos

(√
3

2
Ky

)]
sin

(√
3

2
Ky

)}

(11)

with P1 = (3 − ν), P2 = (1 − 3ν), with ν being the Poisson’s
ratio of graphene. We should add that this expression is only
valid in case of small strains, i.e., when it is justified to
approximate Eq. (3) with Eq. (4) and it is derived for plotting
purposes only. Note that in our tight-binding calculations we
always use the full expression for the vector potential. The
band structure calculated for a few values of h0 is given in

Figs. 5(c)–5(f). Notice that the Dirac cone is still present.
Increasing the out-of-plane deformation leads to a decrease
of the slopes of linear bands in graphene and the formation
of semiflat bands for sufficiently large h0. However, a big
difference with the previous case of triangular PMF is that the
spectrum stays continuous, i.e., minigaps do not open even for
a very large straining above 20%. Therefore, in the following
we will focus on the DOS plots instead of bandwidth.

The DOS versus the amplitude of the out-of-plane de-
formation and the energy is shown in Figs. 6(a)–6(c) for
three values of aB = 7.5, 9, and 10 nm, respectively (keep
in mind that the actual periods are twice these values in the
x direction). We see that the DOS exhibits peaks that de-
crease towards the zero energy with increase of h0 (analogous
to increase B0). These levels are better seen in Figs. 6(d)
and 6(e) where we plot cuts of the DOS at constant energy
of E = 0.2 eV and constant h0 = 0.5 nm, respectively. The
peaks are less pronounced, less regular, and less separated in
comparison to Figs. 3(d)–3(f) for the case of the triangular
PMF. The reason is that the subbands are not as flat, as
shown in Fig. 6(f). One can see that the lowest two bands are
rather flat which results in narrow, large peaks in the DOS,
however, as we move away from the Dirac point the miniband
dispersion becomes more prominent and peaks in the DOS
broaden significantly. This can be explain by the fact that the
pseudomagnetic field in this configuration cannot efficiently
localize electrons. By comparing this PMF configuration with
the previous one [shown in Figs. 1(a) and 4(a)], one can
notice that in this case non-zero PMF regions are separated
by relatively large regions with zero field. This is sufficient to
scatter electrons but not sufficient enough to localize them.

Finally, we examine the herringbone buckling mode. This
mode is found to be the lowest energy buckling configuration
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FIG. 6. Contour plot of the DOS versus the height of the bump and energy for a hexagonal buckling mode with period (a) aB = 7.5 nm,
(b) aB = 9 nm, and (c) aB = 10 nm. Cuts of the DOS at (d) constant energy of E = 0.2 eV and (e) constant amplitude of the deformation,
h0 = 0.5 nm. Curves are shifted for better visibility. (f) A cut of the DOS (blue curve) together with the band structure (red curves) for h0 = 0.5
nm and aB = 7.5 nm.

in the case of large biaxial strains [25]. The out-of-plane
displacement, shown in Fig. 7(a), is given by

z(x, y) = h1[cos (Kxx) − Kxh2 sin (Kxx) cos (Kyy)], (12)

where h1 is the amplitude of the out-of-plane deformation,
Kx = 2π/ax and Ky = 2π/ay are the wave numbers in the
x and y directions, and h2 defines the breadth of the zigzag
pattern, e.g. for h2 = 0 we have a simple one-dimensional
mode and as we increase h2, the maxima in z (or the corners
of the zigzag pattern) move away from x = 0. The unit cell is
shown by a white rectangle in Fig. 7(a). We note that the unit

cell of the PMF is chosen such that the unit vectors are com-
mensurate with an extended four-atom rectangular unit cell
of graphene. The pseudomagnetic field, shown in Fig. 7(b),
reveals similar positive and negative patterns as in the case of
the hexagonal buckling mode with additional distortion in the
x direction. Note that in this case the PMF depends on four
different variables (ax, ay, h1, and h2). Hence, to reduce the
parameter space, we restrict ourselves to ax = ay = aB, i.e.,
superlattice vectors have the same length in both directions
and the unit cell is a square. The band structure resulting from
the deformation shown in Fig. 7(a) using few values of h1 is

FIG. 7. (a) Out-of-plane deformation for the herringbone buckling mode with aB = 15 nm and h2 = 1 nm. White rectangle shows the unit
cell of this mode. (b) Pseudomagnetic field (in units of Tesla) profile for the buckling mode from (a) using h1 = 2 nm. (c) Band structure for a
unit cell from (a) using few values of h1 given in the inset.
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FIG. 8. Contour plot of the DOS versus the height of the bump and energy for the herringbone buckling mode with (a) aB = 15 nm,
(b) aB = 18 nm, (c) aB = 20 nm and fixed h2 = aB/10.

shown in Figs. 7(c)–7(f). By increasing the strain in the unit
cell one squeezes the bands and creates energy windows with
high number of available states but no gap opening is found
at the Dirac point. Notice that also in this case the Dirac cone
survives. No clear, narrow energy bands appears.

In Figs. 8(a)–8(c) we plot the DOS versus the energy and
h1. The maximal value of h1 in each plot is chosen such that
the maximal strain stays below 25% which is the breaking
limit for graphene. Figures show that this buckling mode does
not favor the appearance of flat bands. High DOS states are
observed only at large values of h1. Furthermore, no clear
zeroth LL develops in this buckling mode even when strain
reaches 20%. One can understand this result as a consequence
of the fact that this is the lowest energy configuration of all
buckling modes, having minimal total energy (sum of mem-
brane, bending, and cohesive energy), in the case of large
strain. In other words, since all three components of the total
energy are directly related to the elements of the strain ten-
sor [25], the overall strain induced by this buckling mode is
the lowest compared to other buckling modes. To test this,
we calculate the average strain within the hexagonal and the
herringbone unit cell of approximately the same area induced
when the maximal out-of-plane deformation reaches 2 nm.
The average strain in the hexagonal unit cell is double the
value in the herringbone unit cell across the wide range of
superlattice periods and buckling amplitudes. Furthermore, if
we compare the pseudomagnetic field of the two cases the
difference is even more pronounced. An order of magnitude
higher PMF (maximal value and absolute average value) is
achieved in the case of hexagonal buckling.

V. SPATIAL LDOS AND CURRENT

In this section, we present the spatial local density of states
maps that give us a visual insight into the distribution of states
and their dependence on buckling parameters. The left panel
in Fig. 9 shows spatial LDOS maps for energies corresponding
to the three lowest flat bands shown in Figs. 3(b) and 3(f)
(orange curve) calculated for B0 = 100 T and integrated over
the whole Brillouin zone. Different columns show the spatial
LDOS on two sublattices separately (left and middle column)
and total LDOS (right column). Notice that the PMF breaks
the sublattice symmetry [35]. In the case of the triangular PMF
(shown in the left panel), the sign of the PMF varies inside the
unit cell with the positive field inside the regions marked by
dashed circles and negative field elsewhere. This will have a

profound influence on the density of states. The states inside
the circles are localized on the A sublattice while in the
regions with negative PMF, the states are localized on the B
sublattice. Hence, states on opposite sublattices are spatially
separated. A similar conclusion can be drawn from the right
panel as well. One interesting feature is that the regions with
the highest LDOS are localized around B = 0 cuts. The reason
is that the strong fields scatter electrons away from these
regions. The exceptions are the Landau levels, corresponding
to closed orbits, which are localized inside regions with the
highest field. This is, as we discussed, due to the fact that
in the case of spatially varying magnetic fields, the Landau
levels start developing at regions where the magnitude of the
field is highest, at fields for which the extent of the LL wave
function is smaller or at most of the order of the size of these
regions.

As already shown by the spatial LDOS maps, the states
induced by the periodically buckled lattices are quasilocalized
and percolate throughout the whole unit cell. In other words,
the strain superlattice creates conducting paths for the charge
carriers. To prove this, in Fig. 10 we plot a k-dependent
interatomic current calculated using

jk,i(E ) = 4e

h

3∑
j=1

Im[
∗
k,i(E )Hi j
k, j (E )]ei j, (13)

where jk,i(E ) is the current at position i calculated as a sum
of currents flowing between atom i and its three nearest
neighbors at energy E due to an electron in state k, e is
the elementary charge, h is the Planck constant, 
k,i is the
wave function of the k state at atom i, Hi j is the Hamiltonian
element between atoms i and j, and ei j is the unit vector in
the direction of the bond between atoms i and j. In Fig. 10
we plot the current due to electrons of the K valley with
wave vector k = K and the same values of the energy as in
Fig. 9. Note that due to the flatness of the bands, the current
in other k-points has a similar profile as in K. However, due
to the sublattice symmetry breaking, the valley degeneracy is
lifted and, hence, different subbands that appear in Fig. 1(c)
have opposite symmetries of the wave functions (blue and red
curves) in the two valleys. Consequently, the current direction
will be opposite in the two valleys. This leads to zero total
current in the band, as expected since time-reversal symmetry
is not broken by the strain fields. This leads to zero Hall
resistance in the band (however, the longitudinal resistance
will be nonzero).
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FIG. 9. Spatial LDOS for three lowest flat bands for the triangular PMF mode (left panel) and the hexagonal buckling mode (right panel).
The maps are calculated using aB = 18 nm and B0 = 100 T for the triangular PMF mode and aB = 9 nm and h0 = 0.5 nm for the hexagonal
buckling mode at energies shown to the right of the figures. LDOS is shown for both sublattices separately as well as total LDOS. Dashed
black curves indicate B(r) = 0 cuts.

However, current carriers are not localized like in the case
of, e.g., Landau levels where the carriers in the bulk circle
around their equilibrium positions and only the electrons that
skip along the edges of the sample contribute to the overall
conductance. A similar scenario can be seen in Figs. 10(a)
and 10(d) where the current is negligible even though spatial
LDOS plots show high density of states at these energies
(Fig. 9 top row). These electrons are confined by the strong
strain fields and cannot propagate. As we move to higher
bands (rest of the plots in Fig. 10), the situation changes and
strong currents can be observed flowing between regions with
high PMF values. This creates percolating paths along which
electrons can propagate in both directions. To confirm that the
flat bands do not correspond to localized states we calculate
the longitudinal conductance, σxx, using the Kubo-Bastin [48]
formula at zero temperature and compared it against the DOS.
Figure 11 shows these two quantities for a triangular PMF
unit cell with aB = 18 nm and B0 = 150 T for an energy

broadening of 5 meV. The positions of prominent peaks in the
conductance agree perfectly with the peaks in the DOS and
undoubtedly confirm the influence of flat bands on electronic
transport. Consequently, transport measurements are able to
detect flat band states.

VI. VALLEY POLARIZED STATES

As already mentioned, the presence of the PMF does not
lift the valley degeneracy of the system. Figure 1(c) showed
that the spectrum of a periodically strained system consists of
two sets of bands (red and blue) belonging to different valleys
of the system. PMFs in these valleys have equal amplitude
but opposite direction. By applying the perpendicular real
magnetic field, BR, one can lift this degeneracy since the
effective field in two valleys, Beff = BR ± BPMF, will differ,
i.e., in one valley the real and pseudofield will be in the
same direction while in the other they will be in opposite

FIG. 10. Interatomic current (shown in arbitrary units) within the PMF unit cell for three lowest flat bands (energy values are given in each
plot) at the K point for the triangular PMF mode (a–c) and the hexagonal buckling mode (d–f). Current vectors are shown by black lines and a
color contour plot gives the intensity of the current. Dotted maroon circles in (a–c) show zero-PMF cuts.
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FIG. 11. The longitudinal conductance, σxx , (blue curve) and the
density of states (red curve) for a periodically strained graphene
using triangular PMF profile with aB = 18 nm and B0 = 150 T.

directions. This is shown in Fig. 12(a) where the low-energy
spectrum of the PMF unit cell is shown in the absence (black
curves) and presence (red curves) of the real magnetic field.
The amplitude of the magnetic field is chosen such that the
magnetic flux through the buckling unit cell corresponds to
one flux quantum, i.e., BRS = �0, where S is the area of the
PMF unit cell and �0 is the magnetic flux quantum. In case of
aB = 18 nm, we find that the value of the real magnetic field
that generates this flux is BR = 14.8 T. When comparing two
spectra it is obvious that one set of bands moves downwards
while the other set moves upwards in energy. This results
in valley polarized bands which are of great importance for
valleytronics [49–52]. In Fig. 12(b) we plot the local density
of states in the dark region versus the real field, BR, and
energy, using aB = 18 nm and B0 = 150 T (corresponding to
�PMF = 10.1�0). We see that in the case of BR = 0, LDOS
shows series of well-defined equidistant peaks—confinement
states. As the real magnetic field is introduced, these peaks

split into two states from which one moves downwards while
the other moves upwards in energy with the increase of BR,
in agreement with the behavior of the bands from Fig. 12(a).
Similar behavior is observed in Fig. 12(c) where the contour
plot of LDOS is shown versus the amplitude of the PMF
and energy using constant value of the real field, BR = 10 T.
In this case, we start with the Landau levels (for B0 = 0 T),
which turn into confinement states as the amplitude of the
PMF is increased, similarly as in Figs. 3(a)–3(c), but with a
major difference that each confinement state is spit into two
states by the magnetic field. The splitting of the confinement
states in the presence of the real magnetic field is not a local
effect, which we confirm by calculating total density of states.
Figure 12(d) shows DOS for a PMF unit cell in the absence
(black curve) and presence of a small real magnetic field (red
curve). One can immediately notice the splitting of the peaks
in the DOS due to the interplay between the real and the
pseudomagnetic field. This effect was recently experimentally
confirmed in Refs. [53,54].

VII. CONCLUSIONS

In this paper we determined the conditions for the appear-
ance of flat bands in periodically buckled graphene systems.
We considered three different buckling modes. For the tri-
angular PMF mode we showed that the linear low energy
spectrum (i.e., the Dirac cone) is transformed into a series
of minibands by the periodic vector potential. We examined
the lowest three bands and found that a flux of 6.5�0 through
the PMF unit cell is needed to flatten the band in order that
electron-electron interactions become important. On the other
hand, the two higher bands are much flatter and fluxes of
only 4.4�0 and 1.7�0, respectively, are needed to achieve
regimes where interactions could become stronger than the
kinetic energy of the electrons. Plots of the DOS versus the
magnitude of the PMF and energy revealed the existence of

FIG. 12. (a) The band structure of the triangular PMF unit cell with aB = 18 nm and B0 = 150 T in the presence of a uniform real magnetic
field BR shown in the inset. (b) The contour plot of the LDOS in the dark region versus the flux generated by real magnetic field flux �R (in
units of magnetic flux quantum) and energy using aB = 18 nm and B0 = 150 T. (c) The contour plot of the LDOS versus the flux of the
pseudomagnetic field and energy using aB = 18 nm and BR = 10 T. (d) Total DOS versus energy for a PMF unit cell from (a) in the absence
of real magnetic field (black curve) and in the presence of small magnetic field BR = 5.8 T (red curve) using broadening of 5 meV.

245427-10



BAND FLATTENING IN BUCKLED MONOLAYER GRAPHENE PHYSICAL REVIEW B 102, 245427 (2020)

states between Landau levels. These mimic the behavior of
electronic states of graphene quantum dots in a real magnetic
field. We showed that these states correspond to the flat bands
and the connection with the quantum dot system is due to the
electron confinement resulting from the strong nonuniform
strain.

The hexagonal and the herringbone buckling modes
showed rather different effects on the electron properties.
Namely, the DOS versus the amplitude of the out-of-plane
deformation and the energy revealed similar electron states
which demonstrates that their appearance is not due to a
specific choice of the vector potential but can be found in
various periodic buckling configurations. However, unlike the
first PMF configuration, these two buckling modes proved to
be less favorable systems for the realization of flat bands.
In the case of the hexagonal buckling mode, only a few
lowest energy bands had the tendency to become flat while
in the case of the herringbone mode, flatness of the bands
appeared only at very large nonuniform periodic strain. We
compared the values of the PMF generated for equal value of
the out-of-plane deformation and found that the herringbone
mode showed an order of magnitude smaller PMF fields as
compared to the hexagonal mode. This supports the idea that
strong pseudomagnetic field-induced confinement is needed
for the creation of flat bands.

We calculated the spatial LDOS maps of few lowest flat
bands and the electron current corresponding to those flat band
states. We confirmed that there exist electronic flat band states
that percolate throughout the whole system. This behavior is
contrary to Landau level states which are highly localized
within the unit cell. This was also supported by the single
state current plots where we showed that strong currents flow
through the unit cell, resulting in percolating paths through-
out the system. The nonlocalized nature of these states was
confirmed by conductance calculations which showed promi-
nent peaks at energies that correspond to flat band states.
Upon applying real magnetic field, the confinement states
split due to the lifting of the valley degeneracy. This results
in valley-polarized flat bands which are of great interest for
valleytronics.
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APPENDIX: GAUGE FIELD FOR THE
TRIANGULAR PMF MODE

The effect of strain is included in the tight-binding Hamil-
tonian through the modulation of the hopping energy. This is
given by

ti j = t0e−β(di j/acc−1), (A1)

where di j is the strained bond length defined by the strain
tensor ε as

di j = (I + ε)δi j, (A2)

FIG. 13. (a) Profile of the pseudomagnetic field given by Eq. (1)
with aB = 15 nm. (b) Graphene lattice with nearest-neighbor vectors
δ1, δ2, and δ3.

where δi j is the vector in the direction of the bond between
atoms i and j and I is the unitary matrix. Changes in the
hopping energies generates a strain induced vector potential
in the system which in the case of hexagonal lattices is given
by Eq. (3). Corresponding pseudomagnetic field is calculated
using

B = ∇ × A = (∂xAy − ∂yAx )ez. (A3)

Due to gauge invariance we may choose Ay = 0. Hence, our
vector potential is then given by Ax = ∫

B(x, y) dy where
B(x, y), shown in Fig. 13(a) is given by Eq. (6). This
leads to

Ax = B0
aB

2π

[
1

K1y
sin(K1r) + 1

K2y
sin(K2r) + 1

K3y
sin(K3r)

]
.

(A4)

Substituting ti j = t0(1 + δti j ) and expanding Eq. (3) up to
first order, we obtain the following expression for the vector
potential [55]:

(Ax, Ay) = − 1

2evF

[
2δt1 − δt2 − δt3,

1√
3

(δt2 − δt3)

]
,

(A5)

where δt1, δt2, and δt3 are the strain modulations of hopping
energies along the directions of graphene’s nearest neighbors
δ1, δ2, and δ3, as shown in Fig. 13(b), and vF = 3t0acc/(2h̄) is
the Fermi velocity. The choice of the gauge (Ay = 0) results
into δt2 = δt3 = δt . We choose δt1 = −δt and, finally, the
strain modified hopping energies are given by

t1 = t0
(
1 − 3Axπacc

2φ0

)
,

t2 = t3 = t0
(
1 + 3Axπacc

2φ0

)
, (A6)

where φ0 = h/e is the magnetic flux quantum.
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