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Nontrivial dynamics of a two-site system: Transient crystals
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We analyze theoretically quench dynamics of a two-site system abruptly driven from its equilibrium state
focusing on the time dependent spectral density function. In the presence of electron reservoirs this function
reveals in time a nontrivial regular pattern of peaks corresponding to the stationary quantum chain structure.
Such dynamical system with periodic structure of the spectral density stands for a new transient crystal material.
We investigate here the role of the Coulomb repulsion between the sites, nontrivial substrates and different system
geometries on the transient crystal pattern which can be measured in the tunneling conductance experiments. We
also propose the transient crystal system between unbiased leads as an effective monoparametric pump.
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I. INTRODUCTION

Time response of a quantum system on external perturba-
tions, transient effects, and quench dynamics have attracted
considerable attention recently as they can provide much use-
ful information about the system as well as due to potential
applications of such structures in spintronics, quantum com-
puting, or metrology. Many interesting effects were found for
such systems driven by external forces like the turnstile effect,
photon-assisted tunneling, spin and charge quantum pumps
[1–5]. Time dependent processes may even lead to the appear-
ance of novel solid state phases like the Floquet topological
insulators [6,7] or time crystals [8–10]. In the most general
sense time crystals are materials which somehow pulse or
have structure behavior in time and their formation is quite
analogous to the formation of space crystals [10]. However, in
the presence of external periodic perturbation time crystals do
not follow the period of the driving force but spontaneously
switch to their own time periodicity which was confirmed
experimentally [11,12].

Transient effects in atomic systems or quantum dots (QDs)
have been intensively studied over recent years focusing on
the charge oscillations and current dynamics (see Ref. [13]
and references therein). For atomic molecules subjected to
sudden perturbations (like the quenches or turnstiles) elec-
tronic and vibronic response time lies in the picosecond range
like for a single semiconductor quantum dot [14,15] or for a
double QD system [16]. On the other hand single-molecule
devices work in the microwave regime. This motivates us to
extend the molecular device investigations on the transient
phenomena as the operation speed of such systems can sig-
nificantly increase. A number of theoretical works studied
the transient effects in different QD geometries as well as
for a QD between superconducting leads [13,17,18]. The
coherent oscillations and current beats for different types of
time-dependent pulses can also provide an insight into the
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electronic structure of such systems, e.g., from detailed stud-
ies of the transient currents one can obtain the spin relaxation
time [15] or the parameters defining the system [17].

Thus far theoretical studies on transient/quench effects
have been mostly focused on the current (or charge) oscil-
lations while the quench dynamics of the spectral density
function related to the quantum system has been often over-
looked. The spectral density function corresponds to the local
density of states (DOS) at a given site due to its coupling with
the continuum electron spectra in the electrode and expresses
the possible states for electrons at this site. This function de-
termines many electronic and optical properties of the system
and can be experimentally investigated by the scanning tun-
neling microscope (STM) from the differential conductance
characteristics. In this work we concentrate on the dynamical
properties of the system composed of two coupled sites on
a nontrivial surface focusing on the time dependent spectral
density function and its evolution due to quantum quenches
or linear perturbations. We expect that such a double-site
system just after the quench exchanges information between
the sites and can exhibit in time a peaked regular structure
of the spectral density function. In this context it is desirable
to answer the question whether a two-atom nonequilibrium
system could stand for a kind of time crystal? Next: How
fast is the structure of the spectral density built in time and
then how fast does it vanish after the quench? What is a
role of the electron reservoir? Is the spectral density struc-
ture periodic or does it change irregularly with time? We
would like also to determine characteristic timescales needed
for the spectral density peaks to develop or to disappear. In
our studies we precisely address these questions and con-
sider different system geometries and include the Coulomb
repulsion between the sites. Moreover, real 2D substrate
electrodes characterized by DOS with the van Hove singu-
larities are considered which make the problem nontrivial
especially for time dependent Hamiltonian. Note that for flat
DOS a wide band limit (WBL) approximation is often used
which drastically simplifies mathematical derivations and
leads to analytical formulas for stationary as well as for driven
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systems [19–21]. However, for real DOS (beyond the wide
band) time dependent calculations need more sophisticated
methods [21–24] and, e.g., within the Heisenberg equation of
motion it is hardly possible to obtain the time-dependent local
DOS. Moreover, nonequilibrium quantum systems (e.g. after
the quench) between unbiased leads could be considered as
monoparametric pumps. Such systems are of great interest as
they involve a reduction of the system size due to a smaller
number of contacts which lead to decreasing of dissipation
processes in comparison with ordinary two-parameter pumps
[2,4,25–34]. Additionally, monoparametric pumps eliminate
dipolelike forces which appear in the presence of two or more
external time-dependent fields (with a phase shift between
them) [35]. Here, we propose the transient crystal system
between unbiased electrodes as an effective monoparametric
pump. To analyze the pumping currents, electron occupancies,
and the spectral density dynamics we use a tight-binding
Hamiltonian and the evolution operator technique which was
successfully applied for arbitrary time dependence of external
perturbations [20,21,24,36]. This method allows us to find
some analytical time-dependent formulas for the evolution
operator matrix elements within the Laplace transform tech-
nique.

The paper is organized as follows. In Sec. II, we de-
scribe the theoretical model and the calculation method. In
Sec. III, the main results of the paper are discussed for
the transient crystal. In Sec. IV the role of the real DOS
structure of the electrode is analyzed; in Sec. V different
system configurations are discussed. Section VI is devoted
to the monoparametric pumping and the Coulomb repulsion
between sites is studied in Sec. VII. The last section gives a
short summary.

II. MODEL AND THEORETICAL DESCRIPTION

The model under consideration consists of two coupled
electron sites (double QD, two-state system, atomic dimer)
on the substrate or between external electrodes. We are going
to analyze time dynamics of the spectral density related to
both sites, the occupancies, and the pumping currents flowing
through the system. The total time dependent Hamiltonian can
be written in the second quantization notation as follows:

H = Hlead + H0(t ) + V (t ) , (1)

where electrons in the leads are described by the term
Hlead = ∑

α

∑
kα εkαc†

kα
ckα , similarly the Hamiltonian for

electrons at the central system takes the form: H0(t ) =∑
i εic

†
i ci + UCc†

1c1c†
2c2, and the coupling term: V (t ) =

V12c†
1c2 + ∑

i,kα Vi,kα (t )c†
kα

ci + H.c. Here α = L, R concerns
the left or the right lead, i = 1, 2 describes the central sites
(atoms, QDs), and ckα (c†

kα
), ci(c

†
i ) are the electron annihila-

tion (creation) operators at the appropriate site. The electron
transition between atoms is established by V12 coupling and
between leads and the central system by Vi,kα matrix elements.
In the above Hamiltonian εkα stands for the electron energy
spectrum of the αth lead, and εi represents the atomic energy
levels. For simplicity each site is characterized by a single
electron level with the interdot Coulomb interaction between
the sites. We investigate the system dynamics due to different

time-dependent perturbations like quantum quenches or adia-
batically changed coupling parameters.

The time evolution of the dimer spectral density function is
described in terms of the evolution operator U (t, t0) given in
the interaction representation by the following equation (we
assume h̄ = 1):

i
dU (t, t0)

dt
= Ṽ (t, t0)U (t, t0)

= U0(t, t0)V (t )U †
0 (t, t0)U (t, t0) , (2)

where U0(t, t0) = T exp (i
∫ t

t0
dt ′(Hlead(t ′) + H0(t ′))) and T

denotes the time ordering. It is assumed that for t < t0 elec-
tron states in the system are decoupled and the couplings
are switched on at t = t0 leading to the transient effects. The
electron occupation number can be obtained from the knowl-
edge of the appropriate evolution operator matrix elements
〈i|U |kα〉 = Ui,kα (t, t0):

ni(t ) =
∑
k,α

nkα (t0)|Ui,kα (t, t0)|2 . (3)

The spectral density function at each site (also called the
local DOS) for the zero temperature can be obtained from the
relation:

ρi(E , t ) =
∑

α

Dα (E )|Ui,α (E , t, t0)|2 , (4)

where Dα (E ) is the lead’s density of states and we use the
notation Ui,kα (t, t0) = Ui,α (E , t, t0). In our calculations the
Coulomb interdot term is considered in the form of the elec-
trostatically interaction which in the mean field approach
takes the form: UCc†

1c1n2(t ) + UCc†
2c2n1(t ), where ni(t ) is

the time dependent expectation value of the appropriate site
occupation. In this case the matrix elements Ui,kα (t, t0) for
t0 = 0 can be obtained using Eq. (2) from the following in-
tegrodifferential Volterra equations of the second kind:

dU1,kL(t )

dt
= −iV12eiUC (N2(t )−N1(t ))U2,kL(t )

− iV1,kLei(ε0−εkL ) t eiUC N2(t ) − V 2
1,kL

×
∫ t

0
dt ′DL(t−t ′)eiε0(t−t ′ )eiUC

∫ t
t ′ n2(τ )dτU1,kL(t ′),

(5)

dU2,kL(t )

dt
= −iV12eiUC (N1(t )−N2(t ))U1,kL(t ) − V 2

2,kR

×
∫ t

0
dt ′DR(t−t ′)eiε0(t−t ′ )eiUC

∫ t
t ′ n1(τ )dτU2,kL(t ′),

(6)

where we assume the same onsite electron energies
ε1 = ε2 = ε0, and Ni(t ) = ∫ t

0 ni(t ′)dt ′. Here Dα (t − t ′) =∫
dεDα (ε) exp(−iε(t − t ′)) is the Fourier transform of the

electron density of states in the αth electrode. The similar dif-
ferential relations can be written for Ui,kR(t ) elements. To find
the solution for the evolution operator as a function of time
it is necessary to know the charge occupations ni(t ) which
are obtained from the knowledge of Ui,kα (t ) elements. Thus,
the problem is not trivial and in general analytical solutions of
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these equations do not exist. Moreover, the Fourier transforms
of the lead DOS, D(t − t ′), appearing in the right hand side
of Eq. (5) and Eq. (6), have no analytical form for arbitrary
D(E ) (besides some symmetrical DOS functions, like, e.g.,
the rectangular or Lorentzian DOS). Thus in general we solve
the integrodifferential equations [Eqs. (5) and (6)] numerically
for a given leads DOS. However, for some specific system
parameters, using the Laplace transformation technique, we
can obtain some interesting analytical relations and discuss
them in the text.

The current flowing from the surface electrode can be ob-
tained from the time derivative of the total number of electrons
in this lead:

jL(t ) = −e
d

dt

∑
kL

nkL(t ) , (7)

where the electrode occupation, nkL(t ), is expressed similarly
to Eq. (3) by Ukα,k′α′ (t, t0) matrix elements which satisfy the
set of integrodifferential equations in the form of Eq. (5) and
Eq. (6).

III. 1D TRANSIENT CRYSTAL

In this section we consider a two-site system coupled via
the first site with only one (left, L) electrode such that the
second site is decoupled from the lead (vertical geometry).
For such a case, using Eq. (5) and Eq. (6) and for no Coulomb
repulsion, UC = 0, one can write the following set of differ-
ential equations for Ui,kL (t ) elements:

dU1,kL (t )

dt
= −iV12U2,kL(t ) − iV1,kLei(ε0−εkL ) t − �

2
U1,kL(t )

(8)
dU2,kL (t )

dt
= −iV12U1,kL(t ),

where � = �L = 2π
∑

kL |V1,kL|2δ(E − εkL ), i.e., the struc-
tureless DOS of the surface electrode is assumed (wide band
approximation). The above set of differential equations can
be resolved analytically using the Laplace transformation
method, L{Ui,kL (t )} = Fi(s), which leads to the following so-
lutions for the transformed functions:

F1(s) = −isV1,kL

(s − s0)(s − s1)(s − s2)
(9)

F2(s) = −VV1,kL

(s − s0)(s − s1)(s − s2)
,

where s0 = i(ε0 − εkL ) and s1/2 = −�
4 ±

√
�2

4 − 4V 2. In this
case the inverse Laplace transformation for Fi(s) can be
calculated analytically and after some algebra one obtains
time-dependent evolution operator matrix elements:

U1,kL(t ) = −iV1,kLs0

(s0 − s1)(s0 − s2)
es0t + −iV1,kLs1

(s1 − s0)(s1 − s2)
es1t

+ −iV1,kLs2

(s2 − s0)(s2 − s1)
es2t , (10)

and similar for U2,kL (t ) elements, where one should change
−iV1,kLsi into −V12V1,kL in all nominators in the above equa-
tion. It is worth noting that the first part of the above relation
oscillates in time while the second and third terms vanish

nonmonotonically due to the exponent functions with s1 and
s2 (which real parts are negative). Analytical solutions for
Ui,kL (t ) evolution operator matrix elements within the WBL
allow us to obtain the current form Eq. (7):

jL(t ) = −2Im

{∑
kL

nkL(0)VkLei(εkL−ε0 )tU1,kL(t )

}

−�n1(t ) , (11)

where nkL(0) stands for the initial occupation of electron states
in the electrode which is related to the Fermi distribution func-
tion, and we assume e = 1. The relations for Ui,kL (t ), Eq. (10),
have a more transparent form for εkL = ε0 = 0, which can be
written as follows (we define x = �

4V12
):

U1,kL(t ) = −iV1,kL

V
√

x2 − 1
e− �

4 t sinh(V12

√
x2 − 1t ) ,

U2,kL(t ) = −V1,kL

V12
+ −V1,kL

V12
e− �

4 t

×
{

cosh(V12

√
x2 − 1t )

+ x√
x2 − 1

sinh(V12

√
x2 − 1t )

}
. (12)

These analytical relations for Ui,kL(t ) allow us to analyze time
dynamics of the spectral density functions at both sites. In
our calculations all energies are expressed in the units of
�L = � ≡ 1, time in h̄/� units (which for � = 1 meV equals
0.6 ps), and the energy reference point is the left electrode
Fermi energy, EF = 0, moreover a shortened notation of the
site-site coupling V12 = V is used.

In the beginning we analyze dynamical formation in time
of the spectral density function for �L = 1, �R = 0 (verti-
cal geometry). In Fig. 1 we show the local DOS dynamics
related to the second site, ρ2(E , t ), for different values of
the site-site coupling parameter, V = 0.4, 2, 4, and 8, from
the upper to bottom panel, respectively. The quench takes
place at t = 0 (for t < 0 we have V = 0, �α = 0) and for
t → ∞ the spectral density corresponds to the stationary case,
i.e., it is characterized by two peaks localized for E = ±V .
These peaks for relatively small V parameter overlap each
other which is visible in the upper panel (for V = 0.4). It
results directly from Eq. (12) where for t → ∞ the evolution
operator matrix element for the Fermi energy E = 0 does not

vanish, U2,kL = −V1,kL

V , and thus ρ2(E = 0, t → ∞) ∼ V 2
1,kL

V 2 . It
means that the spectral density function at the Fermi level
vanishes for larger V but for smaller V (for x > 1, i.e., for
� > 4V ) it monotonically increases after the quench (with-
out oscillations). For larger values of V (x < 1) the spectral
function ρ2(E , t ) reveals an interesting structure as a function
of time (see three bottom panels in Fig. 1). In the beginning
one wide peak of ρ2(E , t ) appears and for large t only two
side peaks at E = ±V are observed which stand for the steady
solution of the double-site system. However, as a main feature
of this quench we observe interference patterns of the spectral
density function between the main stationary DOS peaks.
These patterns come from the evolution in time of the spectral
density at both sites in the presence of the electron reservoir.
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FIG. 1. Spectral density function ρ2(E , t ) of the two-site system
after the quench at t = 0 (for t < 0: �L/R = 0 and V = 0). For t > 0
the site-site coupling is V = 0.4, 2, 4, and 8 (from upper to bottom
panels, respectively) and �L = 1. The other parameters are �R = 0,
V1,kL = 4, V2,kL = V1,kR = V2,kR = 0, ε0 = 0, UC = 0. The units of all
energies and time are �L = � and h̄/�, respectively.

Due to the coupling with the substrate just after the quench a
single DOS peak at the first site appears. This information,
after some time, reaches the second site, and its spectrum,
ρ2(E , t ), broadens leading to a single-peak DOS structure at
this site—in the second panel (V = 2) it appears for t = 1.5.
Next, the spectral density function at the second site is rebuild
due to the presence of the first site and two-peaked DOS
structure is observed for a moment, for t = 3.1. However,
the system is not in its equilibrium state (it is just after the
quench) and still evolves in time—the spectral density peaks
become narrower and this information bounces between both
sites leading (for a short period of time) to appearance of a
three-state spectral density function with maximal value of
DOS at the Fermi level (for t = 4.7), then four-state DOS
(for t = 6.3) and so on. This process repeats again and again
and one observes M-site dynamical structure of DOS in the
double-site system (see also the third and fourth bottom pan-
els). This structure, however, vanishes with time as the system
tends to the equilibrium state with two-peaked spectral density
function. The substrate acts here as a dissipative electrode
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FIG. 2. Time of the first maximum in ρi(E , t ) as a function of
the coupling parameter V for i = 1 (solid curve) and i = 2 (broken
curve). The inset shows time evolution of the spectral density func-
tion at the Fermi level for V = 2 and i = 1 and 2, respectively. The
other parameters are the same as in Fig. 1; τmax is expressed in the
time units, h̄/�.

thus nonequilibrium oscillations vanish in time. The internal
patterns of the dynamical local DOS correspond to the struc-
ture of DOS (or the conductance) of 1D stationary atomic
chain, cf. Fig. 1 from Ref. [37], i.e., for a given time it is
characterized by the structure of the M-site chain. Thus the
two-site system after the quench has structure behavior in
time, which stands for a kind of 1D transient crystal material.
Of course this structure is quasiperiodic which means that it
pulses/changes in time in a very regular way. Note that for the
dimer decoupled from the leads such structure of the transient
crystal does not appear and only regular and nonvanishing in
time Rabi oscillations are observed.

It is worth mentioning that just after the quench the spectral
density does not change immediately but there is some delay
time until the information about continues electron states in
the electrode reaches the second site. This time interval de-
pends on the coupling between both sites and it decreases
with increasing V , cf. the upper and bottom panels in Fig. 1
for t = 2.5 and 0.25, respectively. We analyze this process in
Fig. 2 where we define the delay time of the spectral density
function, τmax, as a time at which ρ1/2(E , t ) reaches its first
maximum. In the insight in Fig. 2 we show the time evolution
of the density functions at both sites corresponding to the
Fermi level (E = EF = 0) for V = 2. Note that the spectral
density oscillates in time with the period equals T = π

V
√

1−x2

and with decreasing amplitude. For these ρ1/2(E , t ) curves
the first maximum appears for τmax = 0.7 (the first site) and
τmax = 1.5 (the second site). One expects that τmax for the
first site, which is directly coupled with the electrode, should
not depend on the site-site coupling, V , as the information
from the substrate flows only through the coupling parameter
V1,kL (or �L). Surprisingly, this conclusion is invalid and the
appearance of the first maximum at this site depends on the
coupling with the second site (decoupled from the electrode).
It can be confirmed by analytical calculations of the spectral
density functions ρ1(EF , t ) and ρ2(EF , t ). From Eq. (12) we
calculate the positions of the first maxima which for i = 1

can be expressed as: τmax = ln(x+√
x2−1)

V
√

x2−1
for x > 1 and τmax =

arctan(
√

1−x2/x)
V

√
1−x2 for x < 1, and similar for i = 2. These functions
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FIG. 3. (Upper panel) Effective chain length, M, as a function
of time for the system described in Fig. 1 for V = 4 (dots) and
V = 2 (crosses). The inset figure shows the spectral density function
(normalized DOS) obtained for M = 3 linear sites within the Green
function method with the effective coupling, VM = 2.83, εi = 0
(solid curve) and for the dimer taken at time t = 2.3 after the quench
for V = 4 (dotted curve). The bottom panel shows time dependent
spectral density function for V = 4 with indicated effective chain
lengths, M. The circles correspond to maxima of equilibrium DOS
obtained for M-site linear chain for VM = V/2.3 cos( π

M+1 ). The other
parameters are the same as in Fig. 1.

in both cases depend on the site-site coupling parameter, V ,
which is visible in Fig. 2 and in general the time delay de-
creases monotonically with V . It is interesting that from the
knowledge of τmax one can estimate the coupling parameter
between the sites. Moreover, the difference in time delay
between both sites 	τ (between the broken and solid curves
in Fig. 2) is responsible for the time travel of the information
between these sites. This quantity can be derived analytically
and has relatively transparent form:

	τ = 4√
4V 2 − �2

(
π

2
+ arcsin

�

4V

)
. (13)

One can see that for large value of V , the difference 	τ is
very small and tends to zero (two-site system stands for a
strongly coupled molecule, V > V1,kL) but for smaller V it
increases rapidly. It is worth noting that this function depends
nonlinearly on the site-site coupling.

The spectral density function of the double-site system
reveals a regular pattern of peaks (transient crystal) which
correspond to a chain of the effective length M. It is desirable
to analyze how this effective chain length M changes in time
after the quench in this system. To tackle this problem we
study the positions of peaks of the spectral density function
in time and adjust them to the effective chain length. The
results are depicted in Fig. 3 (upper panel) for V = 2 (crosses)
and V = 4 (dots). It is well visible that this dependence is

linear for both cases. The linearity of M(t ) is a consequence
of constant information rate which bounces between the sites.
We have found that the structure of the effective chain length
M appears for t = 2πM√

(2V )2−�2
and, e.g., the local DOS corre-

sponding to M = 5 chain length exists in the two-atom system
for t = 8.1 (V = 2) after the quench. Moreover, for weaker
couplings V the effective chain length increases much slower
than for larger V (which is also visible in Fig. 1 where peaks’
density changes with V ). It allows us to observe M-sites struc-
ture of the double-site system even for larger times.

In the inset in Fig. 3 we compare the structure of stationary
DOS obtained for M = 3 sites chain with the dimer spectral
density function captures at time t = 2.3 for V = 4. Here the
Green function (GF) method was used for the model com-
posed of a linear chain on the substrate with the same electron
energies, ε0, and uniform effective site-site couplings, VM . The
stationary spectral density is obtained from the knowledge
of the imaginary part of the site Green function, DOSi(E ) =
− 1

π
ImGr

ii(E ), and Gr
ii is found from the equation of motion

for the retarded Green functions, cf., e.g., Ref. [37]. We have
found that the positions of DOS peaks in the energy scale
agree for both models. The differences result from the system
dynamics after the quench, i.e., the intensities of the inside
peaks as well as their widths for the two-site system change
dynamically in time leading (for large time) to the equilibrium
two-peaked structure of DOS. The general correspondence
between the spectral density function of the double-site sys-
tem and the M-site linear chain is shown in the bottom panel
in Fig. 3. Here, on the transient crystal pattern we overplot
the positions of the local DOS peaks assigned to the steady
chain of the length M (circles in the bottom panel). As one
can see the agreement between the dynamical structure of the
two-atom system and static 1D chain DOS is quite satisfying.

IV. BEYOND THE WIDE BAND LIMIT

The transient crystal pattern appears for the two-state sys-
tem after the quench in the presence of continuum electron
states. In real physical systems the electron reservoir can be
characterized by nontrivial band structure with peaks (van
Hove singularities), gaps, or surface states. For such sys-
tems the wide band limit approximation fails and one should
describe lead electrons in a more adequate way which is a
nontrivial task especially for time dependent studies [21–24].
Therefore in this section we consider a more realistic model
of the lead DOS as it can strongly modify the spectral density
of the double-site system. We will check whether the spectral
density pattern for the dimer survives in the presence of real
structure of the surface DOS. In our calculations we take into
consideration three different cases of the lead DOS structure
shown in Fig. 4. There are: a rectangular DOS (curve A),
2D-tight binding with a single van Hove peak in the middle of
the band (curve B), and DOS with two van Hove peaks with a
local minimum in the middle of the band (curve C). The last
two curves correspond to the 2D tight-binding rectangular and
honeycomb (hexagonal) lattice which have analytical forms
expressed in terms of the elliptic integrals of the first kind
[38,39]. Note that in our calculations beyond the WBL one
needs the time transform of DOS [as in Eq. (5) and Eq. (6)]
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FIG. 4. Electrode density of states considered in the calculations:
rectangular DOS (curve A), 2D square lattice DOS with the van Hove
singularity (curve B), and 2D honeycomb (hexagonal) lattice DOS
with two van Hove singularities (curve C) [38,39]. The energy unit is
�, all curves are normalized to 1, and each DOS width is w = 30�.

and, e.g., for the rectangular DOS, D(E ) = 
(w/2−|E |)
w

, (w is
the DOS bandwidth and 
 is the Heaviside step function),
the time Fourier transform has a simple analytical solution,
D(t ) = sin(tw/2)

tw/2 .
The spectral density function for the double-site system

coupled vertically with the lead (surface electrode) described
by different DOS structures is shown in Fig. 5 (A, B, and
C, from the upper to bottom panels). As one can see the
rectangular DOS of the electrode slightly modifies in time
the spectral density pattern of the system in comparison with
the results obtained within the wide band approximation, cf.
Fig. 1, the third panel for V = 4. It results from the fact that
the rectangular DOS can be well substituted by the wide band
structure especially for energies lying in the middle of the
band. For the surface DOS with the van Hove singularity in the
middle of the band, panel B, one observes clear amplification
of peaks intensities in the structure of the spectral density
function. This effect results from larger values of DOS of
the surface band near the Fermi level in comparison with the
rectangular DOS, cf. Fig. 4. Thus the transient crystal can
be observed for such DOS structure even for larger times.
The situation changes for two van Hove singularities in DOS,
panel C (hexagonal lattice). In this case the dimer spectral
density near the Fermi level is strongly reduced due to low
surface DOS at the Fermi level and the spectral density pattern
is hardly visible. It is worth noting that the spectral density
peaks appear at the same energies and at the same time for
all considered surface DOS. Thus the surface structure does
not influence the transient crystal pattern in general but can
change its intensity.

V. OTHER CONFIGURATIONS

In this section we study the role of different geometries of
the system on 1D transient crystal patterns. First in Fig. 6 we
consider a linear change of the site-site coupling from zero
to V = 4 within 5 time units (between t = 10 and t = 15).
Thus we assume that there is a single site at the electrode
and at a given time, t = 10, the second site is coupled with
it. As one can see the evident peaked pattern of the spectral
density appears with decreasing intensities. The first spectral
density peak which appears just after t = 10 is broadened and
exists longer in time than for the sudden quench. Moreover,
one observes a linear change of the main DOS peaks in time
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FIG. 5. Spectral density function ρ2(E , t ) of the two-site system
coupled vertically with the lead characterized by different DOS
shown in Fig. 4, curves A, B, and C (upper, middle, and bottom panel,
respectively). The other parameters are the same as in Fig. 1, V = 4.

(tilted white ridges) up to the time when the site-site coupling
is constant. It is the reason that the structure of 1D transient
crystal with DOS peaks is slightly squeezed in the energy
scale and shifted in time.

Thus far we have investigated two-site systems in the
vertical geometry at the surface. In real situations they can
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FIG. 6. Spectral density function ρ2(E , t ) for linear change of
V from V = 0 (at t = 10) up to V = 4 (for t � 15). The other
parameters are the same as in Fig. 1.
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FIG. 7. Spectral density function of the two-site system in the
horizontal geometry ρ2(E , t ) = ρ1(E , t ) after the quench with the
substrate characterized by 2D tight-binding DOS with a van Hove
peak in the middle of the band. The other parameters are the same as
in Fig. 1, V = 4, V1,kL = V2,kR = Vk = 2.82.

be also coupled horizontally or can be situated between two
electrodes (as for a DQD system). In this case the evolution
operator matrix elements Ui,kL (t ) needed to obtain the spectral
density satisfy similar equations to Eq. (8) [for this horizontal
geometry in the second equation one should add the term:
−�

2 U2,kL(t )], and for the wide band approximation and sym-
metrical couplings �L = �R = � (V1,kL = V2,kR = Vk) we can
obtain the Laplace transformations for the evolution opera-
tor elements: F1(s) = −iVk (s + �

2 )/N , and F2(s) = −VVk/N ,
where N = [s − i(ε0 − εk )](s + �

2 − iV )(s + �
2 + iV ). After

some algebra the inverse Laplace transformations for them
can be obtained as follows (for εk = EF = 0):

U1,kL(t ) = −iVk(
�
2

)2 + V 2

×
(

�

2
− e− �

2 t �

2
cos(V t ) + Ve− �

2 t sin(V t )

)

U1,kR(t ) = Vk(
�
2

)2 + V 2

×
(

−V − e− �
2 t �

2
sin(V t ) + Ve− �

2 t cos(V t )

)
(14)

and the spectral density function at the Fermi level (which is
the same for both sites) can be written in the following form:

ρ1/2(t ) = 1

2π

1

V 2 + (
�
2

)2

(
1 + e−�t − 2e− �

2 t cos(V t )
)
.

(15)

It is interesting that in this case the oscillation period of
ρi(E , t ) is exactly the same as for the isolated dimer system
(Rabi oscillations), i.e., T = 2π/V . Apparently, for the sys-
tem decoupled from the substrate these oscillations do not
vanish in time but here due to nonzero � parameter they
exponentially decrease. Note that the oscillations of the spec-
tral density in the horizontal geometry are also observed for
other nonconstant surface DOS (for which analytical formulas
do not exist). In Fig. 7 we show the results for the two-site
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FIG. 8. Time dependent currents flowing from the left (red solid
curve) and from the right (blue broken curve) electrodes for ε0 =
−2. The coupling V = 4 was switched off at t = 10 for a period
of 	 = 5 time units (black dotted line). The left (right) electrode is
characterized by 2D-TB DOS with one (two) van Hove singularity
(see Fig. 4), both DOS are symmetrical and their widths are w = 50
energy units, the current unit is e�/h̄.

horizontal system coupled with the lead (surface electrode)
described by the 2D tight-binding DOS with the van Hove
singularity at the Fermi level. As one can see the transient
crystal pattern is well visible in this case with a larger intensity
of peaks for E 
 0 related to the van Hove singularity at
the Fermi level. As before, the oscillation period of ρi(E , t )
corresponds to the Rabi oscillations.

VI. MONO-PARAMETRIC PUMPING

We have shown that a two-site system coupled with the
electrode reveals regular oscillations for a short period of time
after the quench. During this time the system is out of equilib-
rium thus it can be proposed as an effective monoparametric
electron pump. In doing so we consider two electron sites
between unbiased leads and change nonadiabatically in time
only the site-site coupling parameter, V . In Fig. 8 we analyze
the left and right currents flowing through such a system for
suddenly vanishing in time coupling strength V at t = 10 and
switched on again at t = 15, as is indicated by the broken
black curve. The system is space symmetrical but here we
consider two different density of states of the left and right
leads, i.e., with one (left lead) or two (right lead) van Hove
singularities, Fig. 4. It leads to asymmetry which is crucial for
the pumping effect (in the case of the same structure of the left
and right DOS electrons are not pumped through the system).
Before the perturbation, t < 10, the spectral density of the
two-site system is characterized by two peaks localized below
and above the Fermi energy (in our case at E = ε0 ± V =
−6,+2) thus both sites are almost half occupied. At t = 10
the sites are decoupled and the local DOS is transformed to a
single peak DOS with the maximum at E = ε0 = −2 which
lies below the Fermi energy. In this case the occupancies
of both sites increase and the electrons flow from the leads
to the sites (the currents are positive). It is evident that for
the electrode with larger DOS around the Fermi energy this
process occurs much faster (red curve) in comparison with the
electrode with low DOS(EF ), blue curve. At t = 15 the sites
are coupled together again and their spectral density evolves
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FIG. 9. Pumped charge through the two-site system between the
unbiased leads during the changing of V parameter (shown in Fig. 8)
as a function of 	 for ε0 = 0, 2, 4 (upper panel) and as a function of
ε0 for 	 = 0, 2, 5, 10, 20 (bottom panel). The unit of 	 is h̄/�.

in time to the same structures as before the quench (with two
peaks of DOS lying below and above the Fermi energy). This
is the reason that some excess charge, related to the state
below the Fermi energy, has to leave the sites and the current
is negative. After about 5 time units from the quench (t > 20)
the system reaches its steady state and the currents vanish.
During this process the transient crystal pattern appears at
both sites as was discussed in Fig. 7 but the left and right sites
are charged/discharged with different rates, e.g., the right site
is charged very slowly due to low DOS of the right lead at the
Fermi energy. Thus after the quench (for t > 15) the excess
charge flows to the right electrode (very slowly) but also to
the left electrode through the first site. Nonuniform charge
migration after the quench leads to electron pumping in the
double-site system using only one time dependent parameter
(monoparametric pumping) and it is desirable to analyze this
phenomenon in more details.

The net charge flowing from the left/right electrode can
be calculated by integration of the time-dependent currents,
i.e., NL/R = ∫

jL/R(t )dt . We assume only one cycle of V (t )
variations shown in the upper panel in Fig. 8, and obtain the
net charge, NL, flowing from/to the left electrode (extension
to periodic cycles is straightforward). Both sites are decoupled
during the period of 	 and the system is in the same equi-
librium state before and after the perturbation. First we are
interested how 	 parameter influences the pumping charge
and in Fig. 9, upper panel, we show the charge flowing from
the left electrode, NL, as a function of 	 for various onsite
energies, ε0. As one can see for 	 = 0 electrons do not flow
through the system (there is no quench). For nonzero 	 and
symmetrical local DOS at both sites (symmetrical versus the

Fermi energy) the net charge also does not flow (red line).
However, in the presence of asymmetry in the local DOS
(ε0 = 2, 4) green and blue curves) the charge is pumped and
increases for small 	. For larger 	 it tends to some constant
value which means that for this perturbation maximal charge
is pumped through the system. Note also that for negative ε0

the charge is pumped from the right to the left electrode and
for positive ε0 the current direction is opposite. Thus the gate
voltage can effectively control the electron current direction
in the system.

In order to reveal further the role of the onsite energies on
the pumping current we analyze in the bottom panel of Fig. 9
the net charge as a function of ε0 for different 	 parameter
indicated in the legend. As before for ε0 = 0 (symmetrical
case) the charge is not pumped through the system indepen-
dently of 	. Also for large ε0 electrons are not transferred
between electrodes because there are no local DOS peaks
at the Fermi level in both sites. Maximal pumped charge is
observed for average values of ε0 when there is asymmetry
in the spectral density function and simultaneously there is
nonzero DOS at the Fermi level. The pumped charge depends
on the 	 parameter—for small 	 maximal NL appears for
ε0 
 V which corresponds to the local DOS peak at the Fermi
energy but for larger 	 the system reaches its steady state after
each change of V and maximal value of NL is observed for
ε0 = V/2.

VII. TRANSIENT CRYSTAL PATTERN IN THE PRESENCE
OF THE COULOMB REPULSION

Electron correlations in low dimensional systems can
play an important role leading to, e.g., the Kondo effect,
Coulomb blockade, spin-charge separation, and others. How-
ever, in many real atomic structures the correlation effects are
marginal and can be omitted (like for Pb atoms on vicinal
surfaces [40]) or can be described effectively as an electro-
static coupling between charged electron sites. In this section
we consider the Coulomb electrostatic coupling between the
sites and check whether the Coulomb repulsion influences or
destroys the transient crystal pattern. In general, even for the
wide-band approximation analytical solutions of Eqs. (5) and
(6) do not exist. However, in the limit of small UC , e.g., for
the two-site system coupled only with one electrode, instead
of the integrodifferential Volterra equations of the second kind
we have the following ones:

dU1,kL (t )

dt
= −iVeiUC (n2(t )−n1(t ))tU2,kL (t )

− iV1,kLei(ε0+UC n2(t )−εkL ) t − �

2
U1,kL(t )

dU2,kL (t )

dt
= −iVeiUC (n1(t )−n2(t ))tU1,kL (t ) . (16)

Unfortunately, due to the time dependent occupations, ni(t ),
the Laplace transform technique cannot be applied to find
analytical solutions. Further approximations, like the assump-
tion that ni(t ) does not depend on time [only in the RHS
of Eq. (16)] lead to unphysical effects. Thus in the paper
we consider finite values of UC and show the results ob-
tained numerically for small UC and wide band approximation
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FIG. 10. Time dependent spectral density function of the two-
site system after the quench at t = 0 for small Coulomb repulsion
between sites UC = 1 (upper panel) and for the stronger one, UC =
4, (bottom panel). The arrows indicate the energy shifting of the
stationary peaks of the local DOS due to the Coulomb repulsion. The
other parameters are the same as in Fig. 1, V = 4.

according to Eq. (16) and for larger UC and beyond the WBL
(rectangular lead DOS) using Eq. (5) and Eq. (6).

In order to reveal the role of the Coulomb repulsion on
the transient crystal pattern we analyze in Fig. 10 the spec-
tral density function for weak electron-electron repulsion,
UC = 1 (upper panel), and for UC = 4 (bottom panel). As one
can see the structure of ρ2(E , t ) for small U slightly differs
from that from Fig. 1 obtained for UC = 0 and for V = 4.
However, for larger UC we observe that the spectral density
is shifted and the main DOS peaks for t → ∞ appear for
E = ±V + UCn(t ): The occupation number in our case tends
to 0.5 thus UCn(t ) → 2 which was indicated in Fig. 10 by the
arrows. It leads to modifications of the spectral density pattern
but the transient crystal structure of the local DOS peaks is
still visible. Note that similar behavior of the conductance
spectra (shifting towards higher energies) was observed for
N-site linear chain in the presence of the Coulomb interactions

obtained within the slave boson and mean-field techniques
[41]. Here this effect holds in time for only the two-site
system which additionally confirms its relation with the DOS
structure behavior of 1D chains.

VIII. CONCLUSIONS

In this work we have studied the dynamical properties of
a system composed of two coupled sites focusing on the time
dependent spectral density function and its evolution due to
quantum quenches and linear perturbations. Using the evo-
lution operator technique and tight-binding Hamiltonian we
have found that the spectral density function reveals a very
regular structure of peaks in the time domain. This peaked
pattern oscillates in time, and it corresponds to a quantum
chain density of states with increasing chain length. Thus it
stands for a new material which is characterized by the pulsed
structure changing regularly in time. This transient crystal
exists for nonequilibrium systems (e.g., after the quench) and
vanishes as the system tends to its steady state so it cannot be
classified strictly as a time crystal. We have also shown that
the predicted pattern of the transient crystal could be observed
for two-site systems on different electrodes with the van Hove
singularities as well as for different system geometries. Addi-
tionally, we have found that in the presence of the Coulomb
repulsion between sites the spectral density function is shifted
towards higher energies but the transient crystal pattern is still
visible in the system.

Moreover, using the series of quantum quenches we pro-
pose an effective monoparametric pump based on the transient
crystal system between unbiased leads. In the presence of two
different lead DOS, by changing in time only the coupling
parameter between the sites, the net electron charge can be
transferred in the system. In this case the transient crystal
pattern appears together with the pumping current whose di-
rection can be determined by the gate voltage potential.

It is believed that our results will bring new perspectives
to a wide range of time-dependent crystals. They can be ver-
ified experimentally using time spectroscopy techniques or in
photonic crystals.
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