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Pumped heat and charge statistics from Majorana braiding
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We examine the heat and charge transport of a driven topological superconductor. Our particular system
of interest consists of a Y-junction of topological superconducting wires, hosting non-Abelian Majorana zero
modes at their edges. The system is contacted to two leads which act as continuous detectors of the system
state. We calculate, via a scattering matrix approach, the full counting statistics of the driven heat transport,
between two terminals contacted to the system, for small adiabatic driving and characterize the energy transport
properties as a function of the system parameters (driving frequency, temperature). We find that the geometric,
dynamic contribution to the pumped heat statistics results in a correction to the Gallavotti-Cohen type fluctuation
theorem for quantum heat transfer. Notably, the correction term to the fluctuation theorem extends to cycles
which correspond to topologically protected braiding of the Majorana zero modes. This geometric correction
to the fluctuation theorem differs from its analogs in previously studied systems in that (i) it is nonvanishing
for adiabatic cycles of the system’s parameters, without the need for cyclic driving of the leads and (ii) it is
insensitive to small, slow fluctuations of the driving parameters due to the topological protection of the braiding
operation.
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I. INTRODUCTION

The time dependent, cyclic evolution of the internal param-
eters of a quantum system can lead to the accumulation of a
geometric phase that depends solely on the path traversed in
parameter space and not on the duration of the cycle itself [1].
This geometric phase manifests itself in different phenomena
in all areas of physics [2]. Geometric contributions to quan-
tum evolution become particularly interesting for many-body
systems in a topological phase of matter, hosting non-Abelian
excitations at their edges [3]. In this case, the phase is gen-
eralized to a unitary operation protected against details of
the system and the evolution, which makes anyons appeal-
ing excitations for potential use in fault tolerant quantum
computation [4,5]. A particularly interesting case of non-
Abelian zero energy excitations are Majorana zero modes,
which exist on the surface of topological superconductors
[6,7]. The proposal to engineer topological superconductivity
in semiconductor nanostructures [8–11] has received com-
pelling experimental indications [11–15] and led to proposals
for quantum information processing [5,16–18].

Geometric contributions have generically found to be ev-
ident in transport processes such as pumped charge and heat
currents in cyclically manipulated quantum systems with few
degrees of freedom [19–30]. Such contributions, in the case
of heat transport, are nontrivially affected by the presence
and manipulation of Majorana zero modes [31–35]. The
importance of studying transport in such systems is further re-
flected by the identification of topological indices in scattering
processes for topological superconductors [36–38]. Notably,
for systems with few degrees of freedom, recent studies

[19,39,40] have suggested that geometric contributions to the
full statistics of heat transfer processes result in the apparent
violation of fluctuation theorems, which quantify the likeli-
hood of anomalous heat transfer against a thermal gradient
[41].

Motivated by these findings, it becomes of interest to
investigate how the topological protection of the geometric
phases in Majorana based manipulations is reflected in the
corrections of the aforementioned fluctuation theorem. In this
spirit, we further explore the influence of geometric contribu-
tions to the full counting statistics of pumped heat transport,
in the case of the exchange of two Majorana fermions per-
formed within a Y-junction of topologically superconducting
nanowires. We address our interest specifically to the ef-
fect upon fluctuation theorems. By using a scattering matrix
approach, we will show that we find a nonzero geometric con-
tribution to the probability generating function and that this
contribution does indeed lead to a correction to the Gallavotti-
Cohen type fluctuation theorem. Such a correction generically
exists for arbitrary adiabatic cycles in parameter space, but it
extends to the case of Majorana braiding, in which it becomes
insensitive to slow time-fluctuations of the driving parameters.

The paper is organized as follows. In Sec. II, we develop
the general formalism to compute the full counting statis-
tics of energy transfer via scattering matrices, including both
particle and hole degrees of freedom required for supercon-
ducting systems. We then address the protocols of interest in
Sec. III, where we analyze the scattering matrix for a driven
Y-junction of one-dimensional p-wave superconductors. We
employ our formalism to compute the transport properties be-
yond the average current in Sec. IV and the corrections to the
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Gallavotti-Cohen fluctuation theorem in Sec. V. In the latter
we first address pumping cycles of small amplitude and finally
extend our results to topologically protected braiding, where
we characterize the topological features in the corrections to
the mentioned fluctuation theorem.

II. FULL COUNTING STATISTICS
FOR PUMPED HEAT TRANSPORT

In order to study the behavior of thermal fluctuations
throughout any pumped process, it is necessary to extract
information beyond the average pumped quantities and hence
uncover the full statistical distribution of the transport process.
Such information is provided by the probability distribution,
P(Q, T ), for some quantity of interest Q, e.g. charge or en-
ergy, transported across a system throughout some time period
T . This distribution can be accessed via the full counting
statistics (FCS) of the transport process and, in particular,
the Fourier transform of P(Q, T ) known as the characteristic
function (CF), χ (λ), where λ denotes the counting field.

While proposals for detecting the FCS of electronic cur-
rent in specific systems have been put forward [42–46], it is
well known that experimental measurements of FCS and the
full probability distribution of electronic and heat transport
are challenging and at present not accessible. Nonetheless,
FCS remains a widely studied, powerful theoretical tool for
addressing fundamental transport properties, including the na-
ture of thermal fluctuation theorems [23,26,47].

The FCS of charge transfer, originally introduced for DC
transport [48], has previously been evaluated for pumped
electronic charge [23,26] and for specific nonadiabatic peri-
odic driving of superconducting devices [49]. For the case
of a Majorana braiding, for which topological features are
apparent in scattering properties, we construct the FCS based
on the scattering matrix formalism. We consider a supercon-
ducting system under the cyclic modulation of some internal
parameters, which in this case correspond to the couplings
between the external and central Majorana states present in a
superconducting Y-junction (cf. Fig. 1). This time dependent
manipulation facilitates inelastic scattering events and as a
result, it is important to carefully consider both the energy
and time dependence of the scattering events when defining
the CF. We define the CF for the heat, Q, pumped during the
total cycle period T as

χ (λ) =
ˆ

dQeiλQP(Q, T ). (1)

The probability distribution for the total cycle, P(Q, T ), can
be obtained by considering the heat transported during the
time steps, ti, of a discretized cycle:

χ (λ) =
ˆ

dQeiλQ
∑
{qti }

δ
(

Q =
∑

ti

qti

)
P(qt1 , qt2 , ...), (2)

where {qti} denotes all possible combinations of the heat quan-
tities qti , transported in each discrete time step ti.

By considering the particle baths in the external leads to be
large, so that the ingoing distribution function at any time t
is given by the equilibrium Fermi distribution function, and if
relaxation times are fast enough, we can assume independence
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FIG. 1. (a) Y-junction of p-wave superconducting nanowires
(blue) with Majorana zero modes at positions indicted by the green
dots. Each of the external Majorana modes, γx,y,z, is coupled to the
central mode with corresponding coupling strengths �x,y,z and the
modes γx and γy are further coupled to conducting normal metal leads
with strengths �L and �R. (b) Schematic depicting the Majorana
braiding cycle. The diagram on the right illustrates the required
sequence of Majorana couplings where the solid blue lines illustrate
the couplings which are turned on and dashed lines indicate those that
are turned off. The corresponding evolution, C1 + C2 + C3, is shown
as a path in spherical parameter space on the left. Also illustrated is
an example of a small amplitude driving contour Cs.

of the probability distribution at each time. The CF can then be
written as a product of the contribution from each time step:

χ (λ) =
∑

Q

eiλQ
∑
{qti }

δ
(

Q =
∑

ti

qti

) ∏
ti

P(qti )

=
∑
{qti }

eiλ
∑

ti
qti

∏
ti

P(qti )

=
∑
qt1

eiλqt1

∑
qt2

eiλqt2 · · ·
∏

ti

P(qti )

=
∏

ti

∑
qti

eiλqti P(qti ) =
∏

ti

χti (λ). (3)

Taking the continuous limit, ti → 0, we can write the cumu-
lant generating function (CGF), defined as G(λ) = ln(χ (λ))
as an integral over the driving time period:

G(λ) =
ˆ T

0
dt ln(χt (λ)). (4)

We have therefore reduced the calculation, of the total FCS of
driven heat transport, to that of a CF at a frozen time t , which
we denote as χt (λ). The latter is computed analogously to the
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case of charge FCS [50], as outlined in Appendix A:

χt (λ) = 〈eiλQ̂→(t )e−iλQ̂←(t )〉. (5)

Here the operators Q̂→(←)(t ) describe the energy carried by
particles in the left lead, entering (leaving) the junction with
the internal system of interest, at some time t . The heat current
in the left lead, IL, is then defined as the difference between
the energy carried by the electrons and holes traveling from
the scattering center into the lead and that carried by those
moving in the opposite direction:

IL =
ˆ ∞

−∞
dε(ε − μ)( f→(ε) − f←(ε)), (6)

where f→(ε) and f←(ε) are the ingoing and outgoing electron
distribution functions in the left lead at energy ε, temperature
T , and voltage bias μ. Since the leads are thermal reservoirs,
the energy absorbed by the leads, measured with respect to
the chemical potential, is regarded as pure heat [51]. The CF
in Eq. (5) has been previously evaluated for the case of charge
transfer between superconducting leads in static systems by
B. A. Muzykantskii and D. E. Khmelnitskii [50]. We extend,
hereafter, this formalism to the case of heat transport and
adiabatically driven systems.

The heat operators can be written in terms of fermionic
creation and annihilation operators in the left external lead
[52]:

Q̂→(t ) =
¨ ∞

−∞
dεdε′

(ε + ε′

2

)
e

i(ε−ε′ )t
h̄

× (â†
Le (ε)âLe (ε′) + â†

Lh (ε)âLh (ε′)) (7)

and

Q̂←(t ) =
¨ ∞

−∞
dεdε′

(ε + ε′

2

)
e

i(ε−ε′ )t
h̄

× (φ̂†
Le (ε)φ̂Le (ε′) + φ̂

†
Lh (ε)φ̂Lh (ε′)). (8)

The ingoing, âi, and outgoing, φ̂i, electron (e) and hole (h)
scattering states in the left (L) and right (R) leads are related
by the scattering matrix:⎛

⎜⎜⎝
φ̂Le (ε̃)
φ̂Lh (ε̃)
φ̂Re (ε̃)
φ̂Rh (ε̃)

⎞
⎟⎟⎠ = SF (ε̃, ε)

⎛
⎜⎝

âLe (ε)
âLh (ε)
âRe (ε)
âRh (ε)

⎞
⎟⎠, (9)

where the scatering matrix depends explicitly on two energies
since the scattered particles can absorb or emit energy, due
to the external driving. For a periodically driven system, as
we are considering here, energy can be absorbed or emitted
only in multiples of the driving frequency, so that ε̃ = ε − nω.
With this relationship between ingoing and outgoing states,
Eqs. (5), (7), and (8) allow the FCS for heat transport to
be accessed entirely via the full Floquet scattering matrix
describing transport across the internal system.

A. Adiabatic and small driving amplitude limit

In general, for a time dependent driven system, it is difficult
to determine the elements of the full Floquet scattering ma-
trix, which accommodates for all possible inelastic scattering

events induced by the driving. In order to make analytical
progress, we choose to study a model subjected to two im-
portant approximations. Firstly, we assume that the periodic
driving of the system is adiabatic, in the sense that the driv-
ing period, T , is large compared to the scattering time. In
this situation, scattering can be considered instantaneous and
described by a frozen scattering matrix, S(ε, t ), the prop-
erties of which are modulated periodically by the driving.
More precisely, if the driving is switched off, the Floquet
scattering matrix in Eq. (9), SF (ε, ε), describes an energy
dependent, time-translation-invariant scattering process. If the
matrix depends on time via a parameter, one can consider such
a frozen scattering matrix parametrically depending on time,
SF,t (ε, ε) ≡ S(ε, t ). Secondly, we assume that the amplitude
of the driving, in the relevant parameter space of the system, is
small. In Sec. V A, we will show that the results yielded from
this approach can be extended to the case of the Majorana
braiding, for which the amplitude of the driving can no longer
be consider small with respect to the values of the parameters
at the center of the cycle.

The weak, adiabatic, periodic driving of parameters, such
as the lead temperatures or lead coupling strength, with fre-
quency ω can be modeled as

Xj (t ) = Xj,0 + Xj,ωei(ωt−η j ) + Xj,ωe−i(ωt−η j ). (10)

With the assumption that the amplitude of this modulation,
Xj,ω, is small enough to expand to first order, then the cor-
responding time dependence of the scattering matrix can be
expressed as [30]

S(ε, t ) ≈ S(ε, Xj,0) + Sω(ε)e−iωt + S−ω(ε)eiωt ,

where S±ω =
∑

j

Xj,ωe∓iη j
∂S

∂Xj
. (11)

The scattering matrix in this form corresponds to a zeroth
order expansion in frequency of the full Floquet scattering
matrix, whilst allowing only scattering processes between
nearest energy sidebands in addition to elastic events. The
corresponding operators for scattered states then take the form

φ̂i(ε) =
∑

α

(Siα (ε)âα (ε) + Siα
−ω(ε)âα (ε + ω)

+ Siα
+ω(ε)âα (ε − ω)), (12)

where creation and annihilation operators for the four ingoing
channels at energy εi are defined in Eq. (9). Before using this
approximation of the scattering matrix in the expressions for
the ingoing and outgoing heat operators [Eqs. (7) and (8)],
we notice that upon calculation of the CGF in Eq. (4), and
hence integration over the driving time period, only terms
where ε = ε′ will contribute to the heat operators. Con-
sequently, the evaluation of the CGF only requires the
calculation of the ingoing and outgoing number operators at
a single energy, defined as

N̂e(h)
→ (ε) = â†

Le(h) (ε)âLe(h) (ε)

and N̂e(h)
← (ε) = φ̂

†
Le(h) (ε)φ̂Le(h) (ε). (13)
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The number operators for both the ingoing and outgoing particle states can then be expressed in terms of matrices, P, acting on
the ingoing scattering states:

N̂e(h)
→(←)(εl ) =

∑
α, β

εi, ε j

[Pe(h)
→(←)(εl )]

αβ
εiε j

âα (εi )
†âβ (ε j ), (14)

with α, β ∈ {Le, Lh, Re, Rh}. Here the ingoing scattering matrices are diagonal in both the discretized energy and the electron-
hole bases: [

Pe(h)
εl →

]αβ

εiε j
= δαLe(h)δαβδεiεl δεiε j . (15)

However, the inelastic scattering events, induced by the driving, result in nondiagonal matrices defining the outgoing number
operators:

[
Pe(h)

εl ←
]αβ

εiε j
= δεiεl S

αLe(h)
(εl )

∗(
SLe(h)β (εl )δεiε j + SLe(h)β

−ω (εl )δ(εi+ω)ε j + SLe(h)β
ω (εl )δ(εi−ω)ε j

)
+ δεi (εl +ω)S

αLe(h)

−ω (εl )
∗(

SLe(h)β (εl )δ(εi−ω)ε j + SLe(h)β
−ω (εl )δεiε j + SLe(h)β

ω (εl )δ(εi−2ω)ε j

)
+ δεi (εl −ω)S

αLe(h)

ω (εl )
∗(

SLe(h)β (εl )δ(εi+ω)ε j + SLe(h)β
−ω (εl )δ(εi+2ω)ε j + SLe(h)β

ω (εl )δεiε j

)
. (16)

Using these matrices P in Eq. (5), the characteristic function can be expressed as the average of a product of exponentials:

χt (λ) =
〈

exp(iλ
∑
α,β

Cαβ â†
α âβ )exp(−iλ

∑
α,β

Dαβ â†
α âβ )

〉
, (17)

with C = ∑
i εiPεi→, D = ∑

i εiPεi← and the sum of the electron and hole number operator matrices defined as Pεi→ = Pe
εi→ +

Ph
εi→. The relevant density matrix, ρ, is block diagonal in the energy basis with the block at each energy εi being given by

ρ
εl
i j = 〈âi†

εl
â j

εl 〉 = fi(εl )δi j . Importantly P are projective matrices, P2 = P, as shown in Appendix B. Under this condition, it has
been proven [50] that the expectation value in Eq. (17) can be expressed as a determinant via

χt (λ) = det(1 − ρ + ρeiλCe−iλD)

= det

(
1 − ρ + ρeiλ

∑
i εiPεi→

(
1 +

∑
i

Pεi←(e−iλεi − 1)

))

= det(Mt (λ)). (18)

In general, the matrix Mt (λ) will be of block pentadiagonal form in an infinite energy basis. In order to make analytical progress
we can split the matrix Pεi← into two contributions as P0

εi← + P̃εi←, where P0
εi← describes the part of the matrix which survives in

the static limit and P̃εi← includes all contributions that arise from the periodic driving and hence all terms involving the sideband
scattering matrix coefficients S±ω. Subsequently we can split the matrix Mt as Mt,0 + M̃t , where

Mt,0 = 1 − ρ + ρ exp

(
iλ

∑
i

εiPεi→

)(
1 +

∑
i

P0
εi←(e−iλεi − 1)

)
,

M̃t = ρ exp

(
iλ

∑
i

εiPεi→

)( ∑
i

P̃εi←(e−iλεi − 1)

)
, (19)

Pe,0
εi← =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

0
0 0 0
0 SαLe

(εi )
∗
SLeβ (εi) 0

0 0 0

0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

245420-4



PUMPED HEAT AND CHARGE STATISTICS FROM … PHYSICAL REVIEW B 102, 245420 (2020)

and

P̃e
εi← =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

0
SαLe

ω (εi )
∗
SLeβ

ω (εi ) SαLe

ω (εi)
∗
SLeβ (εi ) SαLe

ω (εi )
∗
SLeβ

−ω (εi )
SαLe

(εi )
∗
SLeβ

ω (εi ) 0 SαLe
(εi )

∗
SLeβ

−ω (εi )
SαLe

−ω (εi )
∗
SLeβ

ω (εi ) SαLe

−ω (εi)
∗
SLeβ (εi ) SαLe

−ω (εi )
∗
SLeβ

−ω (εi )

0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

With these definitions, the CGF, G(λ) = ln χ (λ), can be ex-
pressed as a sum of two contributions:

G(λ) =
ˆ T

0
dt ln(det(Mt,0 + M̃t ))

= Gelas(λ) + Gpump(λ), (20)

where

Gelas(λ) =
ˆ T

0
dt ln(det(Mt0)),

Gpump(λ) =
ˆ T

0
dtTr

(
ln

(
I + M−1

t,0 M̃t
))

,

where I is the identity matrix. Here we have labeled the con-
tribution which would survive in the static limit, arising due to
only elastic scattering events, as Gelas(λ) and the contribution
arising from the adiabatic driving as Gpump(λ). Since we are
working in the limit of small amplitude parameter modulation,
in which these dynamic contributions to the scattering matrix
are small, keeping only terms quadratic in Xj,ω would appear
to be a justifiable approximation. Terms of this nature appear
in both the linear and quadratic contributions to the expansion
of the matrix ln(M−1

t,0 M̃t ). Consequently, the contribution to
the CGF from the driving can be Taylor expanded and trun-
cated to quadratic order:

Gpump(λ) ≈
ˆ T

0
dtTr

(
M−1

t,0 M̃t − 1

2

(
M−1

t,0 M̃t
)2

)
. (21)

This approximation has significantly simplified our calcula-
tion. In particular, the matrix Mt,0 is block diagonal in the
discretized energy basis. Its determinant can then be written as
a product of the determinants of each of the individual blocks
Mt,0(ε). In the continuous limit the static contribution to the
CGF is then given by

Gelas(λ) =
ˆ T

0
dt
ˆ ∞

−∞
dε ln(det(M0(ε))). (22)

Similarly, since the dynamic contribution can be expressed as
a trace, we can again consider the diagonal blocks at each
energy separately and in the continuous limit we have that

Gpump(λ) =
ˆ T

0
dt
ˆ ∞

−∞
dεTr

[
Mt,0(ε)−1M̃t (ε)

− 1

2

(
M−1

t,0 (ε)M̃t (ε)
)2

]
. (23)

Equations (22) and (23) constitute the first main results of this
work and can be used to determine the heat transport statistics
and fluctuation theorems for weak and adiabatic cyclically
driven systems in terms of the scattering matrix.

In the case that we have the simultaneous variation of just
two parameters of the Hamiltonian, the dynamic contribution
to the generating function exhibits two distinct contributions.
The first consists of terms dependent only on the variation of
a single Hamiltonian parameter and is hence proportional to
X 2

j,ω. This contribution is independent upon the direction of
the driving in parameter space and survives in the case where
only a single parameter is varied. The second contribution
is, in contrast, geometric in nature and hence only dependent
upon the path traversed in parameter space during the driving
cycle. We find that this contribution, Ggeom(λ), is independent
of the driving frequency and identified by its proportionality
to X1,ωX2,ω. The sign of this contribution is sensitive to the
direction of traversal of the contour in parameter space asso-
ciated with the driving, a feature which distinguishes it from
both the static and nongeometric pumped contributions and
could hence be used to isolate the geometric contribution in
an experiment capable of accessing the FCS of heat transport.

Geometric contributions to the full counting statistics of
heat transport have previous been demonstrated to produce
corrections to fluctuation theorems [19]. This contribution
takes on further interest within systems where the accu-
mulated geometric phase is topologically protected against
fluctuations in the driving cycle, such as a Majorana braiding
protocol. Furthermore, although the derivation of the FCS
here used the approximation that the amplitude of the driven
cycle is small in parameter space, we show in Sec. V A that
our analysis can be extended to large amplitude pumps for the
case of such geometric contributions.

B. Full counting statistics for pumped charge transport

The calculation in the previous section can be reproduced
for the case of electronic transport of an adiabatically driven
system. In this case, the characteristic function is given by

χe,t (λ) = 〈eiλQ̂e,→e−iλQ̂e←〉, (24)

with ingoing and outgoing charge operators defined as

Q̂e,→(←) = ∑
εi

e(N̂e
εi→(←) − N̂h

εi→(←) ) and where e is the unit
of electronic charge. This expression reflects the fact that
electrons and holes, traveling in the same direction with
respect to the scattering center, carry charge in opposite di-
rections. From this new starting point, one can show that the
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corresponding elastic and dynamic contributions to the CGF
can be expressed analogously to those for the case of heat
transport:

Gelas
e (λ) =

ˆ T

0
dt
ˆ ∞

−∞
dε ln

(
det

(
Me

0 (ε)
))

.

Gpump
e (λ) =

ˆ T

0
dt
ˆ ∞

−∞
dεTr

(
Me

t,0(ε)−1M̃e
t (ε)

)
, (25)

where now

Me
t,0 =1−ρ + ρ exp

(
iλ

∑
i

Pεi→

)(
1 +

∑
i

P0
εi←(e−iλ − 1)

)
,

M̃e
t = ρ exp

(
iλ

∑
i

Pεi→

)( ∑
i

P̃εi←(e−iλ − 1)

)
. (26)

In this case, Pεi→(←) = Pe
εi→(←) − Ph

εi→(←) and the matrices

Pe(h)
εi→(←) are defined as in Eqs. (15) and (16). As for the anal-

ogous expressions for heat transport, these results are valid
for any cyclically driven system, provided the driving can be
considered adiabatic and with an amplitude that is small in the
relevant parameter space.

III. DRIVEN 1D TOPOLOGICAL SUPERCONDUCTORS:
BRAIDING CYCLE AND PUMPED HEAT

The driven process, for which we would like to study
transport statistics and hence will provide the central focus
of this paper, is that of a Majorana braiding. The setup un-
der consideration consists of three p-wave superconducting
nanowires, in a topologically nontrivial state, arranged in the
form of a Y-junction as illustrated in Fig. 1. Such a system
has been demonstrated, by D. Meidan et al., to produce a
net heat current under Majorana braiding [35]. Each of the
three wires hosts two zero energy Majorana modes, one at
each end of the wire [7]. However, at energies well below
the superconducting gap, �sc, the low energy Hilbert space
is spanned by the three outer Majorana zero modes, γx, γy, γz,
and a fourth zero mode, γ0, formed by a linear combination
of the internal Majoranas from each wire. This Y-junction is
coupled to two external normal metal leads, L and R, which
lie on either side of the junction in order to facilitate a particle
current and allow the exploration of the transport properties of
the braiding protocol.

The two Majorana states γx and γy can be exchanged by
systematically modulating the couplings between the external
Majorana states and the central state γ0 [53,54]. The couplings
between these four states are summarized in the effective
Hamiltonian for the Y-junction,

HY = iγ0 � · γ , (27)

where � = �(sin θ cos φ, sin θ sin φ, cos θ ) and γ =
(γx, γy, γz ). The complete Hamiltonian for the system
is then given by H = HY + Hcoup + Hleads where the
contributions from the coupling to the external leads and
the leads themselves can be written as

Hcoup =
√

�L(cLk − c†
Lk )γx +

√
�R(cRk − c†

Rk )γy,

Hleads =
∑

k

∑
α=L,R

ξαkc†
αkcαk, (28)

respectively. Here, �L/R denote the coefficients associated
with particle tunneling from the leads onto the superconduct-
ing Y-junction and ξαk are the energy dispersion relations in
the leads.

The process of braiding now corresponds to adiabatically
changing the parameters θ and φ in such a way as to gen-
erate the evolution of the Majorana couplings illustrated in
Fig. 1(b).

This evolution can be better understood by writing the
Hamiltonian HY in terms of the basis vectors for a spherical
coordinate system.

HY = i�γ0γr, where γr = γ · êr, γθ = γ · êθ , γφ = γ · êφ.

(29)

Since they do not enter the Hamiltonian, the basis vectors êθ

and êφ span the degenerate ground space and the adiabatic
evolution of the system can now be interpreted as changing the
projection of the physical Majorana states on to this degener-
ate ground space. At energies well below the superconducting
gap (ε � �sc), it is only this subspace that will facilitate
particle transport between the left and right leads, via the
occupation of the zero energy, nonlocal Fermi level defined
via the annihilation operator,

â = 1
2 (γθ + iγφ ). (30)

It has been demonstrated [53,54] that the sequence of cou-
plings sketched in Fig. 1(b) corresponds to this annihilation
operator accumulating a phase factor ei�C , where �C corre-
sponds to the solid angle enclosed by the curve, C = C1 +
C2 + C3, traversed in parameter space. For the specific process
outlined in this section with, �C = π/2, the resulting unitary
evolution operator, U = e− π

4 γφγθ , corresponds to the exchange
of Majoranas γx and γy:

U †γxU = γy,

U †γyU = −γx. (31)

Several proposals have been put forward as to how such a
protocol could be realized experimentally. Reference [53], for
example, outlines a system in which the coupling between the
Majorana zero modes are controlled via the modulation of the
magnetic fluxes through Cooper pair boxes.

The nonzero heat current pumped between the two external
leads throughout the braiding is found, in the low temper-
ature limit, to tend to some universal value independent of
the coupling strength to the external leads and fluctuations
to the driving [35]. Despite this, the particle-hole symmetry of
the Majorana-lead coupling results in no net transfer of charge
between the leads during the process.

In order to find the CGF for the Majorana braiding pro-
tocol, we first need to determine its instantaneous scattering
matrix S(ε, t ). For the superconducting Y-junction, the scat-
tering matrix can be calculated as [55]

S(ε, t ) = 1 + 2π iW †(H0(t ) − ε − iπWW †)−1W, (32)

where H0(t ) denotes the time dependent Hamiltonian of the Y-
junction in the absence of the external leads and W describes
the coupling between the incoming electron and hole (e/h)
scattering states in the leads and the states of the system.
This coupling matrix can be obtained from the Hamiltonian
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in Eq. (28) and, in the basis of the Majorana zero modes, it
takes the form

W =
√

�L(|γx〉 〈eL| − |γx〉 〈hL|)
+

√
�R(|γy〉 〈eR| − |γy〉 〈hR|). (33)

Equations (32) and (33) then give the specific form of the
scattering matrix for the braiding protocol [35]:

S(ε) =

⎛
⎜⎜⎝

SLeLe
1 − SLeLe

SLeRe −SLeRe

1 − SLeLe
SLeLe −SLeRe

SLeRe

SLeRe −SLeRe
SReRe

1 − SReRe

−SLeRe
SLeRe

1 − SReRe
SReRe

⎞
⎟⎟⎠,

(34)

where

SLeLe = 1 − 4π it�

(
sin2 φ

ε + 2π i�
+ cos2 θ cos2 φ

ε + 2π i cos2 θ�

)
,

SReRe = 1 − 4π i�

(
cos2 φ

ε + 2π i�
+ cos2 θ sin2 φ

ε + 2π i cos2 θ�

)
,

and

SLeRe = 4π iε cos φ sin2 θ sin φ�2

(ε + 2π i�)(ε + 2π i cos2 θ�)
,

where here we display the case of equal coupling to the left
and right leads, �L = �R = �, for brevity. The components
of this scattering matrix can be used in Eqs. (22) and (23) in
order to determine the heat and charge transfer statistics of a
driven Majorana Y-junction.

From the form of the scattering matrix components it is
evident that there exists two distinct energy scales that will in-
fluence the transport. These scales are illustrated in Fig. 2 for
the case of the Andreev reflection component of the scattering
matrix, SLe,Lh (ε) = 1 − SLe,Le (ε). In Fig. 2(a), we see that the
energy dependence of the Andreev reflection via the Majorana
zero modes consists of the sum of two peaks centered at
ε = 0. The width of the narrower peak, �R cos2 θ , is set by
the position in the parameter space (θ, φ), with the width
decreasing as we approach the line θ = π/2, corresponding
to the equator of the spherical parameter space shown in
Fig. 1(b). This energy scale is not visible as we move a
sufficient distance away from this line and the larger energy
scale dominates. The size of this larger energy scale is set by
the strength of the coupling to the external leads �L/R.

It is also worth noting the difference in behavior between
the real and imaginary components of the scattering matrix in
the limit ε → 0. Whereas, the real part can be approximated
as constant in this limit, the imaginary part varies linearly with
energy and hence quantities that include this contribution will
show sensitivity to the energy dependence of the scattering
matrix, even in the limit T → 0.

IV. HEAT AND CHARGE TRANSPORT CUMULANTS
IN SMALL CYCLES

With the motivation of studying the FCS for a Majo-
rana braiding protocol, we begin by considering a situation
where the superconducting Y-junction, outlined in Sec. III,

(a)

(b)

FIG. 2. (a) Real and (b) imaginary parts of the Andreev reflection
component of the scattering matrix for the topological supercon-
ducting Y-junction. Results are plotted for several positions in the
parameter space, (θ0, φ0), and for equal coupling to the left and right
external leads �L = �R = 1.

is driven through a small amplitude cycle on the surface of
the spherical phase space defined by the parameters θ and
φ and illustrated by the contour Cs in Fig. 1(b). The CGF
for this process is found by substituting the scattering matrix,
defined in Eq. (34), into the elastic and dynamic contributions
(Eq. (22) and (23)) at some time t . For simplicity, we will
consider the case in which we have no chemical potential
bias, μL = μR = 0, between the external leads and that both
leads are held at the same temperature, TL = TR = T , so that
the distribution functions for holes and electrons in each lead
are identical: f e,L

in (ε) = f h,L
in (ε) = f e,R

in (ε) = f h,R
in (ε). Our ap-

proach is valid in the adiabatic limit, which in this case
corresponds to restricting the driving frequency to be much
smaller than the coupling between the system and the external
leads, ω � �L,R.

The expressions for the generating function in Eqs. (22)
and (23) can be used to determine all cumulants of both the
heat, M(k), and charge, M(k)

e transport between the external
leads:

M(k)
(e) = ∂kG(e)(λ)

∂ (iλ)k

∣∣∣∣∣
λ=0

. (35)
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For example, the first cumulants M(1) and M(1)
e correspond

to the total heat, 〈Q̂(t )〉 and charge, 〈Q̂e(t )〉 pumped during
the cycle respectively, and the second cumulants M(2)

(e) give

the variances, or noise, 〈Q̂2
(e)(t )〉 − 〈Q̂(e)(t )〉2

of these distri-
butions.

A. Elastic contribution to energy and charge transfer statistics

We first discuss the contribution to the CGF arising from
elastic scattering events only, which would survive in the limit
that the system is not driven and is hence relevant for cycles
of arbitrary amplitude. For the case of heat transport we find
that the static contribution can be expressed as

Gelas(λ) = T
ˆ ∞

−∞
dε ln

(
1 +

1∑
n=−1

Bn(ε)(eiλεn − 1)

)
, (36)

where T denotes the period of the driving and the coefficients
Bn(ε) take the form

B1(ε) = B−1(ε) = 4|SLe,Re
(ε, θ0, φ0)|2 f (ε)(1 − f (ε)). (37)

Here, (θ0, φ0) corresponds to the location of the driving path
center in parameter space. In this form the physical mean-
ing of the CGF becomes clear, as heat is only transferred
across the junction by the normal and Andreev transmission
of electrons and holes in both directions. For example, the
transmission of an electron from the left to the right lead
will occur with a probability of |SLeRe

(ε)|2 f (ε)(1 − f (ε)), as
expected. The corresponding expression for charge transport
is found to be

Gelas
e (λ) = T

ˆ ∞

−∞
dε ln

(
1 +

2∑
n=−2

Bn(ε)(eiλn − 1)

)
, (38)

where

B−1(ε) = B1(ε) = 4
∣∣SLeRe

(ε, θ0, φ0)
∣∣2

f (ε)(1 − f (ε)),

B−2(ε) = B2(ε) = ∣∣SLeLh
(ε, θ0, φ0)

∣∣2
f (ε)(1 − f (ε)).

Here we see the additional contribution of Andreev reflection
processes, which result in the creation and annihilation of
Cooper pairs within the superconducting nanowire system.
These processes result in the propagation of an electronic
charge of ±2e, but no energy transport in the form of heat.

In the case of both zero temperature and chemical potential
bias between the external leads, both the heat and charge
current contributions arising from the elastic CGF, Gelas

(e) (λ),
are identically zero, 〈Q̂elas〉 = 〈Q̂e,elas〉 = 0. Despite this, the
elastic scattering processes still allow for fluctuations. This
contribution to the noise is thermal in nature, arising due to
thermal fluctuations in the occupation of the ingoing scatter-
ing states. It vanishes in the limit T = 0 and μ = 0 when the
occupation of all ingoing energy states is fixed and no charge
or energy transfer processes take place. This thermal noise
is present in both energy and charge transport and, for our
setup, it is natural to identify two distinct temperature regimes
relative to the strength of coupling to the external metal leads.

1. Thermal noise at low temperature

For low values of the external lead temperature, T �
min �L/R, the energy dependence of the absolute value of
the scattering matrix elements can be considered weak (cf.
Fig. 2). Consequently, one would expect that the behavior
of the thermal noise as a function of temperature in this
regime should be dictated by the Fermi distribution func-
tions, f (ε), appearing in the elastic contribution to the CGF
[Eqs. (36) and (38)]. Taking the scattering matrix elements
to be energy independent, the form of the static contribution
to the CGF implies that the elastic charge noise should de-
pend linearly on temperature, whereas the elastic heat noise
should vary as T 3. This behavior is well understood and
in agreement with previous studies of transport statistics
[30,56].

The period averaged second cumulants of the static con-
tribution to the CGF, 1

T M(2)
(e),elas, which quantify the thermal

noise, are plotted for both heat and charge in Figs. 3(a) and
3(b), respectively. At low temperatures T � min �L/R, we
see that, as expected, the electronic charge thermal noise
scales linearly with temperature. Additionally, we see that
the charge noise becomes independent of the coupling to
the external leads, �L/R [cf. Fig. 3(b) inset]. This is a fur-
ther consequence of the weak energy dependence of the
frozen in time scattering matrix, Ŝ(ε, Xj,0) at energies close to
zero.

We find that the thermal heat noise, however, is sensitive
to the energy dependence of the scattering matrix even in the
low temperature limit. In fact, if the energy dependence was
neglected entirely, and the scattering matrix evaluated at the
chemical potential μ = 0, the elastic contribution to the heat
noise would vanish. The inset in Fig. 3(a) illustrates that as
T → 0 the elastic heat noise scales as T 5 as opposed to the
T 3 scaling originating from the distribution functions of the
normal metal leads. The influence of the scattering matrix is
also evident in the fact that the thermal noise is dependent
upon the external lead coupling at all temperatures, in contrast
to the case of charge transport. However, the energy depen-
dence of the scattering matrix cannot be entirely neglected
even in the case of charge transport, as its influence is evident
in the contributions to the transport cumulants arising from
the pumping.

2. Thermal noise at high temperature

As the temperature becomes comparable with min �L/R,
the energy dependence of the scattering matrix becomes in-
creasingly significant in both the cases of charge and heat
noise. For scattering processes via Majorana zero modes,
transport is dominated by low energy scattering states, hence
high energy occupation fluctuations that occur as T is in-
creased do not contribute to the current noise. As a result,
the rate at which the elastic noise increases slows down at
high temperatures and will eventually plateau for the case
of charge transport and scale ∝ T for that of heat transport.
The temperature at which this occurs is proportional to the
external lead coupling, min �L/R, as can be clearly seen in the
main panels of Figs. 3(a) and 3(b) for heat and charge noise,
respectively.
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(a) (b)

FIG. 3. Period-averaged static contribution to the second cumulant of (a) the pumped heat and (b) pumped charge throughout the driving
of a Majorana Y-junction centered at (θ0, φ0 ) = (π/2 − 0.1, π/4), with amplitude θω = φω = 0.01. The noise is plotted as a function of the
external lead temperature T/�R, for a driving frequency ω/�R = 0.001. The insets show the temperature dependence of this quantity scaled
by T 5 and T for heat and charge respectively, highlighting the behavior as T → 0. The different colors correspond to various values of the
coupling between the Y-junction and the external leads �L/�R (cf. legend).

It is also worth noting that, at all temperatures both the
period averaged charge and heat thermal noises are indepen-
dent of the driving frequency. This is to be expected, as the
components of the scattering matrix responsible for elastic
scattering events are not influenced by the driving.

B. Averaged pumped heat and energy

Next, we analyze the more interesting contributions to the
transport statistics arising from the pumped contribution to
the CGF given in Eq. (23). Again considering the case for
which the external leads are held at the same temperature T
and zero chemical potential μ = 0, one finds that the charge
pumped during any modulation of the Majorana Y-junction
is identically zero. This is a direct result of the electron-hole
symmetry of the coupling between the Majorana zero modes
and the leads [35]. This result is in contrast to previous works
on adiabatic pumps in which the scattering matrix does not
possess such a symmetry and the pumped charge is found to
vary linearly with the pumping frequency [30]. Despite this
there is a finite heat current pumped across the junction which,
in the case of zero temperature bias, arises solely from the
geometric part of the CGF, Ggeom(λ):

〈Qpump〉 = 〈Qgeom〉 = ∂

∂ (iλ)
Ggeom(λ)

∣∣∣∣∣
λ=0

=
∑

β=Le,Re

4
ˆ ∞

−∞
dε ε

¨
∂ f (ε)

∂ε

× Im

[
∂SLeβ (ε)

∂θ

∂SLeβ (ε)

∂φ

]
dθdφ. (39)

In this form, the geometric nature of the pumped heat becomes
clear, since its value depends only upon the contour traversed
in parameter space throughout the driving and is independent
of the driving frequency itself. The fact that the pumped heat
arises solely from the geometric contribution to the CGF
means that this expression is valid for arbitrary amplitude

cycles in parameter space, (see Sec. V A), and in particular for
that of the Majorana braiding protocol illustrated in Fig. 1(b).
The energy pumped throughout such a process is found to be
in agreement with Ref. [35].

The Majorana braiding is of particular interest since the
path traversed in parameter space during the process is topo-
logically protected against fluctuations in the driving. As a
consequence, any transport properties that can be shown to
be geometric in nature will also be protected. Furthermore, at
low temperatures, T → 0, the derivative of the Fermi function
ensures that only particles with energies close to the chem-
ical potential take place in the transport, which in this case
corresponds to taking the limit ε → 0 of the area integral in
Eq. (39). In this limit, the contour traversed in parameter space
maps on to a fixed path in scattering matrix space and hence
the pumped heat tends to some universal value, independent
of the coupling to the external leads as well as the nature of
the driving [35]:

Q

2T ln 2
= 1

4
. (40)

Considering the experimental proposal for a realization of
such a braiding process outlined in Ref. [53], it is the modula-
tion of the external fluxes, and the corresponding change in the
Coulomb coupling between Majorana zero modes, that phys-
ically results in the heat pumped between the external leads
throughout the process. The properties of this nonzero heat
current can further be used to distinguish the case of transport
via Majorana zero modes from that of a system containing
only Andreev bound states (ABS). Firstly, due to the localized
ABS only coupling to a single lead, the heat pumped into
each external lead will, in general, be uncorrelated. However,
the presence of nonlocal Majorana zero modes leads to the
anti-correlation of the heat current in the left and right leads,
IL = −IR. Furthermore, the transport properties of a system
hosting ABS would not demonstrate independence to local
perturbations of the Y-junction as well as fluctuations in the
driving cycle, properties that are unique to the presence of
Majorana zero modes.
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(a)

(b)

(c)

(d) (e)

(f)

FIG. 4. The pumped contribution to the second cumulant of the heat transport throughout the driving of a Majorana Y-junction centered at
(θ0, φ0) = (π/2 − 0.1, π/4), with amplitude θω = φω = 0.01. (d)–(f) show the geometric contribution, whereas (a)–(c) illustrate the remaining
nongeometric part. (a) and (d) show the second cumulants as a function of temperature, with the inset highlighting the region T � ω. (b), (c),
(e), and (f) show the same quantities plotted against frequency. (b) and (e) illustrate the behavior as a function of low frequencies ω < T and
(c) and (f) at high frequencies ω > T .

C. Heat and charge noise from pumping

We now extend our analysis beyond the known results for
the average current by analyzing the higher order cumulants of
the contribution to the CGF arising from the time dependent
pumping, for transport via Majorana modes. When dynamic
processes are included, noise can originate not only from
thermal fluctuations, but also from the action of the pump
itself. This noise arises due to the nonequilibrium nature of the
outgoing scattering states, as a consequence of the possibility
of scattering events between nearest energy sidebands, and
is present in both the cases of heat and electronic transport.
This side band scattering results in correlations between out-
going particle distributions at energies within the range ε ± ω

which manifest themselves as a source of noise in the average
pumped heat and charge. This source of noise vanishes in
the case that the pump is switched off and hence inelastic
scattering events between side bands cease to occur.

From the total pumped noise we can isolate the contribu-
tion that arises from the geometric part of the CGF, which we
denote M(2)

(e),geom. This is the additional noise that is observed
in the case that two parameters are driven simultaneously
in a closed cycle. The remaining pumped noise, denoted
M(2)

(e),pump, would be present even in the case that just a single
parameter is driven. These pumped contributions to the second
cumulant of the heat and charge noise are shown in Fig. 4 and
5, respectively. They illustrate the existence of three distinct
temperature regimes that dictate the behavior of the noise as a
function of driving frequency ω, each of which are discussed
in the following sections.

1. Low temperature regime: T � ω

In the case that the temperature is lowered below the energy
associated with the driving frequency ω, the thermal noise

becomes negligible and the noise associated with the pumping
itself dominates. In the case of driven noise, the key quantity
dictating the characteristic behavior is the difference in Fermi
occupation functions between neighboring energy sidebands,
of which the pump can stimulate transitions between. In this
regime, the quantity f0(ε) − f0(ε ± ω) is only nonzero over
an energy window close to ε = 0, the width of which scales
linearly with ω, but is insensitive to the temperature of the
external leads.

The absence of temperature dependence is reflected in
Figs. 4(a), 4(d) and 5(a), 5(d) for heat and charge transport,
respectively. The inset panels within each of these figures
show that the pumped contributions to the noise tend to some
nonzero value in the limit T → 0, in contrast to the static
contributions to the noise (cf. Fig. 3).

Although the energy dependence of the real contribution
to the scattering matrix in negligible in this low temperature
limit, (cf. Fig. 2), the linear energy dependence of the imag-
inary contribution will influence the transport properties, as
will the behavior of the scattering matrix derivatives appear-
ing in the inelastic terms S±ω(ε). This energy dependence
manifests itself in the form of a difference in the frequency
dependence between the geometric and nongeometric contri-
butions to the pumped noise, since they depend differently
on the scattering matrices, as implicit from Eq. (19). Specifi-
cally, M(2)

pump ∝ ω4 and M(2)
geom ∝ ω5 [cf. Figs. 4(c) and 4(f)],

whereas for charge the non geometric and geometric con-
tributions are found to vary as ω2 and ω3, respectively [cf.
Figs. 5(c) and 5(f)]. This difference between heat and charge
noise can be justified by the fact that the dominant process is
the scattering from states of energy ε to ε ± ω. Consequently,
the heat noise is underpinned by the same fluctuations as those
in the case of charge, and differ only by the fact that the scat-
tering events are weighted by the energy absorbed/emitted
∼ω.
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(a) (b)

(c)

(d) (e)

(f)

FIG. 5. The pumped contribution to the second cumulant of the charge transport throughout the driving of a Majorana Y-junction centered at
(θ0, φ0) = (π/2 − 0.1, π/4) with amplitude θω = φω = 0.01. (d)–(f) show the geometric contribution, whereas (a)–(c) illustrate the remaining
nongeometric part. (a) and (d) show the second cumulants as a function of temperature, with the inset highlighting the region T � ω. (b), (c),
(e), and (f) show the same quantities plotted against frequency. (b) and (e) illustrate the behavior as a function of low frequencies ω < T and
(c) and (f) at high frequencies ω > T .

2. Mid-temperature regime: ω < T � �L,R

As the temperature is increased beyond the driving
frequency, the temperature becomes the quantity which de-
termines the energy window within which scattering events
can occur. This transition can be seen in panels (a) and (d)
of Figs. 4 and 5 by the deviation of the pumped noises away
from their corresponding constant low temperature values
at approximately T = ω. Beyond this point the temperature
dependence is governed by a combination of the distribution
functions and the energy dependence of the scattering matrix.
Initially, the heat noise varies as T 5 and we find that the charge
noise is proportional to T 3, with the ratio M(2)/M(2)

e = T 2,
where the temperature now plays the same role of the fre-
quency in the previous case, in agreement with previous works
[51]. However, as T increases further we see that, for both
heat and charge, the second cumulant is not monotonic and
exhibits a turning point corresponding to the temperature
exceeding the width of the scattering matrix resonance. The
width of this resonance is set by the location of the center of
the driving in the parameter space, (θ0, φ0) (cf. Fig. 2). We
also see that the pumped contributions to both the heat and
charge noise undergo a sign change which originates from
the energy dependence of the derivatives of the scattering
matrix with respect to the driving parameters, S±ω(ε), which
dictate transitions between nearest energy sidebands. The sum
of the static and pumped contributions to the noise, however,
remains positive at all temperatures.

The driving frequency dependence of the pumped noise in
this regime is similar for both the cases of heat and charge.
The difference between the nongeometric and geometric con-
tributions persists however as illustrated in panels (b) and (e),
respectively. We see that the nongeometric part is now in-
versely proportional to ω whereas the geometric contribution
is independent of the frequency of the driving and determined
purely by the path traversed in parameter space.

3. High temperature regime: T > �L,R

As the temperature is increased beyond the broadening of
the scattering matrix resonance, set by the strength of the cou-
pling between the system and the external leads, the scattering
matrix dependence on energy is dominated by the generic
1/ε2 behavior. This leads to saturation of charge noise and
heat noise that is linear in T , [cf. panels (a) and (d) of Figs. 4
and 5].

V. IMPACT UPON FLUCTUATION THEOREMS

When studying systems which involve heat transfer to
thermal reservoirs, fluctuation theorems (FT) dictate the like-
lihood of anomalous transfer events which appear in violation
with the second law of thermodynamics. Therefore they pro-
vide useful information on the nature of the heat flow. From
their general formulation in terms of entropy production
[57,58], fluctuation theorems can be recast in more spe-
cific forms for different settings. One such example is the
Gallavotti-Cohen fluctuation theorem (GCFT), determining
the statistics of heat transfer between reservoirs at different
temperatures. It states that over a sufficiently long time inter-
val τ [19,41],

lim
τ→∞

1

τ
ln

[
Pτ (Q)

Pτ (−Q)

]
= Q(βR − βL )

τ
, (41)

where Pτ (Q) denotes the probability distribution of the heat
Q transferred from the left to the right bath and βL,R = 1

kBTL,R
.

This statement describes the probability at which heat transfer
occurs against the thermal gradient. However, in the case of
cyclic time-dependent manipulations of the system, it has
been shown [19] that geometric contributions to the heat
transfer statistics lead to the addition of correction terms to
this theorem. The formalism presented in Sec. II allows us to
compute the corrections to the fluctuation theorem for systems
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(a)

(b)

FIG. 6. (a) Probability distribution, P(Q), for the heat pumped
via the small amplitude (θω = φω = 0.01) driving of a Majorana
Y-junction centered at (θ0, φ0) = ( π

2 − 0.01, π

4 ). Results are shown
for several values of the coupling to the external leads, �L = �R = �,
with an external lead temperature of T/ω = 10. The inset shows the
corresponding behavior of the fluctuation theorem violation quan-
tifier A(λ) = |χ (λ) − χ (−λ)| which is identically zero when the
Gallavotti-Cohen fluctuation theorem holds true. (b) Probability dis-
tribution for the case of a static Majorana Y-junction at (θ0, φ0) =
( π

2 − 0.1, π

4 ). Results are plotted for several temperature gradients,
β� and the inset shows the corresponding behavior of the fluctuation
theorem.

in which this geometric term is topologically protected against
fluctuations in the driving.

In order to highlight the fact that these corrections arise due
to the cyclic driving of the system, it is first useful to consider
the case of a static Majorana Y-junction, which physically
corresponds to the case of transport across a single topologi-
cally superconducting wire. Figure 6(b) shows the probability
distributions for heat transport in the static case for several
temperature gradients, β� ≡ βR − βL. The inset demonstrates
that the quantity ln[P(Q)/P(−Q)] corresponds exactly to a
straight line of gradient β� and hence the GCFT holds exactly
in this case.

In order to compute the correction terms, we start by
noticing that the GCFT holds if and only if the character-
istic function obeys the Gallavotti-Cohen symmetry χ (λ) =
χ (−λ + iβ∗), where β∗ = 0 for our system of interest, since
the temperature of the external leads are assumed to be equal
and remain constant throughout the braiding process. Using

this expected symmetry of the CF, we can define the following
function quantifying the corrections to the fluctuation theo-
rem:

A(λ) = |χ (λ) − χ (−λ)|. (42)

A nonzero value of A(λ) at any value of the counting field, λ,
indicates a correction to the GCFT.

For the case of small amplitude oscillations in the param-
eter space of the Majorana Y-junction, we can access the
probability distribution for pumped charge via the inverse
Fourier transform of the exponentiated total CGF G(λ) de-
fined in Eq. (20). The probability distributions for one such
cycle are illustrated in Fig. 6 for several values of the coupling
to the external leads �. Here the asymmetry of the probability
distribution with respect to Q = 0 is clearly visible and corre-
sponds to fact that heat is driven between the external leads,
despite the absence of any temperature or chemical potential
bias. The inset of Fig. 6 illustrates the behavior of our viola-
tion quantifier A(λ), which is nonzero and hence indicative
of a correction to the FT. The magnitude of the correction
also appears to be increasing with �, indicated by the larger
area under the graph of A(λ). This is a consequence of the
increasing translation of P(Q) as an increasing heat current is
pumped between the external leads. However, this trend is not
general as increasing noise will act to obscure any translation
of P(Q) hence reducing the magnitude of the correction func-
tion A(λ). At low temperatures, relative to the energy scales
associated with the scattering matrix, the variance of P(Q) is
found to be decreasing with increasing coupling strength [cf.
Fig. 3(a) inset]. However, in the high temperature limit, the
static noise becomes linearly dependent on � and we would
see that the resulting violation would become less prominent
with increasing coupling to the external leads.

A. Impact upon fluctuation theorems for
arbitrary amplitude pumps

For the case of the Majorana braiding [cf. Fig. 1(b)], the
amplitude of the parameter modulation is not small enough
for the linear expansion of the scattering matrix in Eq. (11)
to apply. Yet, in this section, we show that the our results can
be extended to demonstrate the correction to the Gallavotti-
Cohen fluctuation theorem for large amplitude cycles such as
this. Firstly, we make use of the fact that we can write the
total generating function for a small amplitude cycle, G(λ),
as the sum of geometric and dynamic contributions: G(λ) =
Ggeom(λ) + Gdyn(λ). From our numerical results, we see that
for the dynamic contribution, the GC symmetry holds for all λ

and consequently any corrections to the FT arise solely from
the geometric contribution. Hence, an equivalent indicator of
FT correction is given by Ageom = |χgeom(λ) − χgeom(−λ)|,
where χgeom(λ) = eGgeom (λ). This quantity, unlike A(λ), can be
calculated for arbitrary amplitude cycles.

In order to demonstrate this, we define the generating func-
tion to be dependent upon the direction we travel around the
driving contour in parameter space as G�(λ) and G�(λ). The
difference between these two generating functions D(λ) =
G�(λ) − G�(λ) will clearly change sign upon reversal of the
pumping direction. For this reason, we can calculate this quan-
tity for a large amplitude pump by dividing the area enclosed
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FIG. 7. An illustration of how the difference between contour
integrals in opposite directions for arbitrary amplitude cycles, can be
broken down into the sum of similar differences on smaller cycles.
This result is due to the cancellation of the integrals along the interior
sides of the smaller cycles and is valid upon division of the contour
C into an arbitrary number of smaller cycles {Ci}.

by the contour, traversed throughout the braiding process, into
smaller areas, within which the weak amplitude approxima-
tion is valid. An example of this reasoning is illustrated in
Fig. 7. If we write the directional generating functions for each
small cycle as closed contour integrals in parameter space,ı

C ds dt
ds Gθ,φ (λ), we see that the subtraction of these integrals

in opposite directions leads to the cancellation of the interior
contributions. This leaves only the desired line integral around
the boundary of the larger cycle:

D(λ) =
ˆ T

0
dt (G�

t (λ) − G�
t (λ))

=
j

C
ds

dt

ds
Gθ,φ (λ) −

‰
C

ds
dt

ds
Gθ,φ (λ)

=
∑

i

[j
Ci

dsi
dt

dsi
Gθ,φ (λ) −

‰
Ci

dsi
dt

dsi
Gθ,φ (λ)

]
.

(43)

We can hence obtain the quantity D(λ) for large amplitude
cycles by summing the contributions of cycles in which the
small amplitude approximation is valid. In the limit that the
interior cycles are made infinitesimally small, the summation
of the contributions from each smaller cycle can be used to
approximate the form of the generating function resulting
from the traversal of a contour of an arbitrary shape and size.

The quantity D(λ) isolates the contribution to the generat-
ing function which is sensitive to the direction in which the
pumping contour is traversed. One can show that, for a small
amplitude, two parameter pump, this term is the proportional
to Xω,1Xω,2 and corresponds to 2Ggeom(λ). We can hence ac-
cess the violation function Ageom(λ) for arbitrary amplitude
cycles.

The absolute value and argument of χgeom(λ) are plotted
in Figs. 8(a) and 8(b) for a Majorana braiding process. It

(a)

(b)

FIG. 8. Absolute value (a) and argument (b) of the geometric
contribution to the heat transport characteristic function χgeom(λ) for
the case of a Majorana braiding protocol. Results are plotted for
several values of the external lead temperature. Asymmetry of this
function in λ indicates an apparent violation of the Gallavotti-Cohen
type fluctuation theorem.

can be seen that, although the GC symmetry is present in
the real part of this quantity, the imaginary part is nonzero
and antisymmetric with respect to λ. As a result, the violation
function takes the form

Ageom(λ) = 2|χgeom|| sin(arg(χgeom ))| (44)

and corrections are clearly required to the GCFT when consid-
ering a Majorana braiding process. Furthermore, the presence
of this correction does not require the modulation of the ex-
ternal temperature gradient as in topologically trivial systems
[19] and hence stems solely from the cyclic variation of the
systems internal parameters.

In order to consider the temperature dependence of this
apparent violation one must take into account two competing
factors. Although the pumped heat increases as a function
of T , illustrated by the increasing gradient of arg(χgeom )(λ)
in Fig. 8(b), we also know that the second cumulant of the
pumped heat, M(2) varies as T 5. This increased variance,
indicated by the rate of decay of |χgeom|2 plotted in Fig. 8(a),
leads to the overlap of the probability distributions P(Q) and
P(−Q) and hence a reduction in the correction to the GCFT.
Furthermore, the fact that the correction is purely geometric
in nature, means that, for T � ω, the correction is depen-
dent only on the contour traversed in parameter space and
is independent of the driving frequency. Given that, in the
case of a Majorana braiding, this contour is topologically
protected against fluctuations in the driving, the behavior
of the violation function Ageom(λ) will also exhibit this
protection.

VI. CONCLUSIONS

A system driven in an adiabatic cycle shows corrections
to thermodynamic fluctuation theorems which depend on
geometric properties of the cycle, as opposed to its dynam-
ical features. Here we have studied the statistics of heat
transfer for adiabatic cycles associated with the topologi-
cally protected evolution of a quantum system, specifically,
a one-dimensional topological superconductor undergoing a
braiding of its Majorana zero modes. We have first obtained
general expressions for the statistics of heat transfer, which
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extend known results for the charge transport full counting
statistics. We singled out the peculiarities of Majorana zero
modes in the heat and charge current noise, including a
correction to the Gallavotti-Cohen type fluctuation theorem.
We have successfully extended this result to finite amplitude
cycles and showed that the heat transfer associated with Majo-
rana braiding induces a correction to a Gallavotti-Cohen type
fluctuation theorem. As opposed to analogous corrections in
nontopological systems which require cyclical variation of the
external temperatures [19], our contribution stems solely form
a cycle in the system’s parameter space, at constant tempera-
ture gradient, and is a result of the coherent dynamics of the
driving. Moreover, the correction term is geometric in nature

and topologically protected against small, slow fluctuations of
the driving. The identification of corrections to transport fluc-
tuation theorems, in terms of quantum coherent contributions
to scattering processes, allows for further investigation to in-
corporate such contributions in properly modified fluctuation
theorems.
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APPENDIX A: CHARACTERISTIC FUNCTION FOR DRIVEN HEAT TRANSPORT

In order to define the characteristic function for the case of the Majorana braiding setup, which will include inelastic scattering
between the nearest energy sidebands, we must consider both the time and energy dependence of the scattering matrix. Firstly,
in order to deal with the time dependence, we will divide the total time interval t0 into discrete time steps, which we will denote
as ti, before taking the continuum limit. At each time step, the components of the scattering matrix will be assumed constant and
we assume that the outgoing distribution of particles at a time ti has no influence upon the ingoing distribution at a later time,
since this is always taken as the equilibrium Fermi distribution of the particle bath. As a consequence, the probabilities of the
heat transferred across the junction within each time interval can be taken as independent from one another. We can write the
characteristic function associated with a heat transfer Q after a total time t0 as

χ (λ) =
∑

Q

eiλQ
∑
{qti }

δ
(

Q =
∑

ti

qti

)
P(qt1 , qt2 , . . . ), (A1)

where {qti} denotes all possible combinations of the heat quantities qti . The independence of the probability distribution at each
time allows this expression to be rewritten as the product of characteristic functions defined at each discrete time step:

χ (λ) =
∑

Q

eiλQ
∑
{qti }

δ
(

Q =
∑

ti

qti

) ∏
ti

P(qti )

=
∑
{qti }

eiλ
∑

ti
qti

∏
ti

P(qti )

=
∑
qt1

eiλqt1

∑
qt2

eiλqt2 · · ·
∏

ti

P(qti )

=
∏

ti

∑
qti

eiλqti P(qti ) =
∏

ti

χti (λ).

(A2)

Taking the logarithm of this expression, we can define the characteristic function the time continuum limit:

ln χ (λ) =
ˆ t0

0
dt ln(χt (λ)). (A3)

It now remains to find an appropriate expression for the function χti (λ). The scattering between nearest energy sidebands
means that we cannot consider the characteristic function at each energy independently, a fact which complicates the subsequent
calculation significantly. With this in mind, we can define the net number of particles with energy ε j traveling to the right in the
left lead as qti (ε j ) = mti (ε j ) − nti (ε j ) and thus write the characteristic function at a fixed time ti as

χti (λ) =
∑
qti

eiλqti

∑
{qti (ε j )}

δ
(

qti =
∑
ε j

ε jqti (ε j )
)

P(qti (ε1), qti (ε2), . . . )

=
∑

{qti (ε j )}
e

iλ
∑

ε j
ε j qti (ε j )P(qti (ε1), qti (ε2), . . . )

=
∑

{mti (ε j ),nti (ε j )}
e

iλ
∑

ε j
ε j (mti (ε j )−nti (ε j ))P

(
mti (ε1),−nti (ε1), . . .

)

= 〈eiλQ̂→e−iλQ̂←〉, (A4)
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where

Q̂→(←) =
∑
εi

εi
(
N̂e

εi→(←) + N̂h
εi→(←)

)
. (A5)

APPENDIX B: PROJECTIVE NATURE OF NUMBER OPERATOR MATRICES

Here we will show how products of number operators, defined in Sec. II A, which act at the same or different energies can be
simplified in order to demonstrate their projective nature. In order to do this we must first consider several relationships that can
be obtained from the unitarity of the scattering matrix. Treating the discretized particle energy levels as ingoing and outgoing
propagation channels, we can write the scattering matrix in block form,

Ŝ =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . . 0
Sαβ

ω (εi ) Sαβ (εi ) Sαβ
−ω(εi )

Sαβ
ω (εi+1) Sαβ (εi+1) Sαβ

−ω(εi+1)
Sαβ

ω (εi+2) Sαβ (εi+2) Sαβ
−ω(εi+2)

0 . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B1)

By writing the scattering matrix in this form we can immediately see that its unitarity gives us the following useful relations:

|Sαβ (εi )|2 + ∣∣Sαβ
ω (εi)

∣∣2 + ∣∣Sαβ
−ω(εi)

∣∣2 = I, (B2a)

Sαβ (εi )S
βγ
ω (εi+1)

† + Sαβ
−ω(εi )S

βγ (εi+1)
† = 0, (B2b)

Sαβ
−ω(εi )S

βγ
ω (εi+2)

† = 0. (B2c)

These relationships can be further simplified by considering the symmetric nature of each of he blocks, so that Sαβ (εi )
† =

Sαβ (εi )
∗

and Sαβ
±ω(εi )

† = Sαβ
±ω(εi )

∗
.

Now let us consider for example the square of the outgoing number operator matrix at energy εi:

P2
εi← = (

Pe
εi← + Ph

εi←
)2 = Pe

εi←
2 + Ph

εi←
2 + Pe

εi←Ph
εi← + Ph

εi←Pe
εi←.

First considering the top left nonzero element of the matrix for the squared electron term, we have that

{Pe
εi←

2}ii = Sα1
ω (εi )

∗
S1β

ω (εi )S
β1
ω (εi )

∗
S1γ

ω (εi) + Sα1
ω (εi)

∗
S1β (εi)S

β1(εi)
∗
S1γ

ω (εi )

+ Sα1
ω (εi )

∗
S1β

−ω(εi )S
β1
−ω(εi )

∗
S1γ

ω (εi)

= Sα1
ω (εi )

∗(
S1β

ω (εi )S
β1
ω (εi )

∗ + S1β (εi )S
β1(εi )

∗ + S1β
−ω(εi )S

β1
−ω(εi)

∗)
S1γ

ω (εi)

= Sα1
ω (εi )

∗
S1γ

ω (εi) = {Pe
εi←}ii, (B3)

where in the final step we have made use of the unitarity relation given in Eq. (B2a). The same reasoning can be applied to
the other components of the matrix and in the case of the outgoing number operator for holes. Hence we can conclude that
Pe

εi←
2 = Pe

εi← and Ph
εi←

2 = Ph
εi←. Next considering the cross-terms in the expansion we see that{

Pe
εi←Ph

εi←
}

ii = Sα1
ω (εi)

∗
S1β

ω (εi )S
β2
ω (εi)

∗
S2γ

ω (εi) + Sα1
ω (εi )

∗
S1β (εi )S

β2(εi )
∗
S2γ

ω (εi )

+ Sα1
ω (εi )

∗
S1β

−ω(εi )S
β2
−ω(εi )

∗
S2γ

ω (εi )

= Sα1
ω (εi)

∗(
S1β

ω (εi)S
β2
ω (εi)

∗ + S1β (εi)S
β2(εi)

∗ + S1β
−ω(εi)S

β2
−ω(εi )

∗)
S2γ

ω (εi)

= 0, (B4)

where once again we have used Eq. (B2a). This results hold for all elements of the matrices Pe
εi←Ph

εi← and Ph
εi←Pe

εi← and hence
we have demonstrated the projective nature of the outgoing number operator matrices at each energy: P2

εi← = Pεi←.
Next we will show that, in addition to this result, the sum of the matrices Pεi← over all energies is also itself a projector. In

order to do this we will evaluate the product (∑
i

Pe
εi← + Ph

εi←

)2

.

Due to the shape of the P matrices given in Eq. (16), we find that the only nonzero contributions to this product take the form(
Pe

εi← + Ph
εi←

)(
Pe

ε j← + Ph
ε j←

)
, where |i − j| � 2. (B5)
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For the case in which i = j we have already shown that these matrices are projectors. Next considering the case |i − j| = 1, we
will first consider the elements of the matrix Pe

εi←Pe
εi±1←. In particular the top left nonzero element of this matrix will be of the

form {
Pe

εi←Pe
εi+1←

}
i−1i = Sα1

ω (εi )
∗
S1β (εi)S

β1
ω (εi+1)

∗
S1γ

ω (εi+1) + Sα1
ω (εi )

∗
S1β

−ω(εi)S
β1(εi+1)

∗
S1γ

ω (εi+1)

= Sα1(εi )
∗(

S1β (εi )S
β1
ω (εi+1)

∗ + S1β
−ω(εi)S

β1(εi+1)
∗)

S1γ
ω (εi+1)

= 0,{
Pe

εi←Pe
εi−1←

}
i−1i

= Sα1
ω (εi )

∗
S1β

ω (εi)S
β1(εi−1)

∗
S1γ

ω (εi−1) + Sα1
ω (εi )

∗
S1β (εi )S

β1
−ω(εi−1)

∗
S1γ

ω (εi−1)

= Sα1
ω (εi )

∗(
S1β

ω (εi )S
β1(εi−1)

∗ + S1β (εi )S
β1
−ω(εi−1)

∗)
S1γ

ω (εi−1)

= 0. (B6)

Here we have used the relation given in Eq. (B2b) and this relationship can be shown to hold true for every element of this
matrix. In the case of holes, we also have that,{

Ph
εi←Ph

εi+1←
}

i−1i = Sα1
ω (εi )

∗
S1β (εi)S

β1
ω (εi+1)

∗
S1γ

ω (εi+1) + Sα1
ω (εi )

∗
S1β

−ω(εi)S
β1(εi+1)

∗
S1γ

ω (εi+1)

= Sβ1(εi )
∗
S1γ

ω (εi )
(
S1β (εi )S

β1
ω (εi+1)

∗ + S1β
−ω(εi)S

β1(εi+1)
∗)

S1γ
ω (εi+1)

= 0. (B7)

In the same way, it can be shown that the product terms between electrons and holes are also zero so that (Pe
εi← + Ph

εi←)(Pe
ε j← +

Ph
ε j←) = 0 when |i − j| = 1. Finally for the case of |i − j| = 2, we will again consider as an example the top left nonzero

element of the relevant matrix: {
Pe

εi←Pe
εi+1←

}
i−1i+1 = Sα1

ω (εi )
∗
S1β

−ω(εi )S
β1
ω (εi+2)

∗
S1γ

ω (εi+2) = 0, (B8)

by Eq. (B2c). We have hence demonstrated the projective nature of the sum of the number operator matrices,(∑
i

Pe
εi← + Ph

εi←

)2

=
∑

i

Pe
εi←

2 + Ph
εi←

2 =
∑

i

Pe
εi← + Ph

εi←. (B9)

[1] M. V. Berry, Proc. R. Soc. A 392, 45 (1984).
[2] E. Cohen, H. Larocque, F. Bouchard, F. Nejadsattari, Y. Gefen,

and E. Karimi, Nat. Rev. Phys. 1, 437 (2019).
[3] F. Wilczek, Fractional Statistics and Anyon Superconductivity

(World Scientific, Singapore, 1990), Vol. 5.
[4] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[5] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham,

J. Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus,
K. Flensberg, and J. Alicea, Phys. Rev. X 6, 031016 (2016).

[6] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[7] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[8] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105,

177002 (2010).
[9] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys.

Rev. Lett. 104, 040502 (2010).
[10] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[11] R. t. Lutchyn, E. Bakkers, L. P. Kouwenhoven, P.

Krogstrup, C. Marcus, and Y. Oreg, Nat. Rev. Mater. 3, 52
(2018).

[12] V. Mourik, K. Zuo, S. M. Frolov, S. Plissard, E. P. Bakkers, and
L. P. Kouwenhoven, Science 336, 1003 (2012).
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