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Refined electron-spin transport model for single-element ferromagnetic systems:
Application to nickel nanocontacts
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Through a combination of atomistic spin-lattice dynamics simulations and relativistic ab initio calculations
of electronic transport we shed light on unexplained electrical measurements in nickel nanocontacts created
by break junction experiments under cryogenic conditions (4.2 K). We implement post-self-consistent-field
corrections in the conductance calculations to account for spin-orbit coupling and the noncollinearity of the
spins, resulting from the spin-lattice dynamics. We find that transverse magnetic domain walls are formed
preferentially in (111)-oriented face-centered-cubic nickel atomic-sized contacts, which also form elongated
constrictions, giving rise to enhanced individual domain wall magnetoresistance. Our calculations show that the
ambiguity surrounding the conductance of a priori uniformly magnetized nickel nanocontacts can be traced back
to the crystallographic orientation of the nanocontacts, rather than spontaneously formed magnetic domain walls
“pinned” at their narrowest points.
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I. INTRODUCTION

The modeling of dynamic and thermal effects on spins in
ferromagnetic systems is a challenging problem [1,2], since
the inclusion of spin-orbit coupling (SOC) becomes essen-
tial at the atomic scale [3–5]. If, furthermore, the goal is to
account for electronic transport in these systems, the task
becomes even more complicated. Over the past few years,
a number of implementations for quantum transport based
on density functional theory (DFT) have appeared in the
literature [6–21], although modeling complex ferromagnetic
systems (beyond atomic linear chains and toy model contacts)
is still computationally challenging. Requist et al. [22], for
example, have recently compiled a detailed summary of the
state of the art in electronic transport calculations on nickel
nanocontacts.

Our present implementation of the quantum transport
calculation addresses several important effects, simultane-
ously. It consists of an atomistic multiphysics approach that
combines spin-lattice dynamics (SLD) and DFT electronic
transport calculations in a unique way. We include the mag-
netic anisotropy corrections in our SLD calculations in order
to be able to model accurately the magnetoelastic effects
in low-dimensional ferromagnetic structures [4,5]. Combined
with the SLD model, we use a post-self-consistent-field ab
initio methodology to calculate electronic transport that takes
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into account the effect of the SOC [21,23] as well as the
contribution from noncollinearity (NC) in the spins [24,25].

While our combined model can conceivably be applied
to several, low-dimensional, magnetic systems, in order
to elucidate the exact roles played by the previously de-
scribed effects, here we exemplify its use by applying it
to the low-temperature experiments of electronic transport
in atomic-sized contacts made of pure nickel [26–30]. We
have specifically selected ferromagnetic nickel because the
interpretation of its experimentally measured conductance
histograms remains enigmatic, as we explain next.

Typically, electron transport measurements on nanocon-
tacts are expressed as the conductance vs the relative
displacement between the atomic-sized electrodes. The most
widely used statistical analysis of these measurements is the
histogram of conductance, which shows the distribution of
the conductance values measured repeatedly for the same
junction. Usually, the histogram is like a “fingerprint” of the
metal, i.e., it characterizes the metal uniquely [31]. However,
in the case of nickel nanocontacts, two distinct histograms
have been measured [26–30]. The most frequent histogram
recorded for Ni over the years exhibits a single broad first
peak, denoted the single peak (or “1-peak”) histogram in this
work [28–30,32]. On the other hand, a “2-peak” histogram has
also been obtained which exhibits two narrower peaks in place
of the broad peak of the 1-peak histogram [26,27]. Until now,
this ambivalence in the measurements could not be explained
by previous models.

Different research groups have attempted to explain the
two distinct experimental histograms of Ni. Garcia-Mochales
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et al. [33] used classical molecular dynamics (CMD) simu-
lations to generate minimum cross-section histograms of Ni
nanowires oriented along the (001), (111), and (110) crys-
tallographic axes. They did not perform electronic transport
calculations, but speculated that the two distinct histograms
might be explained by the formation, on one hand, of a
dimeric last contact (a two-atom chain suspended between
the bulk electrode tips immediately before rupture), where
a less frequent conductance peak at a low value of ∼1.2G0

is observed in experiments, and, on the other, a monomeric
last contact (a single atom bridging the two electrodes) at the
most frequent last contact value of ∼1.6G0 measured in ex-
periments. (The quantum unit of conductance G0 is defined as
G0 = 2e2/h, where e is the electron’s charge, h is the Planck’s
constant, and the factor 2 comes from spin degeneracy.) In
the same year, Calvo et al. [26] attempted to explain the two
distinct histograms they reproduced experimentally by follow-
ing the same statistical approach as Garcia-Mochales et al.
[33] in their CMD simulations, but, in addition, performing
DFT electronic transport calculations on small Ni toy model
contacts. The electronic transport calculations were inconclu-
sive and they reported the most frequent value of ∼1.6G0

for both dimeric and monomeric last contact structures, even
after stretching and relaxing these structures in their DFT
calculations. Based on this finding, Calvo et al. speculated
that the lower peak of conductance obtained less frequently in
experiments might instead be explained by magnetoresistive
effects caused by the presence of magnetic domain walls
pinned at the constriction. Vardimon et al. [28] constructed
a theoretical conductance histogram from electronic transport
calculations on atomic structures obtained from 100 ensem-
ble CMD rupture simulations. Their input model structure
was oriented along the (100) crystallographic axis and they
obtained a most frequent last contact conductance value of
∼1.6G0.

In this work we use our combined methodology to untan-
gle some of the physics leading to the observed differences
between the two types of experimental histograms for nickel
nanocontacts. However, we would like to stress that, because
of the prevalence of emergent magnetic phenomena within a
wide variety of systems, we envisage that the same method
may also be of a wider use. For example, it could be applied
in studies of skyrmions [2,34], magnetic nanowires [35], and
magnetic nanoparticles [36], as well as to various well-known
effects, such as, Einstein–de Haas [37], Barnett [38], and
Barkhausen [39].

II. THEORETICAL AND EXPERIMENTAL APPROACH

In Secs. II A–II C, we briefly describe the two comple-
mentary parts of our methodology, with specific emphasis
on on the modifications we made in comparison to previous
implementations, and our motivation for making these modi-
fications. In Sec. II D we discuss how the electronic transport
experiments on Ni nanocontacts were performed.

A. Improved spin-lattice dynamics model

The first part of our methodology builds on the technique
known as spin-lattice dynamics (SLD) [40–42]. This is a

semiclassical molecular dynamics approach which allows one
to evolve simultaneously the atomic spin and translational
degrees of freedom. The interatomic interactions in SLD are
described by the widely used embedded atom method (EAM)
potential [43]. Previously, it has been implemented in codes
such as SPILADY along with a generalized Heisenberg model
of (local interatomic) ferromagnetic exchange [40,42]. The
specific EAM potential we use for Ni was developed in
Ref. [44]. In particular, it has, among many bulk properties,
been fitted to at least one surface property: the heat of subli-
mation of the metal [45].

As in our previous works and following the experimental
conditions [46–48], we maintain the temperature of the atoms
in our simulations at 4.2 K, i.e., the temperature of liquid
helium. We employ a Langevin thermostat for this purpose,
as described in Refs. [3,4,49]. Here, we introduce also the
evolution of the spins, keeping them at the same temperature.

To emulate the controlled rupture and formation of the con-
tacts in the experiments, i.e., the process of cyclic loading, we
have implemented the algorithm described in Refs. [50–52]
in the SPILADY code. In our SLD simulations, the atoms and
spins in the two outermost layers on each side of the contact
are frozen and displaced at ∼1 m/s in opposite directions.
The atoms and spins sandwiched between the frozen layers
are then allowed to evolve dynamically in response to the
displacements, as the simulation proceeds.

The generalized Heisenberg ferromagnetic exchange
model used to describe spin-spin and spin-lattice interactions
in SPILADY has two fitting parameters [40,42]: an exchange
coefficient J0 and a pairwise cutoff distance rc. For the Ni in
this work, we use J0 = 0.83 eV and rc = 4.34 Å, which have
been obtained from unpublished data [53], by a similar fitting
procedure to that reported in Ref. [54]. The chosen value of rc

effectively cuts off the exchange interaction between second
and third nearest neighbors.

The above model of ferromagnetic exchange is isotropic
and hence does not conserve the angular momentum of the
combined lattice and spin system [4,5]. Furthermore, it is
well known that magnetic anisotropy, whose origin can be
traced to SOC, cannot be ignored in low-dimensional systems
such as ferromagnetic nancontacts [19,55]. For this reason we
have added the second-order (uniaxial) anisotropy correction,
described in Ref. [4], to the SPILADY code. We have omitted
the first-order anisotropy correction simply because it does not
preserve time-reversal symmetry.

The second-order anisotropy correction introduces two
new parameters into our model, namely, the coefficient C2 and
the new cutoff distance r0, for an EAM electron-density-like
function that accounts for the asymmetric environment of the
spin vector centered on a given atom. As discussed in Ref. [4],
there is currently no accurate way to fit these two parameters,
experimentally or otherwise. In fact, even the coefficient of the
simpler anisotropy correction used in Ref. [5] exhibits uncer-
tainty of up to an order of magnitude compared to the available
experimental results. Consequently, in analogy with Ref. [4],
we choose a slightly smaller cutoff of r0 = 3.75 Å than is used
for rc in the isotropic exchange term. By performing several
trial simulations we found that, as the value of C2 decreases
and becomes negative, spin alignment perpendicular to the
length of the nanocontact becomes more prevalent. With the
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objective of ascertaining the effects of transverse domain wall
formation at the constrictions of the nanocontacts, we have
chosen C2 = −0.5 eV in our present simulations.

We emphasize that our SLD model rigorously conserves
total energy and angular momentum [5], and encourage the
interested reader to consult Ref. [52] for an in-depth dis-
cussion of its implementation as well as several benchmark
calculations.

B. Post-self-consistent-field SOC corrections to DFT electronic
transport calculations

The spin-lattice dynamics model mentioned in Sec. II A
provides more realistic coupled atomic and spin configura-
tions. Often, the experimental characterization of nanostruc-
tures is achieved by measuring their electronic properties.
This is the case, for example, of conductance traces obtained
via STM for nanocontacts near the moment they are about
to rupture [47,56]. In order to make comparisons with such
experimental observations, the electronic transport of these
structures must be accurately modeled.

The code ALICANTE NANOTRANSPORT (ANT.GAUSSIAN)
[57–60] has been used successfully in the past to perform
conductance calculations on CMD simulation snapshots near
rupture [46–48]. This code interfaces with GAUSSIAN09 [61]
to perform a scalar-relativistic, spin-unrestricted calculation
of the transport, i.e., it assumes the magnetism is collinear.

Spin-orbit coupling, which is considered to be an intra-
atomic phenomenon, and noncollinear spin configurations are
the obvious missing ingredients in the aforementioned cal-
culations. The self-consistent-field implementation of SOC
and noncollinear (NC) magnetism in density functional theory
(DFT) codes such as QUANTUM ESPRESSO [62] and OPENMX

[18], aside from being extremely expensive computationally,
lead to calculations in which there are many local minima,
making it more difficult to achieve convergence [22,28]. It
would be thus extremely difficult, if not impossible, to ob-
tain converged noncollinear spin solutions using only atomic
structures from ordinary classical molecular dynamics simu-
lations in such DFT calculations. Therefore, in this work, we
make use of a post-self-consistent-field approach as described
in Ref. [23] and the references therein. This approach is valid
for materials such as Ni in which SOC is weak [21], but also
works quite accurately for materials with strong SOC. We
briefly outline it below.

The Dirac-Kohn-Sham Hamiltonian contains to lowest or-
der the standard atomic spin-coupling (SOC) term

ξ (r)L · S.

This Hamiltonian is fully relativistic and its electronic and
positronic parts are decoupled (see Ref. [23] and references
therein). It is evident from the form of this operator that orbital
and spin angular momentum are now mixed. Furthermore, as
a result of the orthogonality of the radial and angular com-
ponents of the wave functions in atomic-orbital-based DFT,
such as the widely available contracted Gaussian-type orbitals
(CGTOs) used by GAUSSIAN09 or CRYSTAL [63], the elements
of the SOC matrix can be evaluated simply as [23]

ξi j
〈
li; mli ; s

∣∣L · S
∣∣l j ; mlj ; s′〉, (1)

where

ξi j = e2

2mec2

∫ ∞

0

1

r

dVeff (r)

dr
Ri(r)R∗

j (r)r2 dr. (2)

In Eq. (2), Veff (r) = − Z
r is the effective potential in which

the electrons move [23], with Z the atomic number. Ri(r)
are the radial CGTOs in the GAUSSIAN09 basis sets used in
our calculations [23]. Only CGTOs of the same shell type
(L = 1, 2, or 3) contribute to the integral in Eq. (2) for a given
atom, to which, in turn, a given basis set has been assigned.
The interested reader is referred to Ref. [23] for an in-depth
discussion of the above implementation.

C. Noncollinear spins in DFT electronic transport

Ferromagnetic nanocontacts are known to exhibit intrin-
sic magnetoresistance due to domain walls with noncollinear
spin structures [55,64]. Thus, in order to take into account
NC spins, following Refs. [21,24,25,65], the converged (self-
consistent-field) Hamiltonian [Hloc]σ iμ

σ ′ jν , with majority and
minority spins along an arbitrary quantization axis [21,25], is
rotated to the orientations of the individual spins with respect
to a common quantization axis along the positive z direction:

[Hglob]σ iμ
σ ′ jν = U (θ, φ)[Hloc]σ iμ

σ ′ jνU †(θ, φ). (3)

The indices σ, σ ′ refer to “up” or “down” spin-spin combina-
tions [“ ↑↑” or “ ↓↓” in the collinear case on the upper and
lower diagonal blocks, respectively, of a doubled-up matrix
constructed from the converged (self-consistent-field) Hamil-
tonian], with each electron spin assumed to be quantized
locally along its own individual (unknown) quantization axis
[21,25]. The indices i, j refer to different atomic centers,
while μ, ν refer to different orbitals and U (θ, φ) is a unitary
operator that is expressed in terms of Euler angles (θ, φ)
relative to the global quantization axis:

U (θ, φ) =
(

e−i φ

2 cos
(

θ
2

) −e−i φ

2 sin
(

θ
2

)
ei φ

2 sin
(

θ
2

)
ei φ

2 cos
(

θ
2

)
)

. (4)

The SOC matrix, which assumes a common quantization
along the z axis, is added only after the above rotation has
been performed. As an approximation, the hopping as well as
interatomic overlap elements between different sites are taken
to be the arithmetic average of the respective rotated onsite
and intra-atomic overlap elements. The interested reader is
referred to Ref. [52] for an in-depth discussion of the subject
of this section as well as several benchmark calculations.

D. Experimental methods: Electronic transport in nickel
atomic-sized contacts

Typically, electron transport measurements on atomic-
sized contacts are made via scanning tunneling microscope-
break junctions (STM-BJ) [56,66] or mechanically control-
lable break junctions (MCBJ) [67,68]. In this work, the
experiments are performed in MCBJ at low temperature
(4.2 K) under ultrahigh vacuum. The sample is prepared from
a center-notched Ni wire (99.994% purity, 0.1 mm diame-
ter, Puratronic supplied by Alfa Aesar) glued to a flexible
substrate of phosphor bronze. This substrate receives the per-
cussive impact of the piezoelectric element that acts as firing
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FIG. 1. A 380-atom (001)-oriented Ni nanocontact rupturing at 4.2 K with a monomer in its minimum cross section (in a sequence of four
snapshots). The DWMR for this contact before rupture (a) is +3% and corresponds to rupture 10 in Table I. The color legend corresponds
to the projection of the spins (in μB) on the positive z axis, the direction of saturation magnetization of Ni, 0.65μB, divided by the electron’s
gyromagnetic factor: 2.002 319.

pin, bending or returning the substrate to its original form.
This in turn leads to breaking of the wire. Depending on
whether the piezoelectric element is extended or contracted,
both segments of the broken wire can reform or break off
contact, respectively. In order to measure the electronic trans-
port in the contact, a battery that provides a bias voltage
(Vbias) is connected in series to the nickel contact and an I-V
converter amplifier, which, in turn, is connected with our data
acquisition and control (DAC) in the computer. Thus, this I-V
apparatus can measure the current (I) flowing in the contact.
Knowing I and Vbias, we can then express the measurement
in terms of the conductance, that is, the inverse of the re-
sistance (G = I/Vbias = 1/R), whose magnitude we express
in units of the quantum of conductance G0. A measurement
of conductance vs the relative piezodisplacement is usually
referred to as a trace of conductance, and denoted as a “rupture
trace” when the electrodes are pulled apart [67–69]. In the
experiments presented here, we applied a bias voltage of 150
mV and an amplification in the I-V converter of 105.

III. RESULTS

A. Simulation results

Through our SLD simulations we have modeled Ni
nanocontacts of two different crystallographic orientations
along the z axis: (001) and (111) (see Figs. 1 and 2). First, the
SLD model is used to stretch the nanocontact until it breaks
by displacing the top and bottom layers of the simulation cell,
as done previously [48,70]. This process is repeated several
times in both orientations until the atomic arrangement no
longer changes significantly, after so-called mechanical an-
nealing of the tips [51]. The simulation also continues for the
same duration in both orientations [71]. The important differ-
ence here is that we also follow the evolution of the spins of
every atom, as shown in Fig. 1, by the arrows. Subsequently,
the electronic transport of these structures is obtained using
the implementation described in Secs. II A–II C.

Figure 1 shows a sequence of snapshots of the same atomic
and spin configuration, immediately before [Figs. 1(a)–1(c)]
and after [Fig. 1(d)] it has ruptured. In this particular case,
we performed a total of 13 cycles and the snapshots in Fig. 1

correspond to the 10th rupture cycle. These results are for a
380-atom (001)-oriented Ni nanocontact at 4.2 K. The last
contact in Figs. 1(a)–1(c) is a single atom joining the two tips,
that is, a monomer. Note that, despite the fact the parameters
for SLD are such that a spin configuration perpendicular to
the long axis of the nanocontact is favored, they still remain
relatively parallel to the direction of the frozen spins in the
bulklike ends of the contact. The relatively flat and wide
structure of (001)-oriented tips does not appear to favor the
formation of extended transverse domain walls at the con-
striction immediately before rupture. From the perspective of
the spins, this type of contact is disordered, and cooperation
among spins within layers perpendicular to the contact’s long
axis, in order to form transverse domain walls across several
layers, is not easy.

Figure 2 shows a sequence of snapshots before
[Figs. 2(a)–2(c)] and after [Fig. 2(d)] it has ruptured of a
representative atomic and spin configuration of a 417-atom
(111)-oriented Ni nanocontact at 4.2 K. In this case, a total
of 12 cycles were performed and results in this figure are for
rupture number 10. Note the elongated pentagonal structure
that forms during rupture of this (111)-oriented contact, as
in Ref. [33]. For simulations of the same duration, there is
one fewer rupture cycle in the (111) than (001) orientation
because the longer and narrower contacts shown in Fig. 2 take
longer to break and make contact again. Clearly, the elongated
pentagonal structure of Ni(111) last contacts allows spins in
adjacent layers, perpendicular to the long axis of the nanocon-
tact, to form extended transverse domain walls along this axis.
From the perspective of the spins, this contact is more ordered:
a domain wall, of atomic scale, has been formed.

As regards electronic transport calculations on our SLD
configurations, in order to improve the accuracy of our con-
ductance results, we have assigned an all-electron basis set
[72] to 5–10 atoms in the constriction of the nanocontacts
extracted from the SLD simulations [48]. We use a minimum
spd basis set for the rest of the atoms [26]. Because we mix
basis sets, we have opted to use the literature SOC constants
ξi j in Eq. (1) for Ni: 0.1 eV for the L = 2 shells [24], and
0.4 eV for the L = 1 shells (its value should be 3–5 times that
of the d shells), for all basis sets.
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FIG. 2. A 417-atom (111)-oriented Ni nanocontact rupturing at 4.2 K with a monomer in its minimum cross section (in a sequence of four
snapshots). The DWMR for this contact before rupture (b) is +29% and corresponds to rupture 10 in Table II. The color legend corresponds
to the projection of the spins (in μB) on the positive z axis, the direction of saturation magnetization of Ni, 0.65μB, divided by the electron’s
gyromagnetic factor: 2.002 319.

To account for the effect on transport calculations of the
spin orientations in the SLD snapshot configurations, we have
performed both collinear and noncollinear electronic trans-
port calculations with SOC corrections. The spins of bulk
Ni are expected to remain largely collinear at low tempera-
tures [73]. However, this is not necessarily the case in very
low-dimensional structures such as nanocontacts [55,64]. In
this work, the domain-wall magnetoresistance (DWMR) is
defined as (GNC − Gsat )/Gsat × 100%, where GNC is the SOC-
corrected conductance of a SLD snapshot with a noncollinear
spin configuration, and Gsat (also SOC corrected) is that of the
same snapshot with collinear spins aligned along the positive
z axis, i.e., fully saturated. The NC textures (θ and φ angles)
are extracted directly from our SLD simulations, while in the
collinear calculations all the spins are assumed to be quantized
along the global z axis, which also coincides with the transport
direction. We emphasize again that, without our SLD simula-
tions, it would be a near impossible task to obtain converged
NC spin textures in fully relativistic DFT calculations on input
structures such as those modeled in this work.

Furthermore, to obtain statistically significant results
within a reasonable time, we have trimmed down the (∼400-
atom) SLD snapshots to between 100 and 150 atoms. The
reduced structures remain centered on the constriction, how-
ever. Each snapshot was extracted prior to the moment of
rupture, judged to have occurred when the last two atoms to
lose contact were separated by a distance equal to halfway
between first and second nearest neighbors [74] in a perfect
face-centered-cubic (fcc) lattice of Ni, or ∼3.0 Å.

Tables I and II show the conductance and DWMR results
obtained at the last contact for each of the rupture cycles
for the (001) and (111) structures. Column type refers to the
configuration at the narrowest part of the constriction in terms
of number of nearest neighbors [47]. For example, 3-1-1-4
has three atoms in one tip connected to a single one which
is also connected to a second single atom and this one, in
turn, to four atoms in the other tip. Therefore, this config-
uration will represent a dimer. A monomer corresponds to

types such as 2-1-2 and similar. The calculated DWMR of
the monomer in Fig. 1(a) is +3% (see rupture 10 in Table I)
while for the snapshot in Fig. 2(b), it is +29% (see rupture
10 in Table II). Clearly, the presence of a transverse domain
wall has a non-negligible impact on individual conductance
values, and this is reflected in the values reported in Tables I
and II, where conductance is either reduced or increased when
transverse domain walls are formed, giving rise to enhanced
but either positive or negative DWMR values. The DWMR
is greatest when the spins are perpendicular to the transport
direction as in Fig. 2. Interestingly, with domain walls the
conductance can sometimes be higher than when the spins
are collinear [this happens in particular for (001)-oriented
nanocontacts and monomer configurations]. We attribute this
to the effect of SOC which, as shown in Ref. [21], seems to
enhance the conductance for spins oriented perpendicularly to

TABLE I. Contact type, conductance (G0) with collinear (sat-
urated) and noncollinear SOC, and domain-wall magnetoresistance
(%) of last atomic contact of rupture in simulation with a (001)-
oriented nanocontact.

SOC-sat SOC-NC DWMR
Rupture Type (G0) (G0) (%)

1 3-1-1-4 1.19 1.27 6.72
2 2-1-1-4 1.65 1.62 −1.81
3 2-1-3 1.77 1.79 1.13
4 4-2-6 2.50 2.53 1.20
5 2-1-1-4 1.72 1.51 −12.21
6 4-2-2-5 2.20 2.0 −9.09
7 2-1-4 1.97 1.99 1.02
8 2-1-4 2.00 2.05 2.50
9 2-1-4 1.83 1.86 1.64
10 2-1-4 1.86 1.92 3.23
11 2-1-4 1.99 2.02 1.51
12 2-1-4 1.97 1.99 1.02
13 2-1-4 1.94 1.98 2.06
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TABLE II. Contact type, conductance (G0 ) with collinear (sat-
urated) and noncollinear SOC, and domain-wall magnetoresistance
(%) of last atomic contact of rupture in simulation with a (111)-
oriented nanocontact.

SOC-sat SOC-NC DWMR
Rupture Type (G0) (G0) (%)

1 2-1-2 1.55 1.56 0.64
2 2-1-1-3 0.92 0.89 −3.26
3 2-1-1-3 1.24 1.09 −12.10
4 2-1-1-3 1.09 1.11 1.83
5 2-1-1-5 1.36 1.24 −8.82
6 2-1-1-3 0.90 0.89 −1.11
7 2-1-5 1.36 1.41 3.68
8 2-1-5 1.59 1.32 −16.98
9 2-1-5 1.60 1.79 11.88
10 2-1-5 1.28 1.65 28.91
11 2-1-5 1.36 1.57 15.44
12 2-1-5 1.64 1.70 3.66

the electron flow when compared to spins being parallel to
it. SOC thus seems to overcome the effect of back-scattering
induced by the domain wall. Other configurations, however,
show the expected behavior where the domain wall reduces
the conductance. The high sensitivity of the valence d orbitals
to the detailed geometry of the contacts makes it difficult to
predict in which way the conductance will deviate in going
from a saturated to a NC configuration.

Finally, our calculations confirm that the average DWMR
due to noncollinear spins is low when the DWs straddle
the minimum cross section. However, we obtain maximum
individual values in agreement with those measured experi-
mentally (no higher than 50% in the best-case scenario). The
signs of the DWMR can be in either direction, resulting in
an average largest DWMR of ∼2%, with standard deviation
(±∼10%), in this work (see Tables I and II). This behavior
resembles the way the Kondo resonance of ferromagnetic 3d
transition metal nanocontacts manifests either as a spike or a
sharp dip in conductance at zero bias, being very sensitive to
the exact atomic arrangement at the constriction [30]. Hence,
although DWMR can contribute to broadening conductance
peaks, domain walls cannot really shift the mean of the peaks
to different values.

B. Experimental results

As we mentioned in the Introduction, the most widely used
statistical approach to analyze data from electronic transport
experiments is the histogram of conductance [75,76], which
is constructed from thousands of accumulated traces recorded
under the same experimental conditions. To build each nor-
malized histogram we have used 5000 traces and 1000 bins
in order to cover a range of conductance from 0.01G0 to 6G0.
The test sample that we report here exhibits the two differently
shaped normalized histograms, as shown in Fig. 3(a). The or-
ange and gray histograms are denoted “1-peak” and “2-peak,”
respectively. The unique method that was followed, in order to
obtain 1-peak or 2-peak histograms, involved crashing the two
tips of the break junction into each other until the measured

conductance exceeded ∼10G0, although this procedure did
not always guarantee that the 2-peak histogram would emerge.
To shed light on these ambiguous histograms, we have de-
cided to delve into a statistical study of experimental data to
clarify whether there is any correlation between the structural
behavior of atomic contacts of the same type, i.e., type 1-peak
or 2-peak.

In Fig. 3(b), we show six horizontally offset rupture traces
for nickel at 4.2 K. Gray and orange traces have been selected
from the ensembles of traces that compose the 2-peak and
1-peak histograms, respectively. This figure shows a horizon-
tal yellow band between 1G0 and 2G0 and a dashed black
line at 1.5G0 to facilitate comparisons between conductance
plateaus that contribute to the peaks in the histogram above
or below the line. Usually, gray traces do not register any
intermediate counts in the range ∼0.1G0 to ∼1G0, in other
words, they show abrupt jumps in the conductance between
last atomic contact and rupture, also known as “jump out-of-
contact” [46,74]. Conversely, one of the orange traces exhibits
a smooth transition between the last contact and rupture. In
fact, this absence of jump out-of-contact is evident in the
1-peak histogram as more counts in the range of ∼0.1G0

to ∼1G0. The fact that the traces manifest the jump-out-of-
contact phenomenon in some experiments while in others
they do not indicates different mechanical behavior during
contact rupture. In order to further shed light on the behavior
of nickel nanocontacts, we have done a statistical study based
on two-dimensional (conductance-displacement) histograms.1

The analysis performed in Fig. 3(c) shows that the 2-peak
histogram exhibits anticorrelation, which means that the onset
of the abrupt conductance fall typically takes place either at
∼1.6G0 or at ∼1.2G0, but never occurs together (i.e., one
after the other) in the same trace. Anticorrelation between bins
reflects the existence of jumps in the conductance. Usually,
the jumps in a given trace arise from atomic rearrangements
within the contact. Therefore, if the anticorrelation is not an
isolated occurrence and appears as an area within Fig. 3(c),
it means that similar jumps occur in all the traces. In other
words, we are essentially reproducing the same atomic con-
figuration. On the other hand, in Fig. 3(d), which corresponds
to the 1-peak histogram, completely different behavior is ob-
served: a large number of traces exhibit a high degree of
correlation in certain ranges, which means that the onset of
a fall in conductance is not always located within the same
range of conductance values and, moreover, only one type of
plateau, centered on ∼1.6G0, occurs before rupture.

C. Comparison of the simulated and experimental results

The experimental conductance histograms of Ni can ex-
hibit either two sharp peaks, centered on ∼1.2G0 and ∼1.6G0,
or a single broader peak centered on ∼1.6G0. Our results,
collected in Tables I and II, suggest that the experimental

1See the cross-correlation histograms in Figs. 3(c) and 3(d) of the
main text, as well as the Supplemental Material [71] for a more
in-depth analysis of the features of the rupture traces used to con-
struct the histograms, including a more detailed statistical analysis
via conductance-displacement histograms.
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FIG. 3. (a) Conductance histograms constructed from rupture traces for nickel. (b) Traces of rupture for nickel at 4.2 K. The horizontal
yellow band highlights values between 1G0 to 2G0, and a dashed line at around 1.5G0 helps to visualize whether the plateau of last contact is
above or below this central value. In both (a) and (b) orange corresponds to the traces and histogram whose main feature is “1-peak” while gray
corresponds to the traces and histogram with “2-peaks.” Both (c) and (d) show the results from a statistical analysis known as a two-dimensional
cross-correlation histogram [32]. (c) Corresponds to the case in which traces give rise to a 2-peak histogram and (d) to a histogram that exhibits
a single peak centered at 1.6G0.

conductance histograms of Ni which exhibit the two sharp
peaks, as opposed to those exhibiting a single broader peak,
can be attributed to highly reproducible structures that form
as the contacts thin to the point of rupture, along different
crystallographic axes, during cyclic loading. The averaged
results of our electronic transport calculations, classified by
last contact type (monomer, dimer, or other), are presented in
Table III along with their associated uncertainties. The values
in Table III are also shown as transparent color-coded strips
in Fig. 4(a), i.e., as overlays on the experimental histograms
from Fig. 3. These results were calculated from 25 last-contact
snapshot configurations in which the majority (∼60%) of
the minimum cross sections were monomers. We thus find
that cyclic loading of both (001)- and (111)-oriented nickel
nanocontacts favor the formation of monomers [see Fig. 4(b)]
after the contacts have been mechanically annealed [51,74].

TABLE III. Influence of the spin collinearity in the calculations
of conductance (G0 units) for the structures classified as monomer,
dimer, and others of Tables I and II.

Dimer Monomer Other
Collinear (G0) (G0 ) (G0)

Yes 1.3 ± 0.3 1.7 ± 0.3 2.4 ± 0.2
No 1.2 ± 0.3 1.8 ± 0.2 2.3 ± 0.3

Notice that the average conductance of (111)-oriented
Ni nanocontacts in Fig. 4(b) is clearly lower than their
(001)-oriented counterparts. Under cyclic loading, the EAM
potential used in this work favors the formation of longer
and narrower stable last-contact structures in the case of
(111)-oriented nanocontacts, i.e., similar to the pentagonal
wires observed in Ref. [33]. Evidently, longer and narrower
nanocontacts give rise to lower conductance values on aver-
age at last contact. However, in contrast to Ref. [33], where
pentagonal wires formed preferentially in (001)- and (110)-
oriented Ni nanocontacts, the cyclic loading performed in
our SLD simulations favors the formation of wider and flat-
ter pyramid-shaped tips in the (001) orientation. The reason
for this is that (111)-oriented facets are formed on the ex-
posed sides of the (001)-oriented tips during cyclic loading,
which, for fcc metals in general, are favored in terms of
energy over exposed surface layers of other crystallographic
orientations [70].

Moreover, the fact that the average conductance value re-
ported in this work for the (111)-oriented nanocontacts is
lower than their (001)-oriented counterparts [see Fig. 4(b)],
as well as the small value (∼2%) of the average DWMR,
suggests that the first sharp peak in the gray conductance
histogram in Fig. 3(a) can be assigned to (111)-oriented Ni
nanocontacts. Then, it is important to mention that the mag-
netic easy axis of bulk nickel is oriented along the (111)
direction and is 20 times more resistant to deviation at 5 K
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FIG. 4. (a) Ranges of conductance values, from the first row of
Table III, corresponding to the NC spin configurations, calculated for
dimers (green overlay), monomers (red overlay), and more complex
(blue overlay) SLD last-contact structures, compared with the ex-
perimental histograms from Fig. 3. (b) Histograms of the calculated
conductance, also broken down by contact type: dimer, monomer,
and more complex. Purple and pink shading represent the parts of
the calculated histograms corresponding to the conductance values
of (111)- and (001)-oriented nanocontacts, respectively.

than at room temperature [77]. Therefore, unlike our SLD
simulations in which C2 was deliberately made negative to
favor the formation of transverse noncollinear DWs, in real-
ity, the spins will not rotate to form domain walls that are

perpendicular to the (111) crystallographic axis, unless they
are coerced by a sufficiently strong external magnetic field
acting perpendicularly to the nanocontact. This suggests that
the true DWMR of (111)-oriented nancontacts will actually be
much lower than the individual values we have calculated in
our work.

In the (001) orientation, on the other hand, the spins will
be far more likely to point in a direction that is at an angle to
the long axis of the nanocontacts. This fact makes provision
for a greater variety of possible spin textures in the atomic
layers on either side of the minimum cross section. An easy
way to visualize this is to twist, about the z axis, the two
opposing (001) “pyramids.” Since the spins in either pyramid
can point in (±1 ± 1 ± 1), at an angle to the (001) direction,
the spins will not look the same as the two ends are rotated
relative to each other about their common axis. In a (111)-
oriented nanocontact, on the other hand, this operation will
essentially leave the spins looking the same since they are
overwhelmingly aligned along (111) at 4.2 K. Therefore, the
lower symmetry of the spin orientations in Ni(001) contacts
can explain the broader first peak in the 1-peak histogram
because they can give rise to greater scattering of electrons im-
pinging upon the minimum cross section. Conversely, we can
expect the 2-peak histogram to have sharper peaks because the
spins will be far less likely to deviate from the magnetic easy
axis in a Ni(111) nanocontact.

IV. CONCLUSIONS

In this work, we have presented a combined model
of spin-lattice dynamics simulations and electronic trans-
port calculations with post-self-consistent-field corrections
for spin-orbit coupling and noncollinear spins. In our com-
bined model we studied and simulated nickel nanocontacts
with (001) and (111) crystallographic orientations. From
these simulations we extracted the last contact structures to
calculate and compare the SOC corrected conductance for
fully saturated and noncollinear spin textures. The domain-
wall magnetoresistance of each structure was then calculated.
Based on our results we can claim that the DWMR obtained
for atomic-sized contacts made of Ni is an expected small
overall average value of ∼2% (±∼10%).

To validate our refined methodology of SLD simulations
and electronic transport calculations we have analyzed ex-
perimental traces of conductance of nickel. Our statistical
analyses show that there are two histograms for the same
material, and that the histogram with two peaks arises from
anticorrelated rupture traces. Moreover, we propose that this
histogram corresponds to dimers at ∼1.2G0 and monomers at
∼1.6G0.

Comparing the experimental results to our combined the-
oretical model suggests that the first sharp peak in the
double-peak histogram arises from very narrow and sharp
nanocontacts. Such narrow structures are formed predomi-
nantly in our (111)-oriented SLD structures since mechanical
annealing produces energetically favored wider and flatter
pyramid-shaped structures in (001)-oriented Ni nanocontacts.
Our findings suggest that when (111)-oriented Ni nanocon-
tacts, or of any orientations other than (001), are formed in
experiments, it is because they represent a local minimum in
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the exposed surface energy. Ni(001) nanocontacts thus form
predominantly because their exposed surfaces, (111) facets,
correspond to a global minimum in exposed surface energy.
The relative number of monomers and dimers observed in
simulations show that the most probable structure at last
contact is the monomer, irrespective of crystallographic ori-
entation. Hence, there is a common maximum at ∼1.6G0 in
both types of histogram. Based on all these considerations we
rule out, as the underlying explanation for the two types of
histograms, the formation of spontaneous domain walls at the
constriction of otherwise uniformly magnetized nanocontacts.
Rather, the minimization of exposed surface energies and
mismatch between the magnetization directions in the bulk
electrodes on opposite sides of the constriction provide the
best explanation.

In summary, we have developed a general method that
can be employed to study any single-element ferromagnetic
system in which local coupling between spins and atoms
cannot be ignored. In this paper, we have used it to provide an
interesting physical interpretation for the electronic transport
experiments on nickel.
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