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We theoretically examine the transport through an Aharonov-Bohm ring with an embedded quantum dot (QD),
the so-called QD interferometer, to address two controversial issues regarding the shape of the Coulomb peaks
and measurement of the transmission phase shift through a QD. We extend a previous model [B. R. Bulka and P.
Stefański, Phys. Rev. Lett. 86, 5128 (2001); W. Hofstetter, J. König, and H. Schoeller, ibid. 87, 156803 (2001)] to
consider multiple conduction channels in two external leads, L and R. We introduce a parameter pα (|pα| � 1) to
characterize a connection between the two arms of the ring through lead α (= L, R), which is the overlap integral
between the conduction modes coupled to the two arms. First, we study the shape of a conductance peak as a
function of energy level in the QD, in the absence of electron-electron interaction U . We show an asymmetric
Fano resonance for |pL,R| = 1 in the case of single conduction channel in the leads and an almost symmetric
Breit-Wigner resonance for |pL,R| < 0.5 in the case of multiple channels. Second, the Kondo effect is taken
into account by the Bethe ansatz exact solution in the presence of U . We precisely evaluate the conductance at
temperature T = 0 and show a crossover from an asymmetric Fano-Kondo resonance to the Kondo plateau with
changing pL,R. Our model is also applicable to the multiterminal geometry of the QD interferometer. We discuss
the measurement of the transmission phase shift through the QD in a three-terminal geometry by a “double-slit
experiment.” We derive an analytical expression for the relation between the measured value and the intrinsic
value of the phase shift.
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I. INTRODUCTION

In the mesoscopic physics, an Aharonov-Bohm (AB) ring
with an embedded quantum dot (QD), the so-called QD in-
terferometer, has been intensively studied to elucidate the
coherent transport through a QD with discrete energy levels
and strong Coulomb interaction [1–4]. Controversial issues
still remain regarding the transport through the interferometer
despite long-term experimental and theoretical studies. We
theoretically revisit these issues by generalizing a previous
model to consider multiple conduction channels in external
leads and a multiterminal geometry.

We first discuss the shape of Coulomb peaks, i.e., con-
ductance G as a function of gate voltage attached to the
QD to control the energy levels electrostatically. Kobayashi
et al. observed an asymmetric shape of the Coulomb peaks,
which has a peak and dip in accordance with the Fano
resonance, using a QD interferometer [5]. The Fano res-
onance stems from the interference between a discrete
energy level in the QD and continuum energy states in the
ring [6,7]. Remarkably the resonant shape of the Coulomb
peaks changes with a magnetic flux penetrating the ring.
However, the other groups observed symmetric Coulomb
peaks, which can be fitted to the Lorentzian function of
Breit-Wigner resonance [8]. No criteria has been elucidated

regarding the Fano or Breit-Wigner resonance in the QD
interferometer.

The second issue concerns the measurement of the trans-
mission phase shift through a QD using the QD interferometer
as a double-slit experiment. It is well known that the phase
shift cannot be observed by the interferometer in the two-
terminal geometry [1]. This is due to the restriction by
the Onsager’s reciprocity theorem: Conductance G satisfies
G(B) = G(−B) for magnetic field B, or G(φ) = G(−φ) for
the AB phase φ = 2π�/(h/e) with magnetic flux � penetrat-
ing the ring [3,4]. The phase measurement was first reported
using the interferometer in a four-terminal geometry [2]. In
the Kondo regime, the phase shift through the QD should
be locked at π/2 [9–11]. This phase locking was also inves-
tigated experimentally using four- or three-terminal devices
[8,12–17]. It is nontrivial, however, how precisely the phase
shift is measured using the multiterminal interferometer.

Theoretically, Bulka and Stefański studied Fano and Kondo
resonances using a model for the two-terminal QD interfer-
ometer, in which a QD is coupled to leads L and R and the
leads are directly coupled to each other [18]. Hofstetter et al.
found an asymmetric Fano-Kondo resonance by applying the
numerical renormalization group calculation to an equivalent
model [19]. Their works were followed by many theoretical
studies, e.g., to elucidate various aspects of the Kondo effect
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FIG. 1. (a) Model for an AB ring with an embedded quantum dot
(QD), the so-called QD interferometer, in the two-terminal geometry.
The lower arm of the ring involves a QD with single energy level εd ,
whereas the upper arm directly connects leads L and R. The tunnel
couplings between the QD and leads,VL,k , VR,k′ and that through the
upper arm Wk′,k , depend on states k in lead L and state k′ in lead
R. A magnetic flux � penetrating the ring is taken into account by
the AB phase φ = 2π�/(h/e). The electron-electron interaction U
works in the QD. (b) Model for the QD interferometer in a four-
terminal geometry, with leads L(1), L(2), R(1), and R(2). State k [k′]
belongs to lead L(1) or L(2) [R(1) or R(2)]. The chemical potentials
in the leads are denoted by μ

(1)
L , μ

(2)
L , μ

(1)
R , and μ

(2)
R , respectively, in

the formulation in Appendix A. We fix μ
(1)
L = μ

(2)
L ≡ μL and μ

(1)
R =

μ
(2)
R ≡ μR with μL − μR = eV in our calculations.

[20–29], fluctuation theorem [30], and dynamics of electronic
states [31]. Recently, the Fano resonance was proposed to
detect the Majorana bound states [32,33].

Although the model in Refs. [18,19] was widely used, it
is insufficient to describe experimental situations with mul-
tiple conduction channels in the leads. In the present paper,
we propose an extended model for the QD interferometer to
resolve the above-mentioned problems. As shown in Fig. 1(a),
our model is the same as the previous model except the tunnel
couplings, VL, VR, and W , depend on the states in leads L and
R. We show that the state dependence can be disregarded only
in the case of single conduction channel in the leads.

Our model yields a parameter pα (|pα| � 1) to char-
acterize a connection between the two arms of the ring
through lead α (= L, R), which is the overlap integral be-
tween the conduction modes coupled to the upper and lower
arms of the ring. First, we examine the shape of a conduc-
tance peak in the two-terminal geometry, in the absence of
electron-electron interaction U in the QD. We show an asym-
metric Fano resonance for |pL,R| = 1 in the case of single
conduction channel in the leads and an almost symmetric
Breit-Wigner resonance at |pL,R| < 0.5 in the case of multiple
channels. Hence our model could explain the experimental
results of both the asymmetric Fano resonance [5] and almost

symmetric Breit-Wigner resonance [8], with fitting parame-
ters pL,R to their data.

Second, the transport in the Kondo regime is examined
by exploiting the Bethe ansatz exact solution. This method
precisely gives us the conductance at temperature T = 0 in
the presence of U . We show a crossover from an asymmetric
Fano-Kondo resonance [19] to the Kondo plateau with chang-
ing pL,R.

Our model is also applicable to the multiterminal geometry,
where state k [k′] belongs to lead L(1) or L(2) [R(1) or R(2)],
as depicted in Fig. 1(b). We discuss the measurement of the
transmission phase shift through the QD by a “double-slit
experiment” using a three-terminal interferometer. We derive
an analytical relation between the observed phase shift and
intrinsic phase shift in the absence of U . Using a simple model
to represent the experiment by Takada et al. [8,16,17], we
evaluate the measured phase shift in both the absence and
presence of U . For U �= 0, we show that the phase locking at
π/2 is observable in the Kondo regime although it is slightly
different from the behavior of the intrinsic phase shift that
satisfies the Friedel sum rule.

The organization of the present paper is as follows. In
Sec. II, we present our model and calculation method. The
parameters pL and pR are introduced, which are relevant to
the shape of a conductance peak. We explain the calculation
method of the conductance at T = 0, taking into account the
Kondo effect exactly. In Sec. III, the calculated results are
given for the shape of the conductance peak in a two-terminal
geometry. We discuss the asymmetric Fano resonance versus
symmetric Breit-Wigner resonance in the absence of U , by
changing pL,R. We also study the conductance in the Kondo
regime in the presence of U and show a crossover from
an asymmetric Fano-Kondo resonance to the Kondo plateau.
In Sec. IV, we examine the phase measurement in a three-
terminal geometry by a double-slit interference experiment.
We derive an analytical relation between the measured value
and intrinsic value for the transmission phase shift through
the QD in the absence of U . Two specific models are studied
to see a crossover from two- to three-terminal measurement
and to simulate the experimental situation using two quantum
wires to form the QD interferometer [8,16,17]. Section V
is devoted to the discussion regarding the justification and
generality of our model. The conclusions are given in Sec. VI.

II. MODEL AND CALCULATION METHOD

A. Model

Let us consider a model for the QD interferometer in a two-
terminal geometry, depicted in Fig. 1(a). The Hamiltonian is
given by

H = Hdot + Hleads + HT, (1)

where

Hdot = εd

∑
σ

nσ + Un↑n↓, (2)

Hleads =
∑

α=L,R

∑
kσ

εka†
α,kσ

aα,kσ (3)
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HT =
∑

α=L,R

∑
kσ

(Vα,ka†
α,kσ

dσ + H.c.)

+
∑

k,k′,σ

(Wk′,keiφa†
R,k′σ aL,kσ + H.c.). (4)

Here nσ = d†
σ dσ is the number operator for electrons with spin

σ in the QD with energy level εd , where d†
σ and dσ are creation

and annihilation operators, respectively. a†
α,kσ

and aα,kσ are
those for conduction electrons in lead α (= L, R) with state k
and spin σ whose energy is denoted by εk . U is the electron-
electron interaction in the QD. The tunnel Hamiltonian HT

connects the QD and state k in lead α by Vα,k through the
lower arm of the ring, whereas it connects state k in lead L and
state k′ in lead R by Wk′,k through the upper arm of the ring.
The AB phase is defined by φ = 2π�/(h/e) for a magnetic
flux � penetrating the ring. To make the calculation simple,
we decompose Wk′,k into the contributions from state k in lead
L and state k′ in lead R as

Wk′,k = √
wR,k′wL,k . (5)

This separable form is justified for the tight-binding models,
as discussed in Sec. V.

For lead α, we introduce the following three parameters to
describe the contribution to the transport:

�α (ε) = π
∑

k

(Vα,k )2δ(ε − εk ), (6)

xα (ε) = π
∑

k

wα,kδ(ε − εk ), (7)

√
�α (ε)xα (ε)pα (ε) = π

∑
k

Vα,k
√

wα,kδ(ε − εk ). (8)

We assume that the ε-dependence of these parameters is weak
around the Fermi level and simply express �α , xα , and pα for
ε ≈ EF. �α (xα) characterizes the strength of tunnel coupling
to the QD (coupling through the upper arm of the ring). Using
x = xLxR, the transmission probability through the upper arm
of the ring is given by

Tupper = 4x

(1 + x)2
. (9)

Concerning xL and xR, the physical quantities are always writ-
ten in terms of x = xLxR in our model [34].

The parameter pα (|pα| � 1) defined by Eq. (8) character-
izes a connection between the two arms of the ring through
lead α (= L, R). Namely, pα (ε) is an overlap integral between
the conduction mode coupled to the QD and that coupled
to the upper arm of the ring in lead α at a given energy ε.
The tunnel Hamiltonian HT in Eq. (4) indicates that these
modes are given by |ψQD

α (ε)〉 ∝ ∑
k Vα,k|α, k〉δ(ε − εk ) and

|ψupper
α (ε)〉 ∝ ∑

k
√

wα,k|α, k〉δ(ε − εk ), respectively, where
|α, k〉 is the state k in lead α. For |ψ (ε)〉 = ∑

k Ck|α, k〉δ(ε −
εk ) and |ϕ(ε)〉 = ∑

k Dk|α, k〉δ(ε − εk ), we denote the in-
ner product by 〈ψ (ε)|ϕ(ε′)〉 = 〈ψ |ϕ〉εδ(ε − ε′), or 〈ψ |ϕ〉ε =∑

k C∗
k Dkδ(ε − εk ). Then

pα (ε) =
〈
ψQD

α

∣∣ψupper
α

〉
ε√〈

ψ
QD
α

∣∣ψQD
α

〉
ε

〈
ψ

upper
α

∣∣ψupper
α

〉
ε

. (10)

The interference by the AB effect is maximal when |pL| =
|pR| = 1, whereas it completely disappears when pL = 0 or
pR = 0. In the previous model [18,19], |ψQD

α 〉 = |ψupper
α 〉 and

thus pα = 1 since Vα,k and
√

wα,k are constant, irrespective
of state k. As seen in the following sections, pL and pR

play a crucial role in determining the shape of conductance
peaks. Although pL and pR should be given by the details of
experimental systems, we treat them as parameters as well as
�L, �R, and x.

As an example, let us consider quasi-one-dimensional
leads, or leads of a quantum wire. The state in lead α is speci-
fied by k = q in the case of single conduction channel and by
k = (q, i) in the presence of multiple channels, where q is the
momentum along the wire and i is the index of the subbands.
In the former, Vα,k = Vα (εk ) and wα,k = wα (εk ), which yield
�α (ε) = πρα (ε)[Vα (ε)]2 with density of states ρα in the lead,
xα (ε) = πρα (ε)wα (ε), and |pα| = 1 from Eqs. (6) to (8). In
the case of multiple channels, |pα| < 1, as shown in Sec. V.
Note that a similar parameter to pα was introduced in the study
on a double quantum dot in parallel and was evaluated for
three- or two-dimensional leads with a flat surface [35].

For the multiterminal geometry, lead α is divided into leads
α(1) and α(2), as depicted in Fig. 1(b). The Hamiltonian in
Eq. (1) is applicable even to this case, in which the summation
over k is taken in both lead α(1) [denoted by

∑(1)
k ] and

lead α(2) [by
∑(2)

k ]. We define �
( j)
α using Eq. (6) with the

summation over k in lead α( j) only

�( j)
α (ε) = π

( j)∑
k

|Vα,k|2δ(ε − εk ) (11)

for α = L, R and j = 1, 2. Similarly, we define x(1)
α , x(2)

α , p(1)
α ,

and p(2)
α . They satisfy the following relations:

�α = �(1)
α + �(2)

α , (12)

xα = x(1)
α + x(2)

α , (13)√
�αxα pα =

√
�

(1)
α x(1)

α p(1)
α +

√
�

(2)
α x(2)

α p(2)
α . (14)

B. Formulation of electric current

We formulate the electric current using the Keldysh
Green’s functions along the lines of Ref. [19] (see Appendix
A). For example, the current from lead L(1) in Fig. 1(b) is
given by

I (1)
L = −e

〈
Ṅ (1)

L

〉 = − e

ih̄

〈[
N (1)

L , H
]〉
, (15)

where

N (1)
L =

(1)∑
kσ

a†
L,kσ

aL,kσ (16)

is the number operator for electrons in the lead. In the sta-
tionary state, I (1)

L is expressed in terms of the retarded Green’s
function Gr

d,d (ε) and lesser Green’s function G<
d,d (ε) of the

QD, in Eq. (A22) in Appendix A.
Next, we eliminate G<

d,d (ε) from the expression and write
the current using Gr

d,d (ε) only. We restrict ourselves to the
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case of

μ
(1)
L = μ

(2)
L ≡ μL, μ

(1)
R = μ

(2)
R ≡ μR, (17)

with μL − μR = eV , to simplify the current expression. Then
the current conservation is written as follows in the stationary
state:

0 = I (1)
L + I (2)

L + I (1)
R + I (2)

R

= 4e

h

∫
dε

{
−�̃

[
[ fL(ε) + fR(ε)]ImGr

d,d (ε) + ImG<
d,d (ε)

]

+ [ fL(ε) − fR(ε)]

[
−(�L − �R) − 4

√
�L�RxpL pR

(1 + x)2
sin φ + x(x + 3)

(1 + x)2

(
�L p2

L − �R p2
R

)]
ImGr

d,d (ε)

}
, (18)

where fα (ε) = [(ε − μα )/(kBT ) + 1]−1 is the Fermi distribution function in lead α(1) or α(2) [�̃ will be given in Eq. (24)].
Using Eq. (18), we eliminate G<

d,d (ε) from the current expression, e.g., Eq. (A22) for I (1)
L .

C. Electric current in two-terminal systems

Now we present the expression for the electric current in the two-terminal systems. The current from the left lead IL [=
I (1)
L + I (2)

L using the results in Appendix A] is expressed as

IL = 2e

h

∫
dε[ fL(ε) − fR(ε)]T (ε), (19)

with the transmission probability

T (ε) = 4x

(1 + x)2
+ 8

1 − x

(1 + x)3

√
�L�RxpL pR cos φReGr

d,d (ε) + 4C1

(1 + x)3�̃
ImGr

d,d (ε). (20)

Here, the coefficient C1 is given by

C1 = x3

1 + x

[(
�L p2

L

)2 + (
�R p2

R

)2] + x(1 − x)[(�L pL )2 + (�R pR)2]

−�L�R

[
(1 + x)3 + 4x

1 + x
(pL pR)2 sin2 φ + x2(x2 + 4x + 9)

1 + x
(pL pR)2 − x(x2 + 3x + 4)

(
p2

L + p2
R

)]
. (21)

Note that (i) for pL = pR = 1, where a single conduction
channel is effective in each lead, Eq. (20) coincides with the
current expression derived in Ref. [19]. (ii) For pL = pR = 0,
the transmission probability is given by

T (ε) = 4x

(1 + x)2
− 4�L�R

�L + �R
ImGr

d,d (ε). (22)

This is the summation of the transmission probability through
the upper arm, Tupper in Eq. (9), and that through the QD,
indicating no interference effect between the two paths in the
QD interferometer.

For multiterminal systems, the current is expressed in
terms of the retarded Green’s function Gr

d,d (ε) in a similar
way. The expression is given in Eqs. (A29) and (A30) in
Appendix A.

D. Exact calculation for Kondo effect

In the absence of Coulomb interaction, U = 0, the re-
tarded Green’s function of the QD is given by Gr

d,d (ε) = 1/

(ε − εd − 
d ), where the self-energy by the tunnel couplings
is


d = −2
√

�L�Rx

1 + x
pL pR cos φ − i�̃, (23)

with an effective linewidth

�̃ = �L

(
1 − x

1 + x
p2

L

)
+ �R

(
1 − x

1 + x
p2

R

)
. (24)

This expression is common to two- and multiterminal sys-
tems.

In the presence of U , Gr
d,d (ε) is evaluated exactly in the

following way. The Green’s function at U = 0 indicates that
our models are equivalent to the situation in which a QD with
an energy level

ε̃d (φ) = εd − 2
√

�L�Rx

1 + x
pL pR cos φ (25)

is connected to a lead with linewidth �̃, as shown in
Appendix B. In the Fermi liquid theory, the Green’s function
is written as

Gr
d,d (0) = z

−ε̃∗
d + iz�̃

= �̃∗

�̃

1

−ε̃∗
d + i�̃∗ , (26)

at ε = EF = 0, where ε̃∗
d is the renormalized value of ε̃d (φ)

in Eq. (25), �̃∗ = z�̃ is that of �̃ in Eq. (24), and z is a fac-
tor of wave-function renormalization by the electron-electron
interaction U [36–38]. Since the phase shift θQD at the QD is
given by tan θQD = �̃∗/ε̃∗

d , the Green’s function is determined
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by θQD as

Gr
d,d (0) = −1

�̃
eiθQD sin θQD. (27)

θQD is related to the electron number per spin in the QD
through the Friedel sum rule, θQD = π〈nσ 〉. 〈nσ 〉 is evaluated
at temperature T = 0 using the Bethe ansatz exact solution
[39,40]. Hence we can precisely calculate Gr

d,d (0) and thus the
conductance G = dIL/dV (V → 0) at T = 0 in the presence
of U .

It is worth mentioning that the effective energy level ε̃d (φ)
in the QD gives rise to the φ-dependent Kondo temperature
[20]. It is written as

kBTK(φ)≈D

[
�̃U

|ε̃d (φ)|[ε̃d (φ) + U ]

]1/2

e−π |ε̃d (φ)|[ε̃d (φ)+U ]/(2�̃U ),

(28)
with D being the bandwidth [36,41] although TK(φ) is irrele-
vant to our study on the transport properties at T = 0.

III. CALCULATED RESULTS IN
TWO-TERMINAL GEOMETRY

In this section, we present the calculated results for the
two-terminal system, paying attention to the shape of a con-
ductance peak as a function of energy level εd in the QD. We
find that parameters pL and pR are relevant in both the cases
of U = 0 and U �= 0.

A. Fano versus Breit-Wigner resonance

We begin with the case of no electron-electron interaction
in the QD, U = 0. Figure 2 shows the conductance G at T = 0
as a function of energy level εd in the QD for (a) pL = pR = 1,
(b) 0.75, and (c) 0.5. The AB phase is φ = 0 (solid line),
±π/2 (broken line), and π (dotted line). G(φ) = G(−φ)
holds by the Onsager’s reciprocal theorem.

In Fig. 2(a) with pL = pR = 1, the conductance G shows
an asymmetric resonant shape with dip and peak in the ab-
sence of magnetic field (φ = 0). This is known as the Fano
resonance, which is ascribable to the interference between the
tunneling through a discrete level and that through continuous
states [6,7]. A magnetic field changes the resonant shape to be
symmetric at φ = ±π/2 and asymmetric with peak and dip
at φ = π . This Fano resonance is characterized by a complex
Fano factor [5]. Indeed the conductance can be analytically
expressed [42] in the form of

G = 2e2

h

4x

(1 + x)2

|e + q|2
e2 + 1

(29)

with e= [εd −ε̃d (φ)]/�̃, where ε̃d (φ)=εd −2
√

�L�Rx cos φ/

(1 + x) and �̃ = (�L + �R)/(1 + x) [Eqs. (25) and (24) for
pL = pR = 1]. The complex Fano factor is given by

q =
√

�L�R

�̃
√

x

(
1 − x

1 + x
cos φ − i sin φ

)
. (30)

With a decrease in pL and pR, the conductance peak
becomes more symmetric and its φ-dependence is less
prominent, as shown in Figs. 2(b) and 2(c). The shape of

FIG. 2. Calculated results for the conductance G in the two-
terminal system in the absence of U . G at temperature T = 0 is
plotted as a function of energy level εd in the quantum dot. �L =
�R = �/2, x = 0.09 (xL = xR = 0.3), and (a) pL = pR = 1, (b) 0.75,
and (c) 0.5. The AB phase for the magnetic flux penetrating the ring
is φ = 0 (solid line), φ = ±π/2 (broken line), and φ = π (dotted
line).

conductance peak is closer to that of the Lorentzian function
of Breit-Wigner resonance as pL and pR go to zero.

Note that the conductance G can exceed unity in units of
2e2/h when pL, pR < 1, reflecting the multiple conduction
channels in the leads. See Eq. (22) in the limit of pL = pR =
0: The upper limit of G/(2e2/h) is the sum of the transmis-
sion probability through the QD (unity if �L = �R) and that
through the upper arm, Tupper in Eq. (9).

B. Fano-Kondo resonance versus Kondo plateau

In the presence of U , the Kondo effect is exactly taken
into account in the evaluation of the conductance at T = 0, as
described in the previous section. In Fig. 3, the conductance
G is shown as a function of energy level εd in the QD, for
U/� = 8 and �L = �R = �/2; (a) pL = pR = 1, (b) 0.75, and
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FIG. 3. Calculated results for the conductance G in the two-
terminal system in the presence of U . G at temperature T = 0 is
plotted as a function of energy level εd in the quantum dot. �L =
�R = �/2, x = 0.09 (xL = xR = 0.3), and (a) pL = pR = 1, (b) 0.75,
and (c) 0.5. U = 8�. The AB phase for the magnetic flux penetrating
the ring is φ = 0 (solid line), φ = ±π/2 (broken line), and φ = π

(dotted line).

(c) 0.5. The AB phase is φ = 0 (solid line), ±π/2 (broken
line), and π (dotted line).

For pL = pR = 1, G behaves as a “Fano-Kondo resonance”
proposed by Hofstetter et al. [19], which stems from an in-
terplay between the Kondo resonance (G ∼ 2e2/h at −U <

εd < 0) and the Fano resonance. When φ = 0 (π ), G shows
a dip and peak (peak and dip) with a gradual slope around
the center of the Kondo valley, i.e., Coulomb blockade regime
with a spin 1/2 in the QD. When φ = π/2, G is almost
constant at 2e2/h in the Kondo valley and symmetric with
respect to the valley center.

With decreasing pL and pR, the asymmetric shape of the
Fano-Kondo resonance changes to a conductance plateau, the
so-called Kondo plateau, in the Kondo valley: G → 2e2/h +
Tupper as pL,R → 0 when �L = �R. Besides, G is less depen-
dent on φ.

IV. CALCULATED RESULTS IN THREE-TERMINAL
GEOMETRY

In this section, we examine a three-terminal system to
discuss the measurement of transmission phase shift through
the QD by a “double-slit interference experiment.” We assume
two leads R(1) and R(2) on the right side and a single lead L
on the left side in Fig. 1(b). We evaluate the conductance from
lead L to R(1) or to R(2),

G(1) = −dI (1)
R

dV
, G(2) = −dI (2)

R

dV
, (31)

for eV = μL − μR → 0 (μ(1)
R = μ

(2)
R = μR) at T = 0, as a

function of AB phase φ. We define the measured phase shift
by the AB phase φmax at which the conductance G(1)(φ) is
maximal.

As an intrinsic transmission phase shift through the QD,
we introduce θ

(0)
QD and θQD by

tan θ
(0)
QD = �L + �R

εd − EF
, (32)

tan θQD = �̃

ε̃d (φ) − EF
, (33)

respectively, in the absence of U . θ
(0)
QD is the phase shift

through the QD without the upper arm of the ring, whereas
θQD satisfies the Friedel sum rule θQD = π〈nσ 〉 for the QD
embedded in the ring. This last depends on the AB phase φ for
the magnetic flux penetrating the ring. In the next subsection,
we derive an analytical relation between the measured phase
φmax and θ

(0)
QD in Eq. (32) in the absence of U .

In Secs. IV.B and C, we examine two specific models
depicted in Fig. 4. In Fig. 4(a), leads L and R(1) are connected

FIG. 4. Two specific models for the three-terminal system.
(a) Leads L and R(1) are connected to both the quantum dot and
upper arm of the ring, whereas lead R(2) is connected to the quantum
dot only. (b) Leads R(1) and R(2) are quantum wires which are
tunnel-coupled to each other at the hatched region. Lead L is con-
nected to both the quantum dot and upper arm of the ring, whereas
lead R(1) [R(2)] is connected to the quantum dot [upper arm of the
ring] only at the end of the leads.
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to both the QD and upper arm of the ring, whereas lead R(2) is
connected to the QD only. We vary the strength of tunnel cou-
pling to lead R(2), �(2)

R , to investigate a crossover from two- to
three-terminal phase measurement. In Fig. 4(b), we model the
experimental situation by Takada et al., in which leads R(1)
and R(2) are partly coupled quantum wires [8,16,17].

A. Measured phase shift for U = 0

For the three-terminal model in Fig. 1(b) with leads L,
R(1), and R(2), we introduce the following dimensionless
parameters:

γ
( j)

R = �
( j)
R

�R
, y( j)

R = x( j)
R

xR
, q( j)

R =
√

�
( j)
R x( j)

R p( j)
R√

�RxR pR
(34)

for j = 1 and 2. They are the ratios of contribution from lead
R( j) to �R, xR, and

√
�RxR pR, respectively, and satisfy the

relations of γ
(1)

R + γ
(2)

R = y(1)
R + y(2)

R = q(1)
R + q(2)

R = 1.
In the absence of U , Eqs. (A29) and (A30) yield the con-

ductance in the form of

G(1) = 2e2

h

1

[EF − ε̃d (φ)]2 + �̃2

×
[

8
√

�L�RxpL pR

(1 + x)2
F (φ) + (φ-indep. terms)

]
, (35)

where

F (φ) = q(1)
R (ε − εd ) cos φ + [

x
(
q(1)

R − y(1)
R

)
�L

(
1 − p2

L

)
+ (

γ
(1)

R − q(1)
R

)
�R

]
sin φ. (36)

If we neglect the φ-dependence in ε̃d (φ) in the denominator
in Eq. (35), the measured phase φmax is given by

tan φmax = x
(
y(1)

R − q(1)
R

)
�L(1 − p2

L ) + (
q(1)

R − γ
(1)

R

)
�R

q(1)
R (�L + �R)

× tan θ
(0)
QD, (37)

where θ
(0)
QD is defined in Eq. (32). This is an approximate for-

mula for the relation between the measured value and intrinsic
value of the transmission phase shift through the QD.

In the two-terminal geometry, lead R(2) is absent and thus
γ

(1)
R = y(1)

R = q(1)
R = 1. Then Eq. (37) yields tan φmax = 0, i.e.,

φmax = 0 or π in accordance with the Onsager’s reciprocal
theorem.

B. Model in Fig. 4(a) with U = 0

To elucidate a crossover from two- to three-terminal
measurement of the transmission phase shift through the QD,
we examine the model depicted in Fig. 4(a) with U = 0. In
this model, leads L and R(1) are connected to both the QD and
upper arm of the ring, whereas lead R(2) is connected to the
QD only. From x(2)

R = 0 and �R = �
(1)
R + �

(2)
R , dimensionless

parameters in the previous subsection become γ
(1)

R = �
(1)
R /�R

and y(1)
R = q(1)

R = 1. In the QD, the effective energy level and

linewidth are ε̃d (φ)=εd −2
√

�L�
(1)
R xpL p(1)

R cos φ/(1 + x)

and �̃=�L[1−xp2
L/(1 + x)]+�

(1)
R [1−xp(1)2

R /(1+x)] + �
(2)
R ,

FIG. 5. Calculated results for the three-terminal model depicted
in Fig. 4(a) in the absence of U . In the left panels, the conductance
G(1) to lead R(1) at temperature T = 0 is plotted as a function
of energy level εd in the quantum dot. �L = �R = �/2, x = 0.09
(xL = xR = 0.3), and pL = pR = 0.5. The tunnel coupling to lead
R(2) is increased from (a) to (c): (a) �

(2)
R /�R = 0.2, (b) 0.5, and

(c) 0.8 with �
(1)
R + �

(2)
R = �R. The AB phase for the magnetic flux

penetrating the ring is φ = 0 (solid line), φ = π/2 (broken line),
φ = π (dotted line), and φ = −π/2 (thin solid line). In the right
panels, the measured phase shift φmax is plotted as a function of εd

(solid line), which is numerically evaluated as the AB phase when
G(1)(φ) is maximal. φmax given by the formula in Eq. (38) is plotted
by broken line, whereas the transmission phase shift θ

(0)
QD through the

quantum dot without the upper arm of the ring is plotted by dotted
line.

respectively. Equation (37) yields an approximate relation of

tan φmax = �
(2)
R

�L + �
(1)
R + �

(2)
R

tan θ
(0)
QD, (38)

which indicates that the measured phase shift φmax approaches
the intrinsic phase shift θ

(0)
QD with an increase in �

(2)
R .

Figure 5 presents the calculated results for the model in
Fig. 4(a). In the left panels, the conductance G(1) to lead
R(1) at T = 0 is plotted as a function of energy level εd

in the QD. �L = �R = �/2 and (a) �
(2)
R /�R = 0.2, (b) 0.5,

and (c) 0.8. For small �
(2)
R /�R [Fig. 5(a)], G(1) is almost

the same at φ = ±π/2 corresponding to the Onsager’s re-
ciprocal theorem in the two-terminal system. With increasing
�

(2)
R /�R [Figs. 5(b) and 5(c)], the deviation from the theorem

becomes more prominent. The peak height of G(1) is reduced
by stronger tunnel coupling to lead R(2).

The right panels in Fig. 5 show φmax that is numerically
evaluated from G(1)(φ), as a function of εd (solid lines). The
intrinsic phase shift θ

(0)
QD in Eq. (32) is plotted by dotted

lines. Broken lines show φmax in Eq. (38), indicating that
the formula is a good approximation to estimate φmax from
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FIG. 6. Measured phase shift φmax as a function of energy level
εd in the quantum dot, in the three-terminal model depicted in
Fig. 4(a) in the absence of U . The data for φmax are the same as in the
right panels in Fig. 5. �

(2)
R /�R = 0.2 (solid line), 0.5 (dotted line),

and 0.8 (broken line). A thin solid line indicates the transmission
phase shift θ

(0)
QD through the quantum dot without the upper arm of

the ring.

θ
(0)
QD. In Fig. 5(a) with �

(2)
R /�R = 0.2, φmax changes almost

abruptly from zero to π around εd = EF = 0, which is close
to the behavior in the two-terminal system. For larger �

(2)
R /�R,

φmax changes more gradually with εd and closer to the in-
trinsic phase shift θ

(0)
QD although φmax does not go to θ

(0)
QD as

�
(2)
R /�R → 1 under the condition of �L = �R.

To illustrate the crossover from the two- to three-terminal
phase measurement, we replot φmax for three values of
�

(2)
R /�R in a graph in Fig. 6.

C. Model in Fig. 4(b)

Now we study the model shown in Fig. 4(b) to examine the
experimental situation using partly coupled quantum wires to
form a mesoscopic ring [8,16,17]. We assume that leads R(1)
and R(2) consist of two equivalent wires a and b of single
conduction channel. They are tunnel-coupled to each other in
the vicinity of their edges, which mixes states |a, k′〉 in lead a
and |b, k′〉 in lead b. As a result, the edge states in leads R(1)
and R(2) are given by∣∣ψ (1)

Rk′
〉 = αR|a, k′〉 + βR|b, k′〉, (39)∣∣ψ (2)

Rk′
〉 = βR|a, k′〉 − αR|b, k′〉, (40)

respectively, with real coefficients αR and βR (α2
R+β2

R =1).
Far from the edges, |ψ (1)

Rk′ 〉 → |a, k′〉 in lead R(1) and
|ψ (2)

Rk′ 〉 → |b, k′〉 in lead R(2) in an asymptotic way.
As shown in Fig. 4(b), |ψ (1)

Rk′ 〉 in Eq. (39) is coupled to
the QD while |ψ (2)

Rk′ 〉 in Eq. (40) is connected to the upper
arm of the ring. In the tunnel Hamiltonian HT in Eq. (4),
VR,k′ = VRαR and

√
wR,k′ = √

wRβR when state k′ belongs to
lead R(1) while VR,k′ = VRβR and

√
wR,k′ = −√

wRαR when
state k′ belongs to lead R(2). Thus �

(1)
R = α2

R�R, �(2)
R = β2

R�R,
x(1)

R = β2
RxR, and x(2)

R = α2
RxR.

In this model, pR = 0 (p(1)
R = 1, p(2)

R = −1) as explained in
Appendix C and in consequence ε̃d (φ) = εd in Eq. (25). For

U = 0, Eq. (37) exactly holds, which yields

tan φmax = −x�L
(
1 − p2

L

) + �R

�L + �R
tan θ

(0)
QD. (41)

In addition, the phase shift θQD can be defined independently
of φ, which satisfies the Friedel sum rule in the QD embedded
in the ring [see Eq. (33) in the case of U = 0]. For both U = 0
and U �= 0, we obtain an exact relation of

tan φmax = −x�L
(
1 − p2

L

) + �R

�̃
tan θQD, (42)

with �̃ = �L[1 − xp2
L/(1 + x)] + �R. tan θQD = �̃/εd in the

absence of U and tan θQD = �̃∗/ε̃∗
d in the presence of U when

EF = 0. Neither Eq. (41) nor Eq. (42) depend on αR and βR.
We show the calculated results for U = 0 in Fig. 7. In

Figs. 7(a) and 7(b), the conductance G(1) is shown as a func-
tion of energy level εd in the QD, for (a) β2

R = 0.1 and (b) 0.5.
The height of G(1) depends on φ more largely in Fig. 7(b) than
in Fig. 7(a) though φmax does not depend on βR.

Figure 7(c) plots φmax that is numerically evaluated from
G(1)(φ). It changes smoothly from zero to π via π/2 at εd =
0. φmax quantitatively deviates from θ

(0)
QD and θQD (dotted and

thin solid lines). Their relations are exactly given by Eqs. (41)
and (42).

It should be mentioned that the sum of the currents to
leads R(1) and R(2), I (1)

R + I (2)
R , does not depend on the AB

phase φ, reflecting pR = 0 in this model (see Appendix C).
Therefore, the AB oscillation of G(1)(φ) is out-of-phase to that
of G(2)(φ), as indicated in the insets in Fig. 7. φmax evaluated
from G(1) behaves similarly to θ

(0)
QD, while that from G(2) sim-

ilarly to −θ
(0)
QD, irrespective of the absence or presence of U .

This agrees with the experimental observation by Takada et al.
[8,16].

Finally, the measured phase is discussed in the Kondo
regime with U �= 0. In Fig. 8, we plot φmax that is numerically
evaluated from G(1), as a function of energy level εd in the QD;
(a) U/� = 8 and (b) 16 with �L = �R = �/2. In the Kondo
valley (−U < εd < 0), the phase locking at π/2 is observable
by a “double-slit experiment” using the QD interferometer.
We calculate the intrinsic phase shift θQD using the Friedel
sum rule θQD = π〈nσ 〉, where 〈nσ 〉 is given by the Bethe
ansatz exact solution (dotted line). φmax and θQD are related
to each other by Eq. (42). The phase locking seems smeared
in the curve of the measured phase shift φmax, in comparison
with the intrinsic phase shift θQD.

V. DISCUSSION

In our models shown in Figs. 1(a) and 1(b), we assume
a separable form for the tunnel coupling between the leads
in Eq. (5). Here, we discuss the justification of this form
using a tight-binding model. We also show that |pα| < 1 in
the presence of multiple conduction channels in lead α.

As a simple example, let us consider the model depicted
in Fig. 9(a). The leads consist of two sites in width and N
sites in length (N � 1). The eigenvalues of the Hamiltonian
for leads L and R form two subbands ε±(q), where q is the
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FIG. 7. Calculated results for the conductance and measured
phase shift in the three-terminal model depicted in Fig. 4(b) in the
absence of U . In the upper two panels, the conductance G(1) to lead
R(1) at temperature T = 0 is plotted as a function of energy level εd

in the quantum dot. �L = �R = �/2, x = 0.09 (xL = xR = 0.3), and
pL = 0.5. (a) β2

R = 0.1, (b) 0.5 (α2
R + β2

R = 1; �
(1)
R = α2

R�R, �
(2)
R =

β2
R�R, x(1)

R = β2
RxR, and x(2)

R = α2
RxR, see text). The AB phase for the

magnetic flux penetrating the ring is φ = 0 (solid line), φ = π/2
(broken line), φ = π (dotted line), and φ = −π/2 (thin solid line).
In panel (c), the measured phase shift φmax is plotted as a function
of εd (solid line), which is defined by the AB phase when G(1)(φ) is
maximal. φmax does not depend on βR. The phase shift θ

(0)
QD through

the QD without the upper arm of the ring is plotted by dotted line,
which is almost overlapped by θQD (thin solid line) that satisfies the
Friedel sum rule in the QD embedded in the ring. Insets in panels
(a) and (b): G(1) and G(2) [conductance to lead R(2)] as a function of
the AB phase φ, at εd = 0.

wave number in the x direction (0 < q < π/a) with a being
the lattice constant [Fig. 9(b)]. The corresponding states are

|L; q,±〉 = −1√
N + 1

−1∑
j=−N

(| j, 1〉 ± | j, 2〉) sin q ja, (43)

|R; q,±〉 = 1√
N + 1

N∑
j=1

(| j, 1〉 ± | j, 2〉) sin q ja, (44)

where | j, �〉 is the Wannier function at site ( j, �). The tun-
nel coupling between |L; q, γ 〉 and |R; q′, γ ′〉 (γ , γ ′ = ±)

FIG. 8. Calculated results for the measured phase shift in the
three-terminal model depicted in Fig. 4(b) in the presence of U . The
measured phase shift φmax is plotted by solid line as a function of en-
ergy level εd in the quantum dot. φmax is numerically evaluated as the
AB phase at which the conductance G(1)(φ) to lead R(1) is maximal
at temperature T = 0. �L = �R = �/2, x = 0.09 (xL = xR = 0.3),
and pL = 0.5. (a) U/� = 8 and (b) 16. θQD calculated from the
Friedel sum rule, θQD = π〈nσ 〉, is plotted by dotted line. φmax and
θQD are related to each other by Eq. (42).

is expressed as Wq′,γ ′;q,γ = ψR;q′,γ ′ (1, 2)W ψL;q,γ (−1, 2) using
the wave functions at the edge of the leads, ψL;q,±(−1, 2) =
〈−1, 2|L; q,±〉 and ψR;q′,±(1, 2) = 〈1, 2|R; q′,±〉. In conse-
quence Wq′,γ ′;q,γ has a separable form in Eq. (5) with

√
wL;q,γ =

√
W ψL;q,γ (−1, 2), (45)

√
wR;q′,γ ′ =

√
W ψR;q′,γ ′ (1, 2). (46)

When the Fermi level intersects both the subbands, there
are two conduction channels, labeled by k = (q,±), as indi-
cated in Fig. 9(b). Then

pL = pR = sin q+a − sin q−a

sin q+a + sin q−a
, (47)

where q± are the intersections between the subband ± and
Fermi level, as derived in Appendix D. Thus |pL,R| < 1. On
the other hand, pL,R = ±1, in the case of single conduction
channel when EF crosses one of the subbands.

Although we considered a specific model in Fig. 9(a), the
separable form of Wk′,k in Eq. (5) should be justified when
the system is described by a tight-binding model in general.
Then

√
wL,k (

√
wR,k′ ) is proportional to the wave function
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FIG. 9. (a) A tight-binding model for the QD interferometer. A
QD is connected to sites (−1, 1) and (1,1) by transfer integrals VL

and VR, respectively, whereas the upper arm of the ring couples sites
(−1, 2) and (1,2) by We±iφ in ±x direction, where φ is the AB phase
for the magnetic flux penetrating the ring (central rectangular region
including the QD). Leads L and R consist of two sites in width (y
direction) and N sites in length (x direction; N � 1), in which the
transfer integral is −t (−t1) in the x (y) direction and the lattice con-
stant is a. (b) Two subbands in the leads, ε±(q) = ∓t1 − 2t cos qa, as
a function of wave number q in the x direction (0 < q < π/a). There
are two conduction channels when the Fermi level EF intersects both
the subbands at q = q±.

ψL,k (ψR,k′ ) at the edge of the lead, as in Eqs. (45) and (46).
We could also claim that pL,R < 1 for the leads of multiple
conduction channels and pL,R = 1 for the leads of single
channel in the usual cases. Precisely speaking, the presence
of multiple channels is a necessary condition for pL,R < 1: pα

is determined by the detailed shape of the system around a
junction between the ring and lead α through Eq. (10).

We comment on the generality of our models. In this sec-
tion, we examined a model in which the subbands (±) are
well defined in the leads. Then the state in the leads is labeled
by k = (q,±) in the presence of two conduction channels.
This is not the case in experimental systems of various shape.
We believe that �α , xα , and pα can be defined in Eqs. (6)
to (8) using state-dependent tunnel couplings without loss of
generality. In our models in Figs. 1(a) and 1(b), we assume a
single conduction channel in the upper arm of the ring. The
multiple channels in the arm should be beyond the scope of
our study.

VI. CONCLUSION

We theoretically examined the transport through an
Aharonov-Bohm ring with an embedded quantum dot (QD),
the so-called QD interferometer, to address two controversial

issues, one concerns the shape of the conductance peak as a
function of energy level εd in the QD and the other is about
the phase measurement in the multiterminal geometry as a
double-slit experiment. For this purpose, we generalized a pre-
vious model in Refs. [18,19] to consider multiple conduction
channels in leads L and R. In our model, the tunnel couplings
between the QD and leads and that between the leads depend
on the states in the leads, as shown in Figs. 1(a) and 1(b).
This gives rise to a parameter pα (|pα| � 1) to characterize a
connection between the two arms of the ring through lead α

(= L, R), which is equal to the overlap integral between the
conduction modes coupled to the upper and lower arms of the
ring.

First, we examined the shape of the conductance peak in
the two-terminal geometry, in the absence of electron-electron
interaction U in the QD. We showed an asymmetric Fano res-
onance at |pL,R| ≈ 1 and an almost symmetric Breit-Wigner
resonance at |pL,R| < 0.5. Hence our model could explain the
experimental results of both an asymmetric Fano resonance
[5] and almost symmetric Breit-Wigner resonance [8], with
fitting parameters pL,R to their data.

Second, we took into account the Kondo effect in the pres-
ence of U , using the Bethe ansatz exact solution, and precisely
evaluated the conductance at temperature T = 0. We showed
a crossover from an asymmetric Fano-Kondo resonance [19]
to the Kondo plateau with changing pL,R.

Our model is also applicable to the multiterminal geom-
etry to address the second issue on the measurement of the
transmission phase shift through the QD by a double-slit ex-
periment. We studied the measured phase φmax, the AB phase
at which the conductance G(1)(φ) to lead R(1) is maximal
in Fig. 1(b). In the absence of U , Eq. (37) indicates the
relation of φmax to an intrinsic phase shift θ

(0)
QD that is the

phase shift through the QD without the upper arm of the
ring. We examined two specific models in the three-terminal
geometry, depicted in Fig. 4. We discussed a crossover from
two- to three-terminal phase measurement in the former and
simulated the experimental system consisting of two quantum
wires [8,16,17] in the latter. Using the latter model, we showed
how precisely the phase locking at π/2 is measured in the
Kondo regime.
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APPENDIX A: CURRENT FORMULATION
USING KELDYSH GREEN’S FUNCTIONS

The current is formulated for the multiterminal model
depicted in Fig. 1(b), using the Keldysh Green’s functions
[43–45]. The chemical potential in lead L( j) [R( j)] is de-
noted by μ

( j)
L [μ( j)

R ]. The spin index σ is omitted in this
Appendix.
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1. Keldysh Green’s functions

The retarded, advanced, and lesser Green’s functions are
defined by

Gr
d,Lk (t, t ′) = 1

ih̄
〈{d (t ), a†

Lk (t ′)}〉θ (t − t ′), (A1)

Ga
d,Lk (t, t ′) = − 1

ih̄
〈{d (t ), a†

Lk (t ′)}〉θ (t ′ − t ), (A2)

G<
d,Lk (t, t ′) = −1

ih̄
〈a†

Lk (t ′)d (t )〉, (A3)

respectively, where {A, B} = AB + BA and θ (t ) is the Heav-
iside step function. The other Green’s functions, Gλ

d,d ,
Gλ

Lk,Rk′ , and so on (λ = r, a, <), are defined in a
similar manner. The average is taken for the station-
ary state and hence all the Green’s functions depend on
t − t ′ only. Note that G<

d,Lk (t − t ′) = −[G<
Lk,d (t ′ − t )]∗ and

G<
d,d (t − t ′) = −[G<

d,d (t ′ − t )]∗. The Fourier transformation
(t − t ′ → ω) yields G<

d,Lk (ω) = −[G<
Lk,d (ω)]∗ and G<

d,d (ω) =
−[G<

d,d (ω)]∗.
We also introduce the Green’s functions in isolate leads L

and R, in the absence of tunnel coupling, HT in Eq. (4). For
example,

gr
Lk (t, t ′) = 1

ih̄

〈{
aLk (t ), a†

Lk (t ′)
}〉

θ (t − t ′)

= 1

ih̄
e−iεk (t−t ′ )/h̄θ (t − t ′), (A4)

g<
Lk (t, t ′) = −1

ih̄

〈
a†

Lk (t ′)aLk (t )
〉

= −1

ih̄
f ( j)
L (εk )e−iεk (t−t ′ )/h̄, (A5)

where f ( j)
L (ε) = [(ε − μ

( j)
L )/(kBT ) + 1]

−1
is the Fermi distri-

bution function in lead L( j) that state k belongs to ( j = 1 or
2). The Fourier transformation leads to

gr
Lk (ω) = 1

h̄ω − εk + iδ

= P
1

h̄ω − εk
− iπδ(h̄ω − εk ), (A6)

g<
Lk (ω) = 2π i f ( j)

L (h̄ω)δ(h̄ω − εk ). (A7)

In the following calculations, the real part (principal value) of
gr

αk (ω) and ga
αk (ω) = [gr

αk (ω)]∗ is disregarded in the summa-
tion over k, assuming a wide band limit.

In the next subsection, G<
d,Lk is replaced by Gr

d,d and G<
d,d .

For this purpose, their relation is derived in the following.
In the Baym-Kadanoff-Keldysh nonequilibrium techniques, a
complex-time contour is considered from t = −∞ to t = t0
just above the real axis and from t = t0 to t = −∞ just below
the real axis. For the contour-ordered Green’s function,

GC
d,Lk (τ, τ ′) = 1

ih̄
〈TCd (τ )a†

Lk (τ ′)〉, (A8)

the equation-of-motion method yields [44,45]

GC
d,Lk (τ, τ ′) =

∫
dτ1

[
GC

d,d (τ, τ1)VLk +
(1),(2)∑

k′
GC

d,Rk′ (τ, τ1)Wk′,keiφ

]
gC

Lk (τ1, τ
′). (A9)

According to the Langreth’s theorem [45,46], this results in

Gr
d,Lk (t, t ′) =

∫
dt1

[
Gr

d,d (t, t1)VLk +
(1),(2)∑

k′
Gr

d,Rk′ (t, t1)Wk′,keiφ

]
gr

Lk (t1, t ′), (A10)

and

G<
d,Lk (t, t ′) =

∫
dt1

{[
Gr

d,d (t, t1)VLk +
(1),(2)∑

k′
Gr

d,Rk′ (t, t1)Wk′,keiφ

]
g<

Lk (t1, t ′)

+
[

G<
d,d (t, t1)VLk +

(1),(2)∑
k′

G<
d,Rk′ (t, t1)Wk′,keiφ

]
ga

Lk (t1, t ′)

}
. (A11)

Similar relations are obtained for Gr
d,Rk′ , and so on.

2. Current formula using Gr
d,d and G<

d,d

We express the current from lead L(1) in terms of Gr
d,d and G<

d,d . The substitution of the Hamiltonian in Eq. (1) into Eq. (15)
results in

I (1)
L = −2e

ih̄

(1)∑
k

[
VLk

〈
a†

Lkd − d†aLk
〉 + (1),(2)∑

k′
Wk′,k

〈
e−iφa†

LkaRk′ − eiφa†
Rk′aLk

〉]
. (A12)
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We added a factor of 2 by the summation over spin index σ . This equation is rewritten as

I (1)
L = 4eRe

(1)∑
k

[
VLkG<

d,Lk (t, t ) +
(1),(2)∑

k′
Wk′,ke−iφG<

Rk′,Lk (t, t )

]

= 4e

2π
Re

∫
dω

(1)∑
k

[
VLkG<

d,Lk (ω) +
(1),(2)∑

k′
Wk′,ke−iφG<

Rk′,Lk (ω)

]
. (A13)

Hence we need to calculate two terms in the integral,

X0 =
(1)∑
k

VLkG<
d,Lk (ω), (A14)

Y0 =
(1)∑
k

(1),(2)∑
k′

Wk′,ke−iφG<
Rk′,Lk (ω). (A15)

Let us consider X0. Using the Fourier transformation of
Eq. (A11), we obtain

X0 = i�(1)
L

[
2 f (1)

L (h̄ω)Gr
d,d (ω) + G<

d,d (ω)
]

+ i p̃(1)
L eiφ

(1),(2)∑
k′

√
wRk′

[
2 f (1)

L (h̄ω)Gr
d,Rk′ (ω)+G<

d,Rk′ (ω)
]
,

(A16)

where p̃( j)
α =

√
�

( j)
α x( j)

α p( j)
α . Then we need

X1 =
(1),(2)∑

k′

√
wRk′Gr

d,Rk′ (ω), (A17)

X2 =
(1),(2)∑

k′

√
wRk′G<

d,Rk′ (ω). (A18)

For X1, we use an equation for Gr
d,Rk′ corresponding to

Eq. (A10) for Gr
d,Lk , which leads to

X1 = −i
[
p̃(1)

R + p̃(2)
R

]
Gr

d,d (ω) − ixRe−iφY1 (A19)

with

Y1 =
(1),(2)∑

k

√
wLkGr

d,Lk (ω). (A20)

Using the Fourier transformation of Eq. (A10), we obtain

Y1 = −i
[
p̃(1)

L + p̃(2)
L

]
Gr

d,d (ω) − ixLeiφX1. (A21)

From Eqs. (A19) and (A21), we express X1 in terms of
Gr

d,d (ω). In the same way, X2 can be written using Gr
d,d (ω) and

G<
d,d (ω).
A similar procedure is adopted for Y0. The final result is

so lengthy that we show the current expression in the case of
Eq. (17), i.e., μ

(1)
L = μ

(2)
L ≡ μL and μ

(1)
R = μ

(2)
R ≡ μR. After

the variable conversion of h̄ω → ε,

I (1)
L = 4e

h

∫
dε

{
−�

(1)
L

[
2 fL(ε)ImGr

d,d (ε) + ImG<
d,d (ε)

] + x(1)
L xR

2

(1 + x)2
[ fL(ε) − fR(ε)]

+ p̃(1)
L

[
A1ReGr

d,d (ε) + A2ImGr
d,d (ε) + A3ImG<

d,d (ε)
] + x(1)

L

[
B1ReGr

d,d (ε) + B2ImGr
d,d (ε) + B3ImG<

d,d (ε)
]}

, (A22)

where

A1 = 4

(1 + x)2
p̃R cos φ[ fL(ε) − fR(ε)], (A23)

A2 = 4

(1 + x)2
{ fL(ε)[x p̃R sin φ + (2 + x)xR p̃L] + fR(ε)[ p̃R sin φ − xR p̃L]}, (A24)

A3 = 2

1 + x
( p̃R sin φ + xR p̃L ), (A25)

B1 = − 8

(1 + x)3
xR p̃L p̃R cos φ[ fL(ε) − fR(ε)], (A26)

B2 = 2

(1 + x)3

{
fL(ε)

[−2(1 + x)xR p̃L p̃R sin φ + (1 − x) p̃2
R − (3 + x)x2

R p̃2
L

] − 2 fR(ε)
(
p̃2

R − x2
R p̃2

L

)}
, (A27)

B3 = − 1

(1 + x)2

(
2xR p̃L p̃R sin φ + p̃2

R + x2
R p̃2

L

)
, (A28)

with p̃α = p̃(1)
α + p̃(2)

α = √
�αxα pα .

The current I (2)
L from lead L(2) is given by replacing (1) → (2) in Eq. (A22). The current I ( j)

R from lead R( j) is obtained from
I ( j)
L by replacing L ↔ R and φ → −φ. These equations yield Eq. (18) for the current conservation.
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3. Current formula in terms of Gr
d,d

For the two-terminal model in Fig. 1(a), the current from lead L is IL = I (1)
L + I (2)

L . The elimination of G<
d,d using Eq. (18)

results in its expression in Eq. (20).
As a three-terminal model, we examine the model in Fig. 1(b) consisting of leads L, R(1), and R(2). We introduce parameters,

γ
( j)

R , y( j)
R , and q( j)

R in Eq. (34). The current into lead R(1) is given by −I (1)
R . Eliminating G<

d,d using Eq. (18), we obtain

−I (1)
R = 2e

h

∫
dε[ fL(ε) − fR(ε)]T (1)(ε)dε, (A29)

T (1)(ε) = 4x

(1 + x)2
y(1)

R + 8
(1 + x)q(1)

R − 2xy(1)
R

(1 + x)3

√
�L�RxpL pR cos φReGr

d,d (ε) + 4C2

(1 + x)3�̃
ImGr

d,d (ε), (A30)

where

C2 = −2(1 + x)
√

�L�RxpL pR sin φ
[
x
(
q(1)

R − y(1)
R

)
�L

(
1 − p2

L

) + (
γ

(1)
R − q(1)

R

)
�R

] + x3

1 + x
y(1)

R

[(
�L p2

L

)2 + (
�R p2

R

)2]
+ x(1 − x)y(1)

R (�L pL )2 + x
[
(1 + x)

(−γ
(1)

R + 2q(1)
R

) − 2xy(1)
R

]
(�R pR)2 − �L�RD2, (A31)

with

D2 = (1 + x)3γ
(1)

R + 4x
(1 + x)q(1)

R − xy(1)
R

1 + x
(pL pR)2 sin2 φ + x2

[
2(x + 3)(x + 1)q(1)

R − (x2 + 4x − 3)y(1)
R

]
1 + x

(pL pR)2

− x
[
(x + 1)(x + 2)γ (1)

R + 2y(1)
R

]
p2

L − x
[
2(x + 1)(x + 2)q(1)

R − x(x + 3)y(1)
R

]
p2

R. (A32)

Regarding the φ-dependence of the conductance at T = 0,
Eqs. (A29) and (A30) yield Eqs. (35) and (36) in the absence
of U . In the presence of U , however, we cannot obtain such a
simple form in general.

APPENDIX B: GREEN’S FUNCTION
IN THE PRESENCE OF U

For our models shown in Figs. 1(a) and 1(b), the Green’s
function of the QD is solvable in the case of U = 0. As
discussed in Sec. II.D, the retarded Green’s function is given
by

Gr
d,d (ε) = 1

ε − ε̃d (φ) + i�̃
(B1)

with the effective energy level ε̃d (φ) in Eq. (25) and effective
linewidth �̃ in Eq. (24). The renormalization due to the direct
tunneling between the leads and the Aharonov-Bohm effect
by the magnetic flux is included in these effective parameters.

In the presence of U , we formulate the perturbation
with respect to the electron-electron interaction in the QD,
HU = Un↑n↓. The Hamiltonian in Eq. (1) is divided into
the noninteracting part H0 and HU ; H = H0 + HU . The
contour-ordered Green’s function of the QD, GC

d,d (τ, τ ′) =
〈TCdσ (τ )d†

σ (τ ′)〉/(ih̄), is written as

GC
d,d (τ, τ ′)

= 1

ih̄
tr

{
ρ0TC dI,σ (τ )d†

I,σ (τ ′) exp

[∫
C

dτ ′′HI,U (τ ′′)
]}

,

(B2)

where ρ0 is the density matrix for U = 0 and index I
indicates the operator in the interaction picture, OI(τ ) =
eiH0τ/h̄Oe−iH0τ/h̄. In the perturbative expansion, the unper-
turbed Green’s function is given by Eq. (B1). This problem
is equivalent to that of the conventional Anderson impu-

rity model, in which an impurity with energy level ε̃d (φ)
and Coulomb interaction U is connected to an energy-
band of conduction electrons via the effective hybridization
�̃:

HAnderson = ε̃d (φ)
∑

σ

nσ + Un↑n↓ +
∑
kσ

εka†
k,σ

ak,σ

+
∑
kσ

(va†
k,σ

dσ + H.c.), (B3)

where �̃ = πρ|v|2, with the density of states ρ for the con-
duction electrons.

In the equilibrium with eV = 0, the physical quantities of
electrons in our model can be evaluated by exploiting the
established methods for the Anderson impurity model [19].
The retarded Green’s function is given by

Gr
d,d (ε) = 1

ε − ε̃d (φ) + i�̃ − 
U (ε)
(B4)

with use of the self-energy 
U (ε) due to the electron-electron

interaction in the QD. Note that z = [1 − d
U
dε

(0)]
−1

and ε̃∗
d =

z[ε̃d (φ) + 
U (0)] in Eq. (26). Gr
d,d (0) is expressed in Eq. (27)

using the phase shift θQD. The Friedel sum rule connects the
phase shift to the electron occupation per spin in the QD,
θQD = π〈nσ 〉, where

〈nσ 〉 = 1

2
− 1

π
tan−1

(
ε̃d (φ) + 
U (0)

�̃

)
. (B5)

We use the Bethe ansatz exact solution to evaluate 〈nσ 〉
[39,40].

APPENDIX C: CURRENT IN THREE-TERMINAL
MODEL IN FIG. 4(b)

We apply the current formula in Eqs. (A29) and (A30) to
the model in Fig. 4(b).
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As mentioned in Sec. IV C, VR,k′ = VRαR and
√

wR,k′ =√
wRβR when state k′ belongs to lead R(1) while VR,k′ = VRβR

and
√

wR,k′ = −√
wRαR when state k′ belongs to lead R(2)

in the tunnel Hamiltonian HT . This results in �
(1)
R = α2

R�R,
�

(2)
R = β2

R�R, x(1)
R = β2

RxR, and x(2)
R = α2

RxR. We also find that
p(1)

R = 1, p(2)
R = −1, and hence pR = p(1)

R + p(2)
R = 0.

From pR = 0, ε̃d (φ) = εd in Eq. (25), which is indepen-
dent of the AB phase φ for the magnetic flux. The Green’s
function in the absence of U becomes

Gr
d,d (ε) = 1

ε − εd + i�̃
(C1)

with

�̃ = �L

(
1 − x

1 + x
p2

L

)
+ �R. (C2)

The substitution of γ
(1)

R = α2
R, y(1)

R = β2
R, and q(1)

R pR = αRβR

(q(1)
R = ∞) into Eq. (A30) results in

T (1)(ε) = 4x

(1 + x)2
β2

R+ 8αRβR

(1 + x)2

√
�L�RxpL cos φReGr

d,d (ε)

+ 4C′
2

(1 + x)3�̃
ImGr

d,d (ε), (C3)

where

C′
2 = −2(1 + x)

√
�L�RxpL sin φ

[
x�L

(
1 − p2

L

) − �R
]
αRβR

+ x3

1 + x
β2

R

(
�L p2

L

)2 + x(1 − x)β2
R(�L pL )2

−�L�R
{
(1 + x)3α2

R − x
[
(x + 1)(x + 2)α2

R + 2β2
R

]
p2

L

}
.

(C4)

Since ε̃d (φ) = εd in this model, Eq. (37) exactly holds in
the absence of U , which leads to Eq. (41). In addition, even in
the presence of U , a relation between φmax and θQD is derived
in the following. The substitution of Eq. (26) into Eq. (C3)
yields

T (1)(0) = 8αRβR

(1 + x)2

√
�L�RxpL

�̃∗

�̃

1

(ε̃∗
d )2 + (�̃∗)

2 F1(φ)

+ (φ-indep. terms) (C5)

at ε = EF = 0, where

F1(φ) = −ε̃∗
d cos φ + [

x�L
(
1 − p2

L

) − �R
] �̃∗

�̃
sin φ. (C6)

For φ = φmax at which F1(φ) is maximal,

tan φmax = −x�L(1 − p2
L ) + �R

�̃
tan θQD, (C7)

where tan θQD = �̃∗/ε̃∗
d . θQD satisfies the Friedel sum rule in

the presence of U .
The current to lead R(2), −I (2)

R , is given by replacing
(1) → (2) in Eq. (A29). T (2)

R is obtained from T (1)
R in Eq. (C3),

replacing αR → βR and βR → −αR. In T (1)
R and T (2)

R , coef-
ficients of cos φ and sin φ are the same in magnitude and
opposite in sign. As a result, the total current to leads R(1)

and R(2) does not depend on the AB phase φ for the magnetic
flux:

−I (1)
R − I (2)

R = 2e

h

∫
[ fL(ε) − fR(ε)]T (ε)dε, (C8)

where

T (ε) = T (1)
R + T (2)

R = 4x

(1 + x)2
+ 4C1

(1 + x)3�̃
ImGr

d,d (ε),

(C9)
with

C1 = x3

1 + x

(
�L p2

L

)2 + x(1 − x)(�L pL )2

−�L�R
[
(1 + x)3 − x(x2 + 3x + 4)p2

L

]
. (C10)

This coincides with Eq. (20) for the current in the two-
terminal system with pR = 0.

APPENDIX D: TIGHT-BINDING MODEL IN FIG. 9

In the tight-binding model in Fig. 9(a), leads L and
R consist of two sites in width and N sites in length
(N � 1). There are two subbands in the leads, as depicted
in Fig. 9(b),

ε±(q) = ∓t1 − 2t cos qa, (D1)

where t (t1) is the transfer integral in x (y) direction and a is
the lattice constant. q is the wave number in the x direction,
q = πn/[(N + 1)a] with n = 1, 2, . . . , N . The corresponding
states are given by Eqs. (43) and (44).

Let us consider the case of two conduction channels in the
leads when the Fermi level intersects both the two subbands.
They are labeled by k = (q,±). In the tunnel Hamil-
tonian HT in Eq. (4), VL;q,± = VLψL;q,±(−1, 1), VR;q,± =
VRψR;q,±(1, 1), and Wq′,γ ′;q,γ = √

wR;q′,γ ′wL;q,γ , where wL;q,γ

and wR;q′,γ ′ are given by Eqs. (45) and (46), respec-
tively, for γ , γ ′ = ±. Here, ψα;q,γ ( j, �) = 〈 j, �|α; q, γ 〉
is the wave function of the conduction mode (q, γ )
in lead α: ψL;q,±(−1, 1) = ψR;q,±(1, 1) = sin qa/

√
N + 1

and ψL;q,±(−1, 2) = ψR;q,±(1, 2) = ± sin qa/
√

N + 1 from
Eqs. (43) and (44).

We calculate �α , xα , and pα in Eqs. (6) to (8) at ε = EF.
We focus on lead L because lead R is identical to lead L. The
density of states for subband ± is given by

ρ±(EF) = N + 1

π

1

2t sin q±a
, (D2)

where q± is defined by ε±(q±) = EF, as depicted in Fig. 9(b),

�L = π
∑
γ=±

ργ (EF)(VL;qγ ,γ )2

= (VL )2

2t
(sin q+a + sin q−a), (D3)

xL = W

2t
(sin q+a + sin q−a), (D4)

√
�LxL pL = VL

√
W

2t
(sin q+a − sin q−a), (D5)

and in consequence we obtain pL in Eq. (47).
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