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We theoretically investigate the thermoelectric transport in the nanoribbon of the magnetic topological
insulator with a domain wall in the linear and nonlinear regimes. The Lorenz number L, the Seebeck coefficients
Sc, and the thermoelectrical figure of merit ZT in the linear response regime are obtained by the nonequilibrium
Green’s function method. These thermoelectric coefficients strongly depend on the configuration of the domain
wall, that is, the configuration of the domain wall can regulate the thermoelectric transport performance. We
also discuss the effect of the width of nanoribbon and the thickness of the domain wall on the thermoelectric
coefficient. The results show that the Néel-type wall is more dependent on the size effect of the domain wall
than the Bloch-type wall. For a device with a given width, we can always allow the setup to be in high
performance thermoelectric transport by adjusting the configuration of the domain wall. Moreover, considering
the disorder, the transmission coefficient is robust against disorder even if the disorder strength is very strong,
and Sc and ZT are robust against moderate disorder. Finally, for a nonlinear situation, we calculate the maximum
power-generation efficiency η and the equivalent thermoelectric figure of merit ZTM , indicating the potential
application as an effective thermoelectric device.
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I. INTRODUCTION

Thermoelectricity is both an ancient and young subject.
The thermoelectric effect is the phenomenon of a direct con-
version from the heat energy to the electric energy when
the temperature gradient exists [1,2]. Since Loffe found a
significant thermoelectricity in the doped semiconductors
[3–5], huge interests have arisen in thermoelectric phenomena
[6–15]. As a clean energy technology, thermoelectric energy
conversion technology converts the waste heat produced into
the exploitable electric energy, not only alleviating the energy
shortage, but also reducing environmental pollution [16,17].
So far, thermoelectric devices are mainly used in situations
where reliability and quiet operations are more important than
cost, such as the manufacture of portable thermoelectric cool-
ing devices, equipments in medical applications, automotive
waste heat automatic recovery devices, space probes, and so
on [5,18].

To further promote the application of thermoelectric
devices needs to improve the thermoelectric conversion ef-
ficiency, denoted by the thermoelectric figure of merit ZT .
ZT is defined as ZT = σSc

2T /(κel + κph), where σ is the
electric conductivity, Sc is the Seebeck coefficient, T is the
absolute temperature of the device, and κel(κph) is the elec-
tronic (phononic) contribution to the thermal conductance
[2,19–23]. To obtain a large ZT , we must increase the electric
conductance σ and the Seebeck coefficient Sc, but simultane-
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ously reduce the thermal conductivity κ = κel + κph, that is,
the synergistic optimization of electrical and thermal transport
properties. Unfortunately, the Mott relation states that the in-
creasing electric conductance σ is usually accompanied with
the decreasing of the Seebeck coefficient in normal bulk mate-
rials [24,25]. The Wiedemann-Franz law requires that electric
conductance σ , the thermal conductivity κ , and temperature
satisfy L ≡ κ/σT = (kBπ )2/3e2 with L the Lorentz number
and kB the Boltzmann constant [26–29], which means that a
decrease in the thermal conductivity also leads to a decrease
in the electric conductivity. As a result, the thermoelectric
conversion efficiency is usually limited to ZT ∼ 1, less than
the industrially competitive value ZT > 3 [3]. Therefore, it is
expected to find sufficiently effective thermoelectric materials
with a high ZT to achieve cost-effectiveness [7].

The ZT in nanomaterials has been greatly improved since
the limitation by scale and multiple interfaces reduce the
thermal conductivity [4,30]. After Hicks and Dresselhaus [31]
proposed to use low-dimensional materials to obtain the high
ZT , more and more research groups began to focus on ther-
moelectric transport in nanomaterials. In 1996, the theoretical
research of Mahan and Sofo [32] showed that the limitation of
the Wiedemann-Franz law can be broken in low-dimensional
materials to enhance thermoelectric conversion efficiency.
In 2004, Majumdar [3] pointed out that the material scale
for improving the thermoelectric conversion efficiency must
be at the micronanometer scale. In 2011, Shakouri [33] re-
viewed advances in semiconductor thermoelectric physics and
materials, which provided useful insights for further research
on the thermoelectric transport of nanoscale systems.

2469-9950/2020/102(24)/245412(11) 245412-1 ©2020 American Physical Society

https://orcid.org/0000-0003-1296-1661
https://orcid.org/0000-0001-5625-6994
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.245412&domain=pdf&date_stamp=2020-12-10
https://doi.org/10.1103/PhysRevB.102.245412


YANG, YAN, AND SUN PHYSICAL REVIEW B 102, 245412 (2020)

In recent years, the discovery of topological insulators pro-
vided a new research platform for the field of thermoelectric
transport. Topological insulators are characterized by the in-
sulating bulk state and the nontrivial conducting edge state
or surface state [34–36]. In general, thermoelectric materials
should have a high electric conductance and Seebeck coef-
ficient and a low electric thermal conductance to achieve a
high ZT value. Narrow bands accomplish high conductance.
The heavy elements (with large atomic masses) accomplish
low thermal conductance. The construction of topological in-
sulators requires strong spin-orbit coupling, that is, increasing
atomic mass is beneficial for the topological phase. Topologi-
cal insulators need the band inversion, as a result, it usually
is a narrow band also. So many topological insulators are
also good thermoelectric materials. Although there is no direct
relationship, topological insulators have similar material prop-
erties as thermoelectric materials, such as heavy elements,
narrow band gaps, and the quantum localization effect. Ac-
tually, typical three-dimensional (3D) topological insulators
(like Bi2Te3, Sb2Te3, Bi2Se3, and BixSb1−x) are considered as
promising candidates for materials of thermoelectric conver-
sion [2,19,20,37,38]. In addition, topological insulators have
their unique properties, that is, it has the insulating bulk gap
and exotic metallic edge states [34–36], which also provides
a new way to regulate the electric and thermal conductances.
Very recently, Cheng et al. [39] found that Cr-doped PbSe has
a topological phase transition from the initial banded insulator
to the topological crystal insulator where the thermoelectric
value ZT is the best. This study provides a new idea for
optimizing the performance of thermoelectric materials.

The magnetic topological insulators (MTIs) can be re-
alized by the magnetic doping or the magnetic proximity
effect [40–44]. Novel transport phenomena occur in the MTIs,
such as the quantum anomalous Hall effect (QAHE), the
topological magnetoelectric effect, and the topology axionic
polarization exciton [41,43]. As to the experimental progress,
in 2013, Chang et al. [45] first observed the QAHE in Cr-
doped (Bi, Sb)2Te3 films, which is promising to develop the
low consumption electronic devices. In 2014, Wang’s group
[46] investigated the QAHE and related chiral transport in
the millimeter-size Cr-doped (Bi, Sb)2Te3 films, and for the
first time confirmed the scale invariance of dissipative chiral
edge states by nonlocal transport measurements. In 2017,
two groups [47,48] realized the domain walls of the MTIs
in Cr-doped (Bi, Sb)2Te3 with the tip of a magnetic force
microscope. Recently, QAHE was also realized in the intrinsic
MTIs MnBi2Te4 with an innate magnetic order [49].

The domain walls of MTIs are the boundary of two
magnetic domains with opposite magnetization directions,
see Fig. 1. For magnetic materials, the total magnetic en-
ergy is composed of the exchange interaction, the magnetic
anisotropy, and the dipole interactions. To minimize the to-
tal magnetic energy, the magnetization vector at the domain
boundary tends to undergo a continuous change rather than
a sharp change, that is, to form a domain wall. The opti-
mized configuration and thickness of the domain wall are
determined by the energy competition [50–53]. There are
two energetically favorable configurations of domain walls,
named after Néel type and Bloch type. The transition between
various configurations of the domain wall can be adjusted

FIG. 1. (a) The schematic cubic diagram of a system. The system
consists of a rectangular center MTI nanoribbon with a domain wall
at x = 0 connected to a hot lead and a cold lead. The black lines
with arrows represent the transport processes based on chiral edge
modes and interfacial states. A thermal gradient �T is applied in
the x direction. We consider �T = TL − TR > 0 and �μ = μL −
μR and set T = TR. (b)–(d) show the orientation of magnetic moment
M(x) at x = −δ, x = 0 and x = δ, respectively. Here θ and φ are the
polar and azimuthal angles of M. φ = 0 corresponds to the Néel-type
domain wall and φ = π/2 is a Bloch-type domain wall.

by Dzyaloshinskii-Moriya interaction [50,51,54]. In addition,
one of the most important properties of the domain walls of
MTIs is the existence of chiral edge states on both sides of
the domain wall [52]. The transport through the MTI domain
wall strongly depends on the configuration of the domain wall
[52]. So we expect that the thermoelectric properties can be
regulated by changing the configuration of the domain wall
and expect to find the high ZT .

In this paper, we carry out a theoretical study of the
thermoelectric transport properties of a MTI nanoribbon with
a domain wall. Using the nonequilibrium Green’s function
method, we find the linear thermoelectric properties strongly
depends on the configuration of the domain wall, labeled by
the azimuth angle φ. The results show the thermoelectrical
figure of merit ZT is not maximum for φ = 0 (the Néel type)
or φ = π/2 (the Bloch type), and ZT can be well controlled
by tuning the azimuth angle φ. When the temperature varies,
the peak value of ZT first increases and then decreases,
leading to the maximum when the temperature is at a few
tens of Kelvins. In addition, we study how other parameters
influence the thermoelectric transport coefficient, including
the width of the nanoribbon, the thickness of the domain
wall, and the disorder around the domain wall. Results show
that the Lorenz number L, the Seebeck coefficient Sc, and
ZT are tunable through the width of the nanoribbon and the
thickness of the domain wall. Furthermore, Sc and ZT are
robust against moderate disorder. Finally, we investigate the
thermoelectric effect in the nonlinear regime with a finite
bias and temperature gradient. In the nonlinear case, the
equivalent thermoelectric figure of merit can be maintained
or even increased compared with the linear case, and the
thermoelectric efficiency can reach 20% with the temperature
gradient at a few tens of Kelvins.
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The rest of the paper is organized as follows. In Sec. II,
the model and the effective tight-binding Hamiltonian are
introduced. The formalisms for calculating thermoelectric pa-
rameters are then derived. In Secs. III and IV, we study the
thermoelectric properties in the linear regime and the nonlin-
ear regime. Finally, a brief summary is drawn in Sec. V.

II. MODEL AND METHODS

A. Model and Hamiltonian

We consider a two-terminal nanoribbon composed of the
MTI with a domain wall at x = 0, shown in Fig. 1(a). The
y direction is homogeneous and the x direction is the trans-
port direction with the continuous varying magnetic moment
labeled by M(x) [52,53]

M(x) = [Mx(x), My(x), Mz(x)]

=M(sin θ cos φ, sin θ sin φ, cos θ ), (1)

where M is the magnitude of the magnetization, (θ, φ) are
the polar angle and the azimuth angle in the spherical coordi-
nate system, labeling the orientation of the magnetic moment
M(x). Here, φ is independent of the coordinate x, but θ is a
function of x with cos θ (x) = − tanh x

δ
where δ denotes the

thickness of the domain wall. The magnetic moment M(x)
aligns in the +z direction when x � 0 and in the −z direction
when x � 0, but M(x) continuously changes from upward
to downward from x < 0 through x = 0 to x > 0. Figs. 1(b),
1(c), and 1(d) show the orientation of M(x) at x = −δ, x = 0
and x = δ, respectively. At x = 0, the magnetic moment M(x)
is in the x-y plane as shown in Fig. 1(c). The way that M(x)
varies is regarded as the configuration of the domain wall, la-
beled by the azimuth angle φ: φ = 0 and φ = π/2 correspond
to the Néel-type wall and the Bloch-type wall, respectively
[52].

Considering the low-energy state, the nanoribbon of the
MTI with a domain wall can be described in with a continuous
Hamiltonian as follows [43,52,53,55,56]:

H =
∑

p

c†
p[vF (pyτzσx − pxτzσy) + m(p)τx + M(x) · σ ]cp,

(2)

where p = (px, py) and cp = [cpt↑, cpt↓, cpb↑, cpb↓]T is a four-
component electron operator. Here, t and b label electrons in
the top and bottom layers and ↑ and ↓ denote electrons with
up and down spins. Moreover, σ = (σx, σy, σz) and (τx, τy, τz)
are Pauli matrices for the spin and layer spaces, respectively.
m(p) = m0 − m1(p2

x + p2
y ) describes the coupling between

the top and bottom layers [52].
Based on the Hamiltonian in Eq. (2), we can discrete the

continuous model into a lattice version [52,53,57–59]

H =
∑

j

[c†
j R0cj + c†

j Rxcj+δx + c†
j Rycj+δy + H.c.],

R0 =
(

m0 − 4m1

a2

)
τx + M · σ, Rx = m1

a2
τx + ivF

2a
τzσy,

Ry = m1

a2
τx − ivF

2a
τzσx, (3)

where cj = [cjt↑, cjt↓, cjb↑, cjb↓]T is the annihilation operator
at site j = (x, y). In the calculation, we set the lattice con-
stant a = 0.6 nm, the Fermi velocity vF = 0.222 eVnm, the
parabolic term m0 = 0.026 eV and m1 = 0.137 eVnm2, and
the magnitude of magnetization M = 0.048 eV [52,60].

B. Linear response regime

In the linear response regime, the electric current IC and
the heat current IQ are expanded to the linear order in �T =
TL − TR and �V = VL − VR [21,61,62],(

IC
IQ

)
=

(
e2L0 −eL1

−eL1 L2

)(
�V

�T /T

)
. (4)

The elements of the Onsager matrix in Eq. (4) are fully deter-
mined by the transmission coefficient T (E ) as follows:

Li = 1

h

∫
dE (E − EF )i

(
− ∂ f

∂E

)
T (E ), i = 0, 1, 2, (5)

where f (E ) = [e(E−EF )/kBT + 1]
−1

is the Fermi distribution
function. We obtain the transmission coefficient T (E ) using
the nonequilibrium Green’s function method [63],

T (E ) = Tr[�LGr�RGa], (6)

where �L/R(E ) = i[�r
L/R(E ) − �a

L/R(E )] and the Green’s

function Gr (E ) = [Ga]† = [EI − Hcen − ∑
α �r

α]−1 with
Hcen being the Hamiltonian of the center scattering region
and the self-energy �

r/a
L/R stemming from the coupling with

the left/right lead [62–64].
The linear electric conductance G, the Seebeck coefficients

Sc, and the electric thermal conductance κel are obtained from
Eq. (4) [21,61,62]

G = lim
�V →0

IC
�V

∣∣∣
�T =0

= e2L0(T ), (7)

Sc = − lim
�T →0

�V

�T

∣∣∣∣
IC=0

= − 1

eT
L1(T )

L0(T )
, (8)

κel = − lim
�T →0

IQ

�T

∣∣∣
IC=0

= 1

T

[
L2(T ) − L2

1 (T )

L0(T )

]
. (9)

The ratio between the electric thermal conductance κel and the
electric conductance G denotes the Lorenz number L [65],

L = κel

GT = 1

e2T 2
· L0L2 − L2

1

L2
0

. (10)

In addition, the thermoelectric figure of merit ZT is used as a
dimensionless parameter in the literature of heat transport. Ne-
glecting the lattice thermal conductance κph due to κph � κel

at the low temperature, ZT can be obtained straightforwardly,

ZT = GSc
2T /κel = Sc

2/L = L2
1

L0L2−L2
1
.

In addition, the local transport current from sites i to j for
the incident electron from the left MTI lead with the energy E
is [59,66–68]

Jij = −2e2

h
ImTr

[
HijGL

ji(E )
]
, (11)

with GL(E ) = Gr (E )�L(E )Ga(E ). The local occupation
number at the site j is given by Nj = 〈c†

j cj〉 = −i
∫

Tr
G<

jj (E )dE= ∫
Tr{[Gr (�L fL + �R fR)Ga]jj}dE = ∫

nj(E )dE ,
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where we applied the Keldysh equation G<(E ) =
Gr (E )[i�L fL + i�R fR]Ga(E ) [66,69]. Then we get the
expression of the local occupation number nL

j (E ) for incident
electron from the left MTI lead with the energy E :

nL
j (E ) = Tr{[Gr (E )
L(E )Ga(E )]jj} = Tr

{
GL

jj(E )
}
. (12)

C. Nonlinear regime

In the nonlinear regime, the temperature gradient �T and
bias �V are finite, with �T = TL − TR and �V = (μL −
μR)/e. Here the temperature gradient �T is set larger than

0. The electric current from the left lead to the right lead is
given by the expression [7–9,65]

IC = e

h

∫
dET (E )[ fL(μL, TL; E ) − fR(μR, TR; E )], (13)

where fα (μα, Tα; E ) = [e(E−μα )/kBTα + 1]
−1

is the Fermi
function of the α lead with the chemical potential μα at tem-
perature Tα (α = L, R). The expression for the heat current in
the α lead can be derived by the first law of thermodynamics

IQ
α = 1

h

∫
dE (E − μα )T (E )[ fL(μL, TL; E ) − fR(μR, TR; E )]. (14)

Hereafter, we regard this device as a power generator with the power output P,

P = −IC�V = 1

h
(μR − μL )

∫
dET (E )[ fL(μL, TL; E ) − fR(μR, TR; E )]. (15)

We set μR to be higher than μL satisfying P > 0 in the heat engine. The efficiency of the power generator is given by the
generated electric power divided by the heat lost from the hot lead [7–9,65]

η = P

IQ
L

= (μR − μL )
∫

dET (E )[ fL(μL, TL; E ) − fR(μR, TR; E )∫
dE (E − μL )T (E )[ fL(μL, TL; E ) − fR(μR, TR; E )]

. (16)

In the calculation, we fix the temperatures TL/R and the chemi-
cal potential μL, and change μR, so that the power-generation
efficiency η reaches the maximum value. Then considering
that the maximum power-generation efficiency of a ther-
moelectric device is related to the dimensionless figure of
merit [2],

η = TL − TR

TL
·

√
1 + ZTM − 1√

1 + ZTM + TR
TL

, (17)

the equivalent thermoelectric figure of merit is derived in
terms of η,

ZTM =
[

(TL − TR) + ηTR

(TL − TR) − ηTL

]2

− 1. (18)

We set the temperature of the right lead to be the same
as the background temperature TR = T and the temperature
of the left lead to be TL = T + �T . Thus, Eqs. (17) and
(18) lead to the maximum power-generation efficiency η =

�T
T +�T

√
1+ZTM−1√

1+ZTM+T /(T +�T )
and the equivalent figure of merit

ZTM = [ �T +ηT
�T −η(T +�T ) ]

2 − 1.

III. THERMOELECTRIC PROPERTIES IN
LINEAR RESPONSE

In this section, we study the thermoelectric transport prop-
erty of the MTIs nanoribbon in the linear regime, i.e., the
temperature gradient �T → 0. In the numerical calculation,
we set the width of the nanoribbon as W = 90 nm and the
thickness of the domain wall as δ = 1.5 nm throughout this
paper unless otherwise mentioned, and then focus on how
the configuration of the domain wall labeled by the azimuth
angle φ affects the transport. Figure 2 shows the transmission

coefficient T as a function of the incident energy E with
different configurations of domain walls. Here, the azimuthal
angle picks values of φ = 0, π/12, π/6, π/4, π/3, 5π/12,
and π/2.

It can be seen from the figure that when the incident energy
E is high in the conduction band or the valence band of
the left/right MTIs (i.e., E � 0.025 eV or E � −0.025 eV
with the bulk gap �b of the MTIs being about 0.025 eV)
[52], the transmission coefficients for all azimuth angles φ

are relatively large, but the difference between them is small.
For the incident energy within the bulk gap, −�b � E � �b,
the chiral edge states dominate the transport processes, the
transmission coefficients are less than 1 regardless of φ be-
cause there is only one incident edge mode in the left MTIs

FIG. 2. The transmission coefficient T of the device in Fig. 1
as a function of incident energy E for several φ with width of
system W = 90 nm, in which the x-axis is the transport direction.
The insets in panels are the zoomed-in figures of the mixed curves
in the corresponding main figure. The vertical dotted lines show the
bulk gap �b and −�b.
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FIG. 3. The Lorenz number L, the Seebeck coefficients Sc, and the thermoelectric figure of merit ZT as functions of Fermi energy EF for
several φ with temperature T = 20 K in (a1), (b1), (c1) and T = 60 K in (a2), (b2), (c2). The width of system W is 90 nm and the domain
wall thickness δ is 1.5 nm.

lead, see Fig. 1(a). In addition, in the low-energy case, the
transport behavior of chiral edge states at the domain wall
of MTIs strongly depends on the configuration of domain
walls [52], so we can see that transmission coefficients show a
huge difference among different configurations of the domain
wall [see the zoom-in figure of Fig. 2]. When the incident
electron energy is close to 0, the transmission coefficients with
φ = π/4 and π/2 are very small, approximately in the order
of 10−3, which is much smaller than those with other values of
φ, so a large quasitransport gap will be formed when φ = π/4
and π/2. Generally speaking, the transport gap can result in a
large Sc and ZT [62,70–72] because of the sudden jump of the
transmission coefficient in the vicinity of the gap edge, which
is very beneficial for thermoelectric transport. In addition, the
transmission coefficient T (E ) and the transport gap is easily
adjusted by varying φ, which means that we can also tune Sc

and ZT . Moreover, we find that for all the azimuthal angle φ,
the transmission coefficient T is symmetric about φ = π/2,
i.e., T (φ) = T (π − φ).

Figure 3 displays the Lorenz number L, the Seebeck coef-
ficients Sc, and the thermoelectric figure of merit ZT as func-
tions of the Fermi energy EF . When EF is deep in the conduc-
tion or valence band of the left/right MTIs lead, the bulk states
dominate the transport process, the Lorenz number L is almost
equal (kBπ )2

3e2 , and the Wiedemann-Franz law well holds, result-
ing in very small Seebeck coefficient and ZT . On the other
hand, when EF locates in the gap, the electron propagates
along the chiral edge states, the Wiedemann-Franz law is bro-
ken and the Lorenz number L, |SC |, and ZT can be very large.
At low temperature (e.g., T = 20 K), thermoelectric coeffi-

cients (L, Sc, and ZT ) vary in the shape of curves with differ-
ent peak values for different configurations of domain walls.
This indicates that the configurations of domain walls can
regulate the thermoelectric transport performance. When φ =
π/4 and π/2, the values of L, Sc, and ZT are larger than those
of other azimuthal angles φ [see Figs. 3(a1), 3(b1), and 3(c1)].
For T = 60 K, L, Sc, and ZT share similar trends but present
different peaks values. For the Lorenz number L, the largest
peak appears at EF = 0. Sc and ZT have the highest peak near
EF = 0. The comparison among Figs. 3(a2), 3(b2), and 3(c2)
shows the largest thermoelectric coefficients appear when the
azimuthal angle φ = π/4 because there is a large transport
gap at φ = π/4. When EF crosses the transport gap, the
transmission coefficient T abruptly jumps from almost zero
to a finite value (see Fig. 2), so Sc and ZT show a large peak.

Next, we focus on how the temperature affects the thermo-
electric transport of three specific configurations of domain
walls in detail. Figure 4 shows the Lorenz number L, the See-
beck coefficient Sc, and the thermoelectric figure of merit ZT
versus Fermi energy EF at different temperatures. The Lorenz
number L is an even function of EF with L(−EF ) = L(EF ).
L shows a large peak near EF = 0 of which the value is
depended on the temperature and the azimuth angle. The peak
of L with φ = π/4 is sharper and higher than that with φ = 0
or π/2 but the half-high width of φ = 0 or π/2 is definitely
larger than that of φ = π/4. Figure 4(a2) shows the largest L
at temperature T = 60 K. The temperature also influences Sc

and ZT . For |Sc| and ZT , two large peaks appear symmetri-
cally on both sides of the Fermi energy EF = 0. Sc is an odd
function of the Fermi energy EF with Sc(−EF ) = −Sc(EF ).
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FIG. 4. The Lorenz number L, the Seebeck coefficients Sc, and ZT versus Fermi energy EF for different temperatures and for the Néel
wall (φ = 0) in (a1), (b1), (c1); φ = π/4 domain wall in (a2), (b2), (c2); and Bloch wall (φ = π/2) in (a3), (b3), (c3). The other unmentioned
parameters are the same as in Fig. 2.

ZT is an even function of EF with ZT (−EF ) = ZT (EF ). For
many thermoelectric transport systems, ZT decreases rapidly
as the temperature increases and picks a large value only
when the temperature is very low (maybe several Kelvins)
[15,62,73,74]. But for the present system, with the increase
of T , ZT first increases and then decreases, leading to the
largest value at T = 60 K, ZT ≈ 3. Considering that the op-
timal ZT is obtained about at T = 60 K, the current device is
possibly suitable for space probes or in some low temperature
environments.

Given that impurities and disorders exist inevitably in real
materials, the thermoelectric transport may be affected by
the impurity scattering mechanism. So below we study the
effect of the disorder on the thermoelectric transport. Based
on the MTI nanoribbon described in Sec. II, we introduce the
Anderson-type disorder in the central region via adding a term
Diσ0τ0 to the on-site energy R0 in Eq. (3). Di is uniformly
distributed in the interval [−D/2, D/2] with the disorder
strength D. The disorder of possessive points is random and
independent of each other. In the numerical calculation, the
width of the disordered region is the same as the width of
nanoribbon, and its length is chosen as 48 nm to completely
cover the domain wall. With each value of disorder strength D,
the transmission coefficient T and thermoelectric coefficients
(Sc, ZT ) are averaged up to 40 configurations.

Figure 5 shows the Seebeck coefficients Sc and the ther-
moelectric figure of merit ZT with different disorder strength.
For three configurations of domain walls, φ = 0, π/4, and
π/2, the additional disorder hardly changes the transmission
coefficients even if the disorder strength is much larger than
the bulk gap, because of the robustness of the MTIs. Fig-
ures 5(a) and 5(b) show that Sc and ZT are robust against
disorder also. For Sc, disorder does not affect the changing
trend of the curves. With the Néel-type domain wall (φ = 0),
Sc is robust against moderate disorder. However, Sc is very
robust against strong disorder in φ = π/4 domain wall and
Bloch-type domain wall (φ = π/2). As to ZT , in the Néel-
type domain wall and φ = π/4 domain wall, with the increase
of the disorder strength D, the heights of the peaks of Sc

and ZT are gradually reduced. The position of peaks slightly
shifts as well. The peak value of ZT maintains its amount in
the Bloch-type domain wall for all disorder strength D. The
peak with the azimuthal angle φ = π/4 preserves its value
for disorder of the moderate strength (D = 0.05 and 0.01)
and slightly reduces at strong disorder (D = 0.15) but is still
larger than 2. The robustness is crucial for the experiment and
further application. In addition, the symmetrical properties,
Sc(−EF ) = −Sc(EF ) and ZT (−EF ) = ZT (EF ), are slightly
destroyed by the disorder, but Sc(−EF ) [ZT (−EF )] still ap-
proximatively equals −Sc(EF ) [ZT (EF )].
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FIG. 5. (a) Sc vs EF and (b) ZT vs EF at the different disorder strength D with temperature T = 60 K for Néel wall (φ = 0) in (a1, b1),
φ = π/4 domain wall in (a2, b2), and Bloch wall (φ = π/2) in (a3, b3). The other unmentioned parameters are the same as in Fig. 2.

Let us study how the width of the nanoribbon W and
the thickness of the domain wall δ affect the thermoelectric
transport. Figures 6(a), 6(b), and 6(c) show thermoelectri-
cal figure of merit ZT as functions of Fermi energy EF for
several widths W with the azimuthal angle φ = 0, π/4, and
π/2 at temperature T = 60 K. The comparative study to find
that L, Sc, and ZT are closely related to the width W . The
thermoelectric transport performance of the Néel-type wall is
more dependent on the nanoribbon’s width W than that of the
Bloch-type wall. For the azimuthal angle φ = 0 or π/4 [see
Figs. 6(a) and 6(b)], when W = 90 nm, ZT reach their largest
values with δ = 1.5 nm. For φ = π/2 [see Fig. 6(c)], with the

FIG. 6. ZT as functions of Fermi energy EF for several widths W
with temperature T = 60 K, and Néel wall (φ = 0) in (a), φ = π/4
domain wall in (b), and Bloch wall (φ = π/2) in (c). Panel (d) plots
the optimized ZT vs. Fermi energy EF for several widths W with
taking a specific azimuthal angle φ and temperature T . The domain
wall thickness δ = 1.5 nm.

increase of the width W , ZT slightly increases, and the width
W = 120 nm, the ZT is maximum.

In fact, for the different width of nanoribbon W , we can
optimize the ZT value by changing the azimuthal angle φ and
temperature T . In the calculation of finding the optimized ZT ,
for a given width of nanoribbon W , the azimuthal angle φ

changes from 0, 0.1, 0.2, . . . , 1.4 to π/2, and the temperature
T takes 20, 25, 30, ..., 120 K. Figure 6(d) shows the optimized
ZT as functions of Fermi energy EF for several widths W
with taking a specific azimuthal angle and temperature. For
W = 48, 75, 90, 105, and 120 nm, the optimized ZT corre-
sponds to the azimuthal angle φ = 0.9, 0.6, 0.8, 0.4, and 1.0
and temperature T = 70, 55, 60, 40, and 65 K, respectively.
This means that for a given device width, we can always allow
the setup to be in high thermoelectric performance by adjust-
ing the configuration of the domain wall and the background
temperature.

Figures 7(a), 7(b), and 7(c) show thermoelectrical figure of
merit ZT as functions of Fermi energy EF for several domain
wall thicknesses δ with the azimuth angle φ = 0, π/4, and
π/2 at temperature T = 60 K. L, Sc, and ZT also strongly
depend on the thickness of the domain wall δ. In particular, for
the Néel-type wall (φ = 0), the thermoelectrical coefficient is
very sensitive to the domain wall thicknesses δ. With fixed
W = 90 nm, the thermoelectrical figure of merit ZT is the
largest at δ = 1.5 nm with the configuration of domain wall
φ = 0 or π/4 [see Figs. 7(a) and 7(b)]. For φ = π/2 (the
Bloch-type wall) [see Fig. 7(c)], ZT evidently increases with
δ decreases. So the ZT is maximum when δ = 0.5 nm.

Figure 7(d) shows the optimized ZT as functions of Fermi
energy EF for several domain wall thicknesses δ with tak-
ing a specific azimuthal angle and temperature. For a given
thickness of domain wall δ, the azimuthal angle φ varies
from 0, 0.1, 0.2, . . . , 1.4 to π/2, and the temperature T takes
20, 25, 30,. . ., 120 K to find the optimized ZT . Calculated
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FIG. 7. ZT as functions of Fermi energy EF for several domain
wall thicknesses δ with temperature T = 60 K, and Néel wall (φ =
0) in (a), φ = π/4 domain wall in (b), and Bloch wall (φ = π/2) in
(c). Panel (d) plots the optimized ZT vs. Fermi energy EF for several
domain wall thicknesses δ with taking a specific azimuthal angle φ

and temperature T . The width of the device W = 90 nm.

results are as follows: when δ = 0.5, 1.0, 1.5, 2.0, and 2.5 nm,
the optimized ZT corresponds to the azimuthal angle φ=0.7,
0.5, 0.8, 0.4, and 0.6 and the temperature T = 55, 60, 60,
40, and 55 K, respectively. The results show that no matter
what the domain wall thickness is, we can get a large ZT by
adjusting the configuration of the domain wall (i.e., φ). With
the decrease of the domain wall thickness, the optimized ZT
tends to increase, although it is not monotonically increasing.
For the domain wall thickness δ = 0.5 nm, the optimized ZT
exceeds 4.

In short, we found that these thermoelectric coefficients
(the Lorenz number L, the Seebeck coefficient Sc, and ZT )
strongly depend on the configuration of the domain wall φ,
the thickness of the domain wall δ, and the width of the
nanoribbon W . This gives us a way to get a large ZT by tuning
the parameters φ, δ, and W . In addition, the results also show
that the Néel-type wall is more dependent on δ and W than the
Bloch-type wall. In the following, we explain these results by
using the chiral edge states and the interfacial states.

The MTI has a bulk gap and a pair of gapless chiral edge
states. For example, for the parameters of Fig. 2, the gap �b

is about 0.025 eV. To show the chiral edge states, we con-
sider a perfect MTI nanoribbon without the domain wall. The
nanoribbon is infinite in the x direction with the width W in the
y direction, as shown in Fig. 8(a1). Its Hamiltonian is the same
as Eq. (2), but the magnetic moment M(x) = (0, 0, M ) is
independent of the coordinate x. This nanoribbon is equivalent
to the left MTI lead. Figure 8(a2) shows the band structure,
which consists of a series of bulk states and two chiral edge
states [52]. The chiral edge states are gapless and intersect
in the bulk gap. The wave functions |�kx |2 of the chiral edge
states versus the coordinate y for the energy E = 0.015 eV
(in the bulk gap) are shown in Fig. 8(a3). The wave functions
mainly distribute the boundary of the nanoribbon. From the
wave functions and band structure in Figs. 8(a2) and 8(a3),
we can obtain that the chiral edge state at the nanoribbon’s

FIG. 8. (a1) The schematic diagram of MTI nanoribbon without
the domain wall. Here the nanoribbon is infinite in the x direction
with the width W (W = 90 nm) in the y direction. The black lines
with arrows represent the chiral edge states. (a2) The band struc-
ture versus the wave vector kx . (a3) The wave function |�kx |2 as a
functions of site y for the state marked in (a2) with E = 0.015 eV.
(b1) The schematic diagram of MTI nanoribbon with a domain wall.
Here the nanoribbon is infinite in the y direction with the width L
(L = 60.6 nm) in the x direction. The azimuthal angle of domain wall
φ = π/4 and thickness of domain wall δ = 1.5 nm. The black lines
with arrows represent the interfacial states along the domain wall.
(b2) The band structure versus ky. (b3) The wave function |�ky |2 as
a functions of site x for the state marked in (b2) with E = 0.015 eV.
The other unmentioned parameters are the same as in Fig. 2.

upper boundary is along the +x direction and it is along the
−x direction at the lower boundary [see Fig. 8(a1)]. For the
right MTI lead, the chiral edge state transmission directions
are opposite to that of the left MTI lead.

Next, let us study whether there are the interfacial states
along the the domain wall. Consider a perfect MTI nanoribbon
with the domain wall at x = 0. The nanoribbon is infinite in
the y direction with the length L in the x direction, as shown
in Fig. 8(b1). Its Hamiltonian is the same as Eq. (2). From
its band structure as shown in Fig. 8(b2), we can see that
there are four states in the bulk gap. Two of them are the
interfacial states and their wave function mainly distribute in
the vicinity of the domain wall at x = 0, see Fig. 8(b3) [52].
The interfacial states are along the −y direction as shown in
Fig. 8(b1).

Based on the above chiral edge states and interfacial states,
now we analyze the transport and thermoelectric behaviors of
the MTI nanoribbon with a domain wall. When the incident
energy E is within the bulk gap, the transport behavior is
determined by the chiral edge states. Consider an incident
electron from left MTI’s lead, this electron propagates along
the upper chiral edge state. When it reaches the domain wall,
the incident electron is scattered to the two interfacial states S1
and S2, see Fig. 1(a). Then the electron propagates along the
domain wall, until it hits the lower boundary of the nanorib-
bon and is scattered back along the chiral edge state R1 or
goes ahead along the chiral edge state R2 [52]. The black
arrows in Fig. 1(a) show the electron propagation pathway.
Figure 9 show the local transport current distribution (the left
figure) and local occupation distribution (the right figure),
respectively, which clearly exhibit that the incident electron
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FIG. 9. The left figure shows local transport current distribution
Jij and the right figure shows local occupation distribution nL

j (E ) with
the incident energy of the electron E = 0.015 eV, the azimuthal angle
φ = 5π/12, the nanoribbon width W = 90 nm and the thickness of
domain wall δ = 1.5 nm. The other unmentioned parameters are the
same as in Fig. 2.

propagates along the pathway mentioned above, i.e., through
the chiral edge states and the interfacial states.

When the incident energy E is in the bulk gap (−�b <

E < �b), the transmission coefficient T (E ) is determined
by the ejection probability from the outgoing edge state R2,
which depends on the phase difference �ϕ of the two inter-
facial states S1 and S2. The phase difference �ϕ = �kW =
(ky1 − ky2)W with the nanoribbon width W and the wave
vectors ky1 and ky2 of the interfacial states S1 and S2. The
wave vector difference �k = ky1 − ky2 is strongly dependent
on the configuration of domain wall and the domain wall
thickness δ. For the Bloch wall (φ = π/2), the wave vector
difference �k = 0 [52]. �k increases with the decrease of
φ. �k reaches the maximal value for the Néel wall (φ = 0)
[52]. With the increase of the domain wall thickness δ, �k
increases also. So for the incident energy E within the bulk
gap, the transmission coefficient T (E ) is strongly affected by
the nanoribbon width W , the thickness and configuration of
the domain walls (see Fig. 2), so are the electric conductance,
thermal conductance, Seebeck coefficient, and then the ZT .
Therefore, by changing the thickness and configuration of
the domain walls and the nanoribbon width W , we can get
a large ZT . In addition, for the Bloch wall (φ = π/2), the
wave vector difference �k = 0, so the phase difference �ϕ

is independent of the width W , leading to the transmission
coefficient and thermoelectric coefficients of the Bloch wall
being insensitive to the thickness of the domain wall δ and the
nanoribbon width W . On the other hand, when the incident
energy E is deep in the conduction band or the valence band
(e.g., E > 2�b or E < −2�b), the bulk states dominate the
transport processes, then the transmission coefficient T (E ) is
always large and is weakly dependent on the configuration and
thickness of the domain walls, as shown in Fig. 2. As a result,
ZT always is small for E > 2�b and E < −2�b. Because the

transport behavior and the figure of merit ZT in the present
device is dominated by the chiral edge states and the interfa-
cial states, and the contribution of bulk states is small. ZT can
be regulated by the configuration and thickness of the domain
wall, but are independent of the material properties. This is an
advantage of the topological system.

IV. THERMOELECTRIC PROPERTIES
IN NONLINEAR REGIME

In this section, we explore the thermoelectric properties
of the two-terminal MTIs device in the nonlinear regime.
Different from the linear case discussed above, there is a
temperature gradient �T and a finite bias between two MTIs
leads. The temperature of the right MTIs lead TR is the same
as the background temperature T and the temperature of the
left MTIs lead is TL = T + �T . The chemical potentials of
leads are labeled by μL and μR (μR > μL). In the calculation,
we fix μL and find the maximum power-generation efficiency
η by changing μR. The width of the MTIs nanoribbon is set
W = 90 nm and the thickness of the domain wall δ = 1.5 nm,
which are the same as the parameters of linear transport.
Figure 10 shows the efficiency η and the equivalent figure
of merit ZTM as functions of the chemical potential μL for
different temperature gradient �T .

Let us first compare the equivalent figure of merit ZTM

calculated in the nonlinear region with the ZT in the linear
response. In Figs. 10(b1) to 10(b3), the thick black lines
represent ZT as functions of the Fermi energy EF in the linear
response. We can see from the figure that the ZT of the linear
region is completely consistent with the ZTM (see the red lines
in figure) of �T = 0.1 K in the nonlinear region. That is,
when the temperature difference �T tends to 0, the nonlinear
ZTM well returns to the linear ZT , which indicates that our
calculations are reasonable and reliable.

At last, we study the thermoelectric properties in the
nonlinear regime. As seen in Fig. 10, with the increase
of the temperature difference �T from 0.1 to 100K, the
power-generation efficiency η increases regardless of the con-
figurations of domain walls as shown in Figs. 10(a1) to 10(a3),
but the equivalent figure of merit ZTM is not monotonically
dependent on �T . For the Néel-type domain wall (φ = 0)
and the φ = π/4 domain wall, the ZTM increases first and then
slightly decreases with the increase of �T . Here the nonlinear
ZTM can be more than twice the linear ZT [see Figs. 10(b1)
and 10(b2)]. For the Bloch-type domain wall (φ = π/2), the
ZTM slightly decreases first and then increases again with the
increase of �T , see Fig. 10(b3). Moreover, from Figs. 10(a2)
and 10(b2) for the configuration of φ = π/4 domain wall,
the equivalent figure of merit ZTM can be 1.7 and, in partic-
ular, the Carnot power-generation efficiency can reach 26%,
when �T = 60 K. Such a large power-generation efficiency
η shows a promising application of this thermoelectric device.

V. CONCLUSION

In summary, we study the thermoelectric transport of
a two-terminal nanoribbon of the magnetic topological in-
sulator with a domain wall. We explore the role of the
domain wall on the thermoelectric properties in the linear and
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FIG. 10. The efficiency η and the equivalent figure of merit ZTM as a function of the chemical potential μL for different temperature
gradient �T , with the background temperature TR = T = 20 K, and Néel wall (φ = 0) in (a1), (b1); φ = π/4 domain wall in (a2), (b2); and
Bloch wall (φ = π/2) in (a3), (b3). The thick black lines in (b1), (b2), and (b3) are ZT in the linear regime. The other unmentioned parameters
are the same as in Fig. 2.

nonlinear regimes. The Lorenz number L, the Seebeck coef-
ficients Sc, and the thermoelectrical figure of merit ZT are
strongly dependent on the configuration of the domain wall,
labeled by the azimuth angle φ. This means that the ther-
moelectric properties can be easily adjusted by tuning the
configuration of the domain wall. In addition, the thermo-
electric coefficients (Sc, ZT ) are closely related to the width
of the device and the thickness of the domain wall. These
results are well illustrated by using the chiral edge states along
the nanoribbon boundary and the interfacial states along the
domain wall. As to disorder, the transmission coefficient T
is robust against strong disorder, and Sc and ZT are robust
against moderate disorder. In addition, in the nonlinear case,
the high value of the thermoelectric efficiency and the equiva-

lent thermoelectric figure of merit present the potential of this
two-terminal setup to achieve high-performance thermoelec-
tricity.
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