
PHYSICAL REVIEW B 102, 245405 (2020)

Probing the chirality of one-dimensional Majorana edge states around
a two-dimensional nanoflake in a superconductor

Andrzej Ptok ,1,* David J. Alspaugh,2,† Szczepan Głodzik ,3 Aksel Kobiałka ,3
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The interplay between superconductivity, magnetic field, and spin-orbit coupling can lead to the realization of
nontrivial topological phases. Recent experiments have found signatures of such phases in magnetic nanoflakes
formed by nanostructures coupled to a superconducting substrate. These heterostructures comprise a topolog-
ically nontrivial region surrounded by a trivial one due to the finite magnetic exchange field induced by the
magnetic nanoflake. The analysis of the topological phase diagram of such a system shows that a similar phase
separation occurs by tuning the chemical potential of the nanoflake. In this paper, we study such a possibility
in detail, analyzing the spatial extent of the edge modes circulating around the nanoflake and discussing some
practical implementations. We also show how the chirality of Majorana edge states can be probed using scanning
tunneling spectroscopy with a double-tip setup.
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I. INTRODUCTION

The quest for the realization of Majorana zero modes
(MZMs), driven by the pursuit of both fundamental physics
and their potential application to fault-tolerant topological
quantum computation [1–5], is steering active research in
engineering p-wave superconductivity. Non-Abelian braiding
is an essential step towards topological quantum comput-
ing, though it has not yet been experimentally achieved with
MZMs. Due to the localized nature of MZMs, their braiding
will necessarily involve both coupling and manipulation pro-
cesses.

However, it has been suggested that non-Abelian braid-
ing is not only restricted to MZMs but can also be
implemented with one-dimensional (1D) chiral Majorana
fermions [6]. Chiral Majorana fermions can manifest them-
selves as quasiparticle edge states of a two-dimensional (2D)
topological p-wave superconductor [4,7]. Signatures of 1D
chiral Majorana quasiparticles were recently observed in 2D
heterostructures consisting of a quantum anomalous Hall in-
sulator bar in contact with a superconductor [8]. Additionally,
recent progress in atomic-scale engineering [9–13] is opening
up new perspectives for the practical implementation of chiral
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Majorana fermions by spatially building nontrivial topological
phases separated from trivial ones. Recent progress includes
Co islands grown on a Si substrate covered by a monolayer of
Pb [9] and nanoscale Fe islands of monoatomic height on a Re
surface [14]. Due to the nontrivial topological phase transition
resulting from a gap closure, in-gap edge states surrounding
the topological superconducting (SC) domain are observed. In
both experiments, these in-gap states are strongly delocalized
around the islands and have been interpreted as signatures of
chiral Majorana fermions.

In 2D superconductors with Rashba spin-orbit coupling
(SOC), the transition to a nontrivial phase can be induced by
an external Zeeman magnetic field [15–17]. The boundary be-
tween the trivial and nontrivial topological phases is given by
h2

c = μ2 + �2 [see Fig. 1(a)], where hc stands for the critical
Zeeman field for given values of the doping μ and the SC gap
�. In the aforementioned experimental results, the Zeeman
magnetic energy arises from the presence of magnetic dopants
interacting with the substrate, while the SOC and the SC gap
are intrinsic to the subsystem. Looking at the phase diagram
presented in Fig. 1(a), one observes that a line which connects
points A and B in the (μ, h) plane could correspond to an
inhomogeneous system in real space, where a nonmagnetic
trivial domain (point A) surrounds or borders a topological
magnetic domain (point B).

In this paper, we instead choose to explore an alternative
route. We consider an inhomogeneous system but with a con-
stant magnetic Zeeman energy, which would reside on the
C-D line in Fig. 1(a). The transition to the topological domain
occurs due to a change in the chemical potential μ. Such a
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FIG. 1. (a) Schematic representation of the topological phase
diagram as a function of the chemical potential μ and magnetic
Zeeman energy h. (b) Schematic view of the studied system. A
superconducting (SC) layer (yellow transparent atoms) is deposited
on a magnetic substrate (gray atoms). The nanoflake is formed
by nonmagnetic atoms located at random sites either between the
substrate and the SC layer as shown or above the SC layer. For a
constant SC gap �, the boundary between the topologically trivial
(blue region) and nontrivial (yellow region) phases is given by a
parabola, h2

c = �2 + μ2 [orange line in (a)].

system could be constructed experimentally in many different
ways: one option would be to substitute the magnetic atoms
in the Co island [9] by nonmagnetic ones and add a magnetic
field parallel to the SC Pb monolayer [Fig. 1(b)]. Another
promising approach is to use the versatility offered by 2D van
der Waals heterostructures [18]. A possible way to generate a
homogeneous Zeeman exchange energy in the proximity of
a superconductor could be engineered by stacking recently
synthesized 2D magnetic materials [19,20] with a transition
metal dichalcogenide superconductor such as NbSe2. A non-
magnetic island can be obtained by evaporating some alkaline
adatoms to enforce charge transfer.

This paper is organized as follows: In Sec. II, we first
start with a circular geometry for the nanoflake and derive
the dispersive chiral Majorana edge states analytically in the
continuum limit. We also discuss the spatial extent of the
chiral Majorana modes in the transverse direction. In Sec. III
we compare our results obtained in the continuum limit to
exact diagonalization of a tight-binding model on a lattice. In
Sec. IV, we propose and study a setup in order to measure the
chirality of the Majorana edge states using two ferromagnetic
tips. Finally, we present a summary of our results and give
conclusions in Sec. V.

FIG. 2. Schematic representation of the discussed system in
the thermodynamic limit with a circular nanoflake deposited on a
substrate.

II. NANOFLAKE WITH CIRCULAR GEOMETRY

We begin by considering a nanoflake with circular sym-
metry as depicted in Fig. 2. For simplification and without
loss of generality, we can also assume a smooth boundary of
the nanoflake. Keeping in mind the circular symmetry, the
Hamiltonian will commute with the zth component of the
total angular momentum operator Jz ≡ Lz + Sz. We may then
find the energies of the bound state wave functions localized
at the edge of the nanoflake in terms of the mJ quantum
numbers. This method allows us to determine the existence
of chiral subgap states within our system and has successfully
been used in the studies of other 2D systems with circular
symmetry such as graphene [21].

Thus, the real-space normal state Hamiltonian has the form

H (r,∇) =
(

−∇2

2m
− μ(r)

)
σ0 + α(σ × −i∇)z + hσz,

where σi (for i = {0, x, y, z}) are the Pauli matrices acting in
spin space. Here, the system is 2D with r ≡ (x, y), and the
chemical potential is given by

μ(r) =
{
μ1 r < R0,

μ2 r � R0.
(2)

We may also define the discontinuity δμ = μ2 − μ1 at the
boundary (see Fig. 2). In other words, δμ corresponds to
the spatial variation of the chemical potential induced by the
nanoflake. The Bogoliubov–de Gennes (BdG) Hamiltonian
may then be expressed as

H = 1

2

∫
dr �†(r)

(
H (r,∇) iσy�

−iσy� −HT (r,−∇)

)
�(r), (3)

where �(r) ≡ (ψ↑(r), ψ↓(r), ψ†
↑(r), ψ†

↓(r))T is the Nambu
spinor, with ψσ (r) being electron field operators which de-
stroy an electron with spin σ at location r.

Due to the circular symmetry of the nanoflake [or, more
precisely, the scalar chemical potential μ(r) = μ(r)], the
BdG Hamiltonian commutes with the zth component of the
total angular momentum operator Jz = Lz + Sz. It follows
that the Hamiltonian and Jz share the same eigenstates. The
eigenstates of Jz, with the half-integer eigenvalues mJ , are
given by

ϕmJ =

⎛
⎜⎜⎝

umJ ↑(r) ei(mJ−1/2)θ

umJ ↓(r) ei(mJ+1/2)θ

vmJ↑(r) ei(mJ+1/2)θ

vmJ↓(r) ei(mJ−1/2)θ

⎞
⎟⎟⎠. (4)

To focus on states with small total angular momenta, we take a
low-energy approximation and neglect the kinetic energy term
in the Hamiltonian [22]. By writing the umJσ (r) and vmJσ (r)
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functions in terms of the modified Bessel functions of the first
and second kinds, we may then solve for the bound state wave
functions localized at r = R0. The details of this approach can
be found in the Supplemental Material (SM) [23], and the

resulting wave functions have the form

ϕmJ =
{
ϕmJ 1 r < R0,

ϕmJ 2 r � R0,
(5)

where

ϕmJ 1 =
∑
η=±

NmJ 1η

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

amJ 1ηI
mJ− 1

2
(kmJ 1ηr)ei(mJ − 1

2 )θ

bmJ 1ηI
mJ+ 1

2
(kmJ 1ηr)ei(mJ + 1

2 )θ

cmJ 1ηI
mJ+ 1

2
(kmJ 1ηr)ei(mJ + 1

2 )θ

I
mJ− 1

2
(kmJ 1ηr)ei(mJ − 1

2 )θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

and

ϕmJ 2 =
∑
η=±

NmJ 2η

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

amJ 2ηei(mJ − 1
2 )πK

mJ − 1
2

(kmJ 2ηr)ei(mJ − 1
2 )θ

bmJ 2ηei(mJ + 1
2 )πK

mJ + 1
2

(kmJ 2ηr)ei(mJ + 1
2 )θ

cmJ 2ηei(mJ + 1
2 )πK

mJ + 1
2

(kmJ 2ηr)ei(mJ + 1
2 )θ

ei(mJ − 1
2 )πK

mJ − 1
2

(kmJ 2ηr)ei(mJ − 1
2 )θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7)

Here, I (z) and K (z) are the modified Bessel functions of the first and second kinds, respectively. The a, b, and c parameters along
with the normalizations are derived within the SM [23], while the radial momenta which control the spatial extent of the bound
states wave functions are given by

kmJ jη = 1

α

√
h2 − E2

mJ
+ �2 − μ2

j + 2η

√
E2

mJ
μ2

j + �2(h − μ j )(h + μ j ), (8)

where j = 1, 2 and η = ±. For each of the ϕmJ bound states
localized at r = R0, the total radial spatial extent ξmJ of the
wave functions are thus determined by

ξmJ = max
{
k−1

mJ 1+, k−1
mJ 1−, k−1

mJ 2+, k−1
mJ 2−

}
. (9)

The energy spectrum of these bound states vs the mJ quan-
tum numbers is presented in Fig. 3, while the spatial profile
of the wave functions is given in Fig. 4 for two different char-

FIG. 3. Spectrum of the in-gap dispersive states as a function
of the total angular momentum quantum number mJ . Results are
presented for two different sets of parameters: (a) μ1 = 0.2 meV,
μ2 = 0.4 meV, � = 0.3 meV and (b) μ1 = 0.1 meV, μ2 = 0.2 meV,
� = 0.2 meV. We take R0 = 10 nm and α = 0.25 meV nm.

acteristic sets of parameters. The number of in-gap states is
quantized due to the finite perimeter of the nanoflake, and their
energy spacing depends on intrinsic parameters. In the first set
of parameters, we find eight in-gap states, while we have four
in-gap states in the second set. We choose the strength of the
Zeeman field such that the topological gap,

�top = ∣∣h −
√

�2 + μ2
∣∣, (10)

FIG. 4. Localization of the in-gap bound states around the edge
of the nanoflake for different values of the total angular momentum
mJ . (a) and (b) correspond to the same sets of parameter values as
detailed in Fig. 3.
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is equal inside and outside the nanoflake. From our first set
of data we obtain �top = 0.070 meV, while for our second
set we obtain �top = 0.0296 meV. The existence of only one
branch of states in the topological gap signals that they are
chiral (here left-handed). This in turn supports the hypothesis
of a phase separation in space with a chiral Majorana edge
state circulating around the nanoflake.

We also note that these dispersive states are not perfectly
linear but instead exhibit a slightly cubic behavior. Comparing
both sets of parameters, we see that the larger the discontinuity
|δμ| = |μ1 − μ2| is, the more localized the edge states are.
This behavior is expected; indeed, the in-gap Majorana states
are pinned at the domain wall, which is controlled by the
spatial variation of the chemical potential.

III. TIGHT-BINDING FORMULATION

In order to confirm our calculations performed in the
continuum limit and to go beyond the circular symmetry as-
sumption for a nanoflake, we have also performed numerical
calculations on a lattice based on a tight-binding description.
Our system can be described by the following tight-binding
Hamiltonian:

H = Hkin + HSO + Hprox + Hflake. (11)

The first term corresponds to a free particle on a 2D square
lattice,

Hkin =
∑
i jσ

[−t + (4t − μ − σh)δi j] c†
iσ c jσ . (12)

Here, t is the hopping integral between nearest-neighbor sites
[24], μ is the chemical potential (calculated from the bottom
of the band), and h can be regarded either as a genuine Zeeman
energy or as a magnetic exchange energy depending on the
situation under consideration. In all cases, we treat it as an
effective magnetic field in what follows. The second term
describes the in-plane SOC,

HSO = −iα
∑
i jσσ ′

c†
i+d jσ

[(d j × σ̂) · ẑ]
σσ ′ciσ ′ , (13)

where vectors d i ∈ {±x̂,±ŷ} stand for the locations of the
neighbors of the ith site, while σ̂ = (σx, σy, σz ) is the vector
with the Pauli matrices being its components. A SC gap can
be induced in the layer through the proximity effect—this
process is described through the third term by the BCS-like
form

Hprox = �
∑

i

(c†
i↑c†

i↓ + H.c.). (14)

The last term in Eq. (10) denotes the influence of the
nanoflake at the particle distribution,

Hflake = −
∑

i

Vic
†
iσ ciσ . (15)

We assume that every atom comprising the nanoflake
changes the energy levels of the rest of the sites; that
is, we assume a long-range impurity potential given by
Vi = V0

∑
m exp (−Rmi/λ), where the summation is carried

out over all adatoms in a given configuration V [25]. Here,

λ denotes the characteristic length of decay of the impurity
potential.

The Hamiltonian H can be diagonalized by the unitary
transformation,

ciσ =
∑

n

(uinσ γn − σv∗
inσ γ †

n ), (16)

which leads to BdG equations [26] of the form

En�in =
∑

j

Hi j� jn, (17)

with eigenvectors �in = (uin↑, vin↓, uin↓, vin↑)T . Here,

Hi j =

⎛
⎜⎜⎜⎝

Hi j↑ Di j S↑↓
i j 0

D∗
i j −H∗

i j↓ 0 S↓↑
i j

S↓↑
i j 0 Hi j↓ Di j

0 S↑↓
i j D∗

i j −H∗
i j↑

⎞
⎟⎟⎟⎠ (18)

is the Hamiltonian in matrix form, with matrix ele-
ments Hi jσ = −t

∑
j δ〈i, j〉 + (4t − μ − σh − Vi )δi j as the ki-

netic term, Di j = �δi j describing the SC correlations, and
Sσσ ′

i j = −iα
∑

j [(d j × σ̂ ) · ẑ]
σσ ′δ〈i, j〉 standing for the matrix

representation of the spin-orbit coupling. More details of this
method can be found, e.g., in Ref. [27].

A. Numerical results

We report the calculations performed using an
Nx × Ny = 59 × 59 square lattice with periodic boundary
conditions. Omitting generality, in the calculations presented
in this section we use a nanoflake with a circular shape and
a radius R0 = 15.1, which covers about 20% of the total
area. We present results for a nanoflake characterized by
λ = 1 and V0/t = −0.06. In subsequent calculations, we take
α/t = 0.15, �/t = 0.3, and μ/t = 0.4. If not mentioned
explicitly in the text, the value of the magnetic Zeeman field
h was chosen so that the boundary between the trivial and
nontrivial phases remains in the center of the artificial domain
wall (typically, h/t � 0.4).

1. Density of states

From the solutions of the BdG equations, we first calculate
the local density of states (LDOS) [28],

ρi(ω) =
∑
σn

[|uinσ |2δ(ω − En) + |vinσ |2δ(ω + En)], (19)

where we replace the Dirac function δ(ω) by a Lorentzian,
δ(ω)= ζ/[π (ω2 + ζ 2)], with a small broadening ζ = 0.003t .
Figure 5 shows an example of the LDOS for a chosen path
(along the nanoflake with y = 30). The nontrivial domain
is separated from the trivial phase by in-gap states strongly
localized along the edge of the nanoflake (see Fig. 6). The
domain wall is visible in the form of two sets of LDOS
peaks with oscillating intensity near ω/t � 0, which are a
result of the discrete nature of the in-gap state’s spectrum. The
LDOS in our system does not exhibit an s f X -shaped crossing
through the energy gap around the nanoflake edge, in contrast
to the results presented in Refs. [9,29]. Nevertheless, our
results are in agreement with experimental results presented in
Ref. [14]. As a consequence, we do not observe the two-ring
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FIG. 5. Local density of states along the line presented in the inset.

localization like in Refs. [9,29] but a one-ring structure along
the nanoflake boundary like in Ref. [14].

The localization of the in-gap states is shown Fig. 6. As
we can see, the edge states are localized around the nanoflake
at the border between the trivial and topological phases. All
states create localized states with a circular shape with the
same radius (equal approximately to 17), while the radius
of the nanoflake is R0 � 15.1 (shown by the dot-dashed
line). The difference in these results with respect to the ones
discussed in the continuum limit is a consequence of the
smearing of the domain wall given by Vi.

The total density of states (DOS) of the system per site is
given by a summation of the LDOS over the whole 2D space,
i.e., ρ(ω) = 1/N

∑
i ρi(ω). Here, we can separate the sum into

three different terms,∑
i

→
∑

i∈Nanoflake

+
∑

i∈DW

+
∑

i∈Bulk

, (20)

a contribution from the sites belonging to the nanoflake, a
contribution from the domain wall (DW), and a contribution
from the bulk states [see the inset in Fig. 7(b)]. As in
Ref. [30], we can define the functions Ci in order to

FIG. 6. LDOS of several in-gap eigenstates along the center of
the nanoflake (y = 30). The radius R0 = 15.1 is shown by a gray
line (see Fig. 4). The inset shows a spectrum of the system and a
description of the eigenstates (see Fig. 3). Numbers from −5 to 5
enumerate the ten states near the Fermi level. Solid and dashed lines
correspond to negative and positive eigenvalues.

FIG. 7. Partial density of states for different regions: (a) bulk,
(b) nanoflake, and (c) domain wall. Blue dashed lines serve as a guide
to the eye and present the linear continuation of the gap closing.

classify the states in real space. These functions are
equal to 1 when a site i belongs to a given region and
0 otherwise. We assume that the nanoflake (bulk) region
is located in sites where the nanoflake changes (does
not change) the chemical potential significantly, i.e.,
|Vi| < 0.95 max{|Vi|} (|Vi| > 0.05 max{|Vi|}). Other-
wise, we treat the site as a part of the DW region,
i.e., when 0.95 max{|Vi|} � |Vi| � 0.05 max{|Vi|}.
These conditions can be smoothed arbitrarily
without changing the results qualitatively (see
Figs. S6 and S7 in the SM [23]).

We use this recipe to present the partial density of states
(PDOS), which is defined as follows:

ρ̃(ω) =
∑

i

Ci ρi(ω). (21)

The contribution of the bulk (nanoflake), presented in Fig. 7(a)
[Fig. 7(b)], looks like the familiar DOS of a pure 2D Rashba
spin-orbit coupled superconductor, in which the gap closing

245405-5



ANDRZEJ PTOK et al. PHYSICAL REVIEW B 102, 245405 (2020)

is followed by a reopening of the topological gap. Dashed
blue lines serve as a guide to the eye, showing the linear
continuation of the last negative and first positive eigenvalues.
The value of the magnetic field h for which these dashed lines
cross zero energy indicates the phase transition from the trivial
to nontrivial phase.

For effective fields larger than this crossing point, in
both cases we observe a topological gap opening around
ω/t � ±0.1. Contrary to this, the DW PDOS [Fig. 7(c)] re-
sembles a nontrivial 2D system with edges [31]. Between
critical fields for bulk and nanoflake regions (dashed blue
lines crossing the Fermi level), we observe the in-gap states
associated only with the DW, which confirms the existence of
bound states localized along the DW. Additionally, with the
increase of h, the contribution of these states to the total DOS
is shifted from the DW to bulk region (see Fig. S8 in the SM
[23]).

2. Nontrivial topological domains and topological phase diagram

A magnetic field h leads to a closing of the trivial SC gap
and reopening of a new nontrivial topological gap. This occurs
at the critical energy h2

c = μ2 + �2 [15–17] (hc/t � 0.5 for
our choice of parameters). In our system, the value of the
chemical potential varies from site to site i.e., μi = μ + Vi.
This nonhomogeneity can lead to a situation in which the
above condition is met only locally [32–34]. We can therefore
construct a space-dependent indicator [35] that describes the
spatial distribution of the nontrivial topological phase,

χi =
√

(μ + Vi )2 + �2 − h. (22)

Thus, a positive (negative) sign of χi indicates the topologi-
cally trivial (nontrivial) phase. Indeed, from the analysis of χi

under an increase of the magnetic field h (see Fig. S9 in the
SM [23]), we find that the nontrivial phase exists in the system
when χi < 0.

From the above analysis, it follows that the spatial de-
pendence of the χi indicator gives correct information about
the emergence of the nontrivial topological domain inside the
nanoflake. Using this condition, we construct a topological
phase diagram in the two-parameter space defined by the
chemical potential μ and the effective magnetic field h shown
in Fig. 8(a).

First, we recall that the trivial and nontrivial topological
phases are separated by a parabolic boundary h2

c = μ2 + �2

in the homogeneous system. In our system, the nanoflake
introduces a nonhomogeneity in μ to the system; thus, the
boundary splits due to the existence of two regions in space
where topological phases can emerge. As a consequence, the
boundary in the phase diagram evolves into a stripe, whose
width is given by max |Vi|. Thus, in the limit V0 → 0 (a ho-
mogeneous system without any nanoflake), the “stripe” would
narrow down into a line hc(μ), as seen in Fig. 1.

Second, the region of the stripe separating the phases
(dashed lines) coincides with the value of the gap δE , calcu-
lated as the energy difference between the eigenvalues closest
to Fermi level [Fig. 8(b)]. The existence of a nontrivial domain
in the system is a result of the occurrence of in-gap states
with exponentially small eigenenergies (described by δE ).
The deviation from the near-zero value of δE in the central

FIG. 8. Topological phase diagram in the (μ, h) plane: (a) as
obtained from the indicator χi defined in Eq. (21) and (b) the value
of the energy gap δE . Note that the values in the bottom left corner
are very high and exceed the scale of the plot.

part of the “domain region” is a consequence of the finite-size
effect that is pronounced near the topological transition in
lower magnetic fields, similar to the 1D Rashba nanowires.

3. Bond current

When the system has boundaries [31,36] or if artificial bar-
riers are introduced [34,37], in-gap states localize on the edges
of the system. The in-gap states are localized in a collection of
preferable locations, independent of the broadening of domain
wall. These well-localized in-gap states provide a contribution
to the bond current which can be expressed as the local charge
flow and is obtained from the Heisenberg equation [38–40],

ı h̄
∂〈ni〉
∂t

= 〈[H, ni]〉. (23)

The current vector field can be represented as a sum of the
spin-dependent currents, Ii = ∑

iσ Iiσ , where Iiσ = ∂t 〈niσ 〉 can
be expressed by the BdG eigenvectors [40,41].

In Fig. 9, we present the real-space map of the bond cur-
rent. The color of the arrows denotes their magnitude ∝ |Ii|.
Once again, the width of the domain wall (controlled by λ)
is reflected by an observable; however, this time it is through
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FIG. 9. Vector map of the bond current in the described system.
Color corresponds to the absolute value of the current |Ii| (right
scale).

the area in which there is a significant flow of charge (see
Fig. S3 in the SM [23]). These low-energy modes bear a
close resemblance to the surface states of three-dimensional
topological insulators (TIs) [42,43]. Due to the SOC-induced
band inversion and bulk-boundary correspondence, the 2D
surface of a TI hosts metallic states which disperse through the
band gap. Generally, band inversion is a result of the nontrivial
phase transition, but here, “surface states” are limited to the
boundary of the nanoflake, which serves as an edge of the
system. The current vector field presented in Fig. 9 is the sum
of the contributions of the spin-↑ and spin-↓ currents.

Due to the breaking of time reversal symmetry, the spin-↑
component dominates and thus resembles the “quasihelical”
situation described in Ref. [9]. It is worth noting that a mag-
netic impurity or a ferromagnetic island proximity coupled to
a SOC superconductor will exhibit a finite spin polarization,
thus giving rise to persistent currents [38–40] as a result of
the magnetoelectric effect. This type of bond current along
the nanoflake can be observed experimentally, e.g., in the
differential conductance measurements [14,44].

B. Numerical results for irregular nanoflake

In order to go beyond the circular limit discussed in pre-
vious paragraphs, we locate the substituted atoms at random
sites of the lattice as nearest neighbors of an initial atom,
located at the center of the surface. This method results in
a nanoflake with a rugged boundary (see Fig. 1) between the
substituted (blue) and substrate (gray) atoms, which is similar
to experimental setups [9,14]. However, artificial construction
of nanoflakes could be characterized by a more regular shape
too. In practice, in the SM [23], we show that the main prop-
erties of the system do not depend qualitatively on the shape
of the nanoflake. Therefore, all properties described before
remain when the flake becomes irregular.

FIG. 10. Setup of a double-tip experiment probing the chirality
of the edge states. In the presence of the external magnetic field h in
the ↑ � (red) or ↓ ⊗ (blue) direction, the chiral bond current flows
clockwise (blue arrows) or counterclockwise (red arrows) along the
boundary of the system. Thus, the double-tip measurement of nonlo-
cal differential conductance G12 depends on the chirality of the edge
state, i.e., on the direction of the magnetic field and the bond current.

IV. PROPOSAL TO EXPERIMENTALLY MEASURE THE
CHIRALITY USING SCANNING

TUNNELING MICROSCOPY

Our experimental proposal is based on the double-tip mea-
surement technique [45–47]. The in-gap edge states localized
around the nanoflake can give a nonlocal response between
two spatially separated tips, which is schematically shown in
Fig. 10. A similar transconductance technique was success-
fully used to measure an in-gap surface band [48].

We performed the calculation of the local and nonlocal
differential conductance using the KWANT [49] code to numer-
ically obtain the scattering matrix [50–52]:

S =
(

S11 S12

S21 S22

)
, Si j =

(
See

i j Seh
i j

She
i j Shh

i j

)
. (24)

Here, Sαβ
i j is the block of the scattering amplitudes of incident

particles of type β in tip j to particles of type α in tip i. Then,
the differential conductance matrix is given as [53]

Gi j (E ) ≡ ∂Ii

∂Vj
= e2

h

(
T ee

i j − T he
i j − δi jN

e
i

)
, (25)

where Ii is the current entering terminal i from the scattering
region and Vj is the voltage applied to terminal j and Ne

i is the
number of electron modes at energy E in terminal i. Finally,
the energy transmission is

T αβ
i j = Tr

([
Sαβ

i j

]†
Sαβ

i j

)
. (26)

The nonlocal response is constituted by two processes: (i)
a direct electron transfer between the leads and (ii) the crossed
Andreev reflection (CAR) of an electron from one tip into
a hole in the second tip [54,55]. In typical cases, the CAR
contribution dominates the electron transfer [56,57], and such
processes are responsible for the Cooper pair splitter [58].
Here, we show that this technique has a potential application
in measuring the chirality of the edge state. In order to achieve
this goal, we suggest the use of two ferromagnetic tips de-
scribed by the Hamiltonian

Hi
tip =

∑
kσ

(εkσ − σMi )c
†
kσ

ckσ , (27)

where εkσ is the dispersion relation of the free electrons
in the tips, while Mi is the magnetization of the ith tip.

245405-7



ANDRZEJ PTOK et al. PHYSICAL REVIEW B 102, 245405 (2020)

FIG. 11. The local conductances G11 and G22 are shown by blue
and red lines for (a) positive and (b) negative magnetic field h/t =
±0.4. Here, we take two ferromagnetic (FM) tips with M1 = −M2 =
3.0t . The direction of the magnetic field applied to the system is
shown at the top.

We assume that the tips have opposite magnetizations, i.e.,
M1 = −M2. The tips are separated from the plane of the
system by the barrier potential. We assume a system like that
shown schematically in Fig. 10; that is, tips are located exactly
above the nanoflake edge in a nonsymmetric position. As a
result, the distance between the first and second tips differs
when measured clockwise and counterclockwise (along the
edge state channel at the border of the nanoflake).

In our system, we can find the local (G11 and G22) as well
as nonlocal (G12 and G21) differential conductances (Figs. 11
and 12, respectively). The local conductance Gii can be treated
as a probe of the existence of states in the system [59,60]. In
this sense, each state gives a positive signal in Gii, independent
of the direction of the magnetic field h [see the Figs. 11(a)
and 11(b)]. As we can see, in our case we observe several
in-gap states. Due to the use of ferromagnetic tips we observe
nonequality of G11 and G22 (blue and red lines, respectively).

The nonlocal conductances G12 and G21 (Fig. 12) describe
different situations. In order for CAR processes to occur,
electrons from both tips need to have opposite spins to create
a Cooper pair and simultaneously eject a hole from the other
tip. Due to the applied external magnetic field the incident
electrons from the edge bond current would have the same
spin as the electrons from the first tip they encounter. The
electron with opposite spin should come from the other tip
(which has opposite magnetization) and emit a hole with the
same spin to constitute a CAR process. Thanks to this nonlo-

FIG. 12. The same as Fig. 11, but in the case of the nonlocal
conductances G12 and G21, shown by red and blue lines, respectively.
The direction of the magnetic field applied to the system is shown at
the top.

cal phenomenon, we can easily determine the direction of the
edge state propagation as the nonlocal conductance coincides
with the direction of the chiral bond current. Thus, if the sign
of the magnetic field changes, the direction of the edge state
propagation reverts too; G12 becomes G21 due to the spatial
symmetry of the system. However, tips are not perfectly mag-
netized; therefore, the nonlocal conductance measurement in
the direction opposite the chiral bond current remains nonzero
(e.g., G21 for the � direction of the magnetic field). As
the edge state bond current constitutes both spins, particles
with spins not aligned with the tip magnetization scatter off
the tip (see wave function localizations in Fig. 13). If the
magnetic field is not present in the system, in-gap nonlocal
conductance vanishes (not shown), and peaks at the edge of
the superconducting gap appear [53]. Differences between the
absolute values of nonlocal conductances are the consequence
of the nonsymmetric position of the tips. The change from
a negative to positive slope near the gap can be interpreted
as a crossover from subgap transport dominated by crossed
Andreev reflection to a charge imbalance above the gap [61].
Additionally, the nonlocal conductance strongly depends on
the distance between the tips [53].

To explain the above results, we analyzed the propagat-
ing modes in the system (Fig. 13). The nonlocal transport
corresponds to the situation where an incident electron from
one tip is transmitted through the edge modes as the chiral
mode and is scattered into the second tip. Such propagating
modes can be represented in the form of a wave function,
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FIG. 13. Spatial profile of the wave functions (particle- and hole-like components, given by u and v, respectively) having the largest
contribution to propagating modes at energy 0.02t . Top (bottom) panels show results in the case of a positive (negative) value of magnetic field
and are depicted by � (⊗). The first and second columns correspond to propagating modes from the first to second tip (1 → 2), while the third
and fourth columns correspond to propagating modes from the second to first tip (2 → 1). Scanning tunneling microscopy tips are labeled in
(a). Yellow dashed lines represent the region of the system bordered by the potential barrier.

ψ (r) = (ũ↓, ũ↑, ṽ↓, ṽ↑)T , where ũ and ṽ correspond to its
electron- and holelike components, respectively. Here, ψ is
composed mostly of ↓-electron and ↑-hole components [62].
Regions with a nonzero probability of localization correspond
to the particle remnants of scattering processes, whose distri-
bution coincides with the direction of edge state propagation.
As we mentioned above, with relatively small voltage bias,
the nonlocal transport is dominated by CAR processes (which
was envisioned by the antiparallel magnetization of G12 and
G21). In the case of the “positive” � magnetic field, we
observe propagation from the first to the second tip in the
clockwise direction [Figs. 13(a) and 13(b)] for both elec-
tron and hole components of the wave function. Then, if we
check the mode propagation from the second to the first tip
[Figs. 13(c) and 13(d)], we can see that the chirality of the
propagating modes is preserved and clockwise. In the case
of the magnetic field with the inverted direction, we observe
modes propagating in the direction opposite to the one pre-
viously mentioned (used in the bottom pannels in Fig. 13).
Without any surprise, the mode propagation direction in this
case is also preserved.

Summarizing, the nonlocal conductance is not just a finger-
print of the existence of the chiral mode [62] but also a tool to
measure its chirality.

V. SUMMARY AND CONCLUSIONS

Recent experimental results have presented the possibility
of the emergence of nontrivial topological phases in mag-

netic nanostructures coupled to superconducting substrates
[9,14]. In this paper, we have explored the artificial imple-
mentation of topological phase transitions induced by the
local modification of the chemical potential. In this respect,
we performed analytic calculations valid in the continuum
limit in the case of a nanoflake with a circular geometry
and found the spectrum of the system as a function of the
total angular momentum. We have also studied how the
transverse spatial extent of the wave function of the chiral Ma-
jorana state localized around the nanoflake depends upon the
system parameters. We then performed similar calculations
for a finite-size geometry using a tight-binding formulation.
In-gap states correspond to prominent peaks in the LDOS only
in a distinct region of space, identified as the domain wall,
which should be observed relatively simply through scanning
tunneling microscopy experiments.

Next, we introduced a real-space indicator, which locally
characterizes the topological phase. Indeed, for a few sets of
parameters, results obtained from this indicator were in agree-
ment with those obtained in the continuum limit. In the case
analyzed here, the effective magnetic field leads to the realiza-
tion of a nontrivial phase only in distinct regions of the system,
creating a nontrivial superconducting dome surrounded by a
trivial superconducting phase. This phase separation could
be observed through the measurement of a bond chiral
current, which is connected to the existence of strongly
localized in-gap states. We have shown that this current cir-
culates around the nanoflake. Additionally, with the help of
the indicator, we have found the topological phase diagram of
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the system. We have shown that an artificial phase separation
can be induced for a finite range of effective magnetic field.
The boundary of this phase separation is strongly related to
the effective magnetic field, which determines the transition
between trivial and nontrivial phases

In the last part of our work, we proposed an experimental
method to measure the chirality of the edge states based on a
double-tip measurement of the nonlocal differential conduc-
tivity. We have found that the nonlocal transport properties
between the two tips allow one to determine the chirality of
the edge state. Although challenging, this type of experiment
should be accessible with the present technology.
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