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Approach to the analysis and synthesis of cylindrical metasurfaces with noncircular cross sections
based on conformal transformations
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We present methods for analyzing and designing cylindrical electromagnetic metasurfaces with noncircular
cross sections based on conformal transformations. It can be difficult to treat surfaces with noncanonical
geometries since they generally do not admit straightforward solutions to the Helmholtz wave equation subject
to the appropriate boundary conditions. This leads to the reliance on full wave numerical techniques which
are only suitable for the analysis, but not the synthesis, of these surfaces. We address this issue by employing
conformal transformations to map the physical space into a computational space in which the surface coincides
with a circular cylinder. The electromagnetic boundary conditions on the surface remain intact under the
transformations due to their angle-preserving nature. However, they are much more easily enforced. As a result,
analytical modal solutions for the scattered fields are readily obtainable, which facilitates closed-form analysis
and synthesis equations for general noncircular cylindrical metasurfaces. One important utility enabled by the
proposed framework is the efficient identification of electromagnetic field distributions that satisfy local power
conservation. This leads to passive and lossless surface designs, which are highly desirable in practice as they do
not require active and/or lossy components.
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I. INTRODUCTION

Recent advancements in metasurfaces (MTSs) have un-
veiled their ability to control various aspects of electro-
magnetic waves with unprecedented precision and efficiency.
They consist of two-dimensional arrangements of custom-
designed deeply subwavelength electromagnetic scatterers
called “meta-atoms” [1,2]. By properly tuning the responses
of their constituent meta-atoms, MTSs can be engineered
to provide a wide range of functionalities such as wave
redirection [3–6], frequency filtering [7,8], polarization con-
version [9,10], beam forming [11–13], and so on.

Due to their low profiles, MTSs are often modeled as
infinitesimally thin sheets of electric and/or magnetic po-
larization currents which are tailored to enforce certain
field discontinuities [14], according to appropriate boundary
conditions [15]. In the so-called “omega-bianisotropic meta-
surfaces” (O-BMSs), which are the main focus of this paper,
the induced electric and magnetic currents are cross-coupled.
This feature grants them extended functionalities compared to
conventional “Huygens’ metasurfaces” (HMSs) in which the
coupling is absent [16]. The boundary conditions correspond-
ing to general O-BMSs are the bianisotropic sheet transition
conditions (BSTCs) [17].

In the past few years, nonplanar HMSs as well as O-
BMSs have generated a great deal of interest. In particular,
cylindrical MTS-based devices with arbitrary cross-sectional
shapes have been extensively investigated and employed due
to the practical applications made possible by their unique
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geometries. They are the ideal platform for construction of
electromagnetic surface cloaks, since they can be molded at
will to offer complete low-profile enclosures for arbitrarily
shaped scatterers [18–21]. Their ability to confine sources
of radiation or scattering obstacles has also been leveraged
to synthesize electromagnetic illusions [22,23] and high-gain
conformal antennas [24].

Many efficient and accurate numerical analysis techniques
for arbitrarily shaped cylindrical MTSs have been devel-
oped [25–27]. However, synthesis of such surfaces has been
mostly based on the direct solution of the BSTC equations,
which generally results in active and/or lossy designs. These
features are undesirable because the generation or absorption
of power can be hard to realize/control in practice.

Recently, we proposed a versatile modal expansion frame-
work which can be wielded as an analysis as well as a
synthesis tool for cylindrical metasurfaces [28]. Notably, it
can guarantee passivity and losslessness of the generated de-
signs, which consequentially are easily implementable with
only reactive components such as etched conductive patterns
on printed circuit boards [29].

In this work, we extend the aforementioned methods to
model and design MTSs with irregular cross sections. Due
to the geometries of the MTSs which generally are insepa-
rable and thus incompatible with the method of separation
of variables, the enforcement of the BSTCs for analytical
modal solutions of the Helmholtz wave equation is difficult.
One promising approach to address this issue is to use a
conformal mapping to transform the physical shape of the
MTS into some simple shape, such as a circle, on which the
boundary conditions are easily enforced. This technique has
been demonstrated to be a viable route for solving scattering
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FIG. 1. Externally excited cylindrical O-BMS with noncircular
cross section.

[30,31] and inverse scattering problems [32] involving homo-
geneous cylindrical scatterers with irregular cross sections. To
the best of our knowledge, spatially varying surface properties
such as those possessed by MTSs have not been extensively
incorporated into this framework.

By introducing spatially modulated boundary conditions,
we unlock previously untapped potentials of the analytical
modal expansion technique facilitated by the conformal map-
ping. Namely, we are able to derive closed-form formulas for
the prediction as well as the design of the electromagnetic
scattering behaviors of inhomogeneous noncircular cylindri-
cal O-BMSs. More importantly, owing to the well-defined
wave impedances associated with the eigenfunctions of the
modal expansions, it is easy to identify strictly passive and
lossless designs.

To validate the accuracy of the proposed analysis tech-
nique, we evaluate the scattered fields from a noncircular
cylindrical metasurface and compare the results with those
obtained from simulations based on the finite element method
(FEM). To demonstrate the effectiveness of the synthesis tech-
nique, we design several different metasurface-based devices
and confirm their functionalities, also with FEM simulations.

II. THEORY

For the problem under consideration, it is natural to de-
scribe the physical space occupied by the O-BMS with a
two-dimensional polar coordinate system (r, θ ), with ∂/∂z =
0. This is illustrated in Fig. 1, in which the cross section of
the O-BMS is modeled by a simple closed curve, Crθ . The
metasurface is characterized by its spatially varying scalar
electric impedance Zse, magnetic admittance Ysm, and mag-
netoelectric coupling Kem. The materials inside and outside of
Crθ have relative permittivities εr1 and εr2, respectively; they
are assumed to be nonmagnetic.

Without loss of generality, we assume the electromagnetic
field distributions to be transverse magnetic with respect to
the z axis (TMz), with implicit time dependency e jωt . Thus
we can write �E = ẑEz. Extensions to transverse electric (TEz)
configurations are straightforward and are not discussed in
this work. Furthermore, we assume for now that all (electric
and/or magnetic) sources are outside the curve Crθ . After the
overall framework is established, it can be trivially extended
to accommodate internal sources, as is done in the Appendix.

In the source free regions of the physical plane, the elec-
tromagnetic fields satisfy the Helmholtz wave equation

∇2
rθ� + k2

l � = 0, l ∈ {1, 2}, (1)

FIG. 2. Illustration of the conformal mapping between the phys-
ical Z plane and the computational ζ plane.

where kl = √
εrl ko is the wave number of the host medium.

The ∇2
rθ operator is the Laplacian in the physical (r, θ ) coor-

dinates. The function � can represent any vector component
of the electromagnetic fields.

The tangential field discontinuities across the O-BMS
boundary are governed by the well-known BSTCs. For the
scalar O-BMSs under consideration, this can be stated as

ẑ · �Eav = Zse(t̂‖ · � �H ) − Kem(ẑ · � �E ),

t̂‖ · �Hav = Ysm(ẑ · � �E ) + Kem(t̂‖ · � �H ), (2)

where

�Eav � 1
2 ( �E+ + �E−) and �Hav � 1

2 ( �H+ + �H−) (3)

are the averaged electromagnetic fields at the boundary, and

� �E � �E+ − �E− and � �H � �H+ − �H− (4)

are the field discontinuities. The superscripts “+” and “−”
correspond to the fields immediately outside and inside the
metasurface cavity, respectively. The vector t̂‖ = r̂tr + θ̂tθ is
the in-plane tangential unit vector along Crθ .

Due to the assumed source location, the tangential fields
inside Crθ consist of the transmitted fields (Et

z , Ht
‖), whereas

the external fields consist of the incident (Ei
z, Hi

‖) plus the
reflected fields (Er

z , Hr
‖ ).

To analytically evaluate the scattered fields for any given
incident illumination, we must solve (1) subject to the bound-
ary conditions (2) on Crθ . We attempt to do so with a
conformal transformation approach illustrated in Fig. 2. Un-
der this transformation, the physical plane inhabited by the
O-BMS is mapped to a computational plane in which the
surface resides on a circular cylinder with radius α. This
simplifies the enforcement of (2) on the MTS boundary. In
the following subsections, we describe methods to predict
(Sec. II A) and engineer (Sec. II B) the electromagnetic be-
haviors of general cylindrical O-BMSs.

A. Analysis

As a preliminary comment, we acknowledge that it can
be difficult to obtain simple analytic mappings which are
conformal in the entire complex plane and appropriate for the
present problem. As a result, the proposed framework gener-
ally cannot provide the scattered fields everywhere in space.
In this work, we devote our efforts to evaluating the scattered
fields only in the exterior region. Although assessment of the
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interior fields is possible through a separate mapping, it is not
considered in this paper. This is because the effects of most
practical cylindrical metasurfaces, including those considered
in this paper, are intended to be observed outside of the surface
enclosure.

Despite this limitation, it should be noted that the evalu-
ation of the scattered fields immediately interior to the MTS
is still possible by virtue of the conformality of the mapping
on, and immediately within, Crθ . This has two important
implications. First, we can still account for sources located
inside the MTS cavity, since we can simply specify the source
fields on Crθ . Knowledge of the source fields anywhere else is
not required, if we only seek the field distribution outside of
Crθ . In Sec. III C, this fact is exploited to design an internally
excited electromagnetic illusion MTS. An equally significant
corollary is that we are able to engineer the fields inside Crθ

even without access to a proper conformal mapping for that
entire bounded region. This is justified by the equivalence
principle, because to manipulate the fields in a volume we
simply need to properly engineer the tangential fields on its
bounding surface. We use this property to design passive and
lossless O-BMS cloaks in Sec. III B.

To begin our analysis, let us consider a function, W , which
maps a complex variable, ζ = σe jφ , to another variable, Z =
re jθ , according to

Z = W (ζ ), (5)

where (σ, φ) are the polar coordinates of the “computational
plane” in which (2) will be enforced. We assume conformality
for W in the region σ � α and that it maps the circle Cσφ =
{(σ, φ)| σ = α, φ ∈ [0, 2π ]} in the complex ζ plane to Crθ in
the complex Z plane. Again, this mapping is conceptualized
in Fig. 2.

A well-known result from transformation optics is that,
under a conformal mapping, the Helmholtz wave equation
takes a new form in the ζ plane given by

∇2
σφ� +

∣∣∣∣dW

dζ

∣∣∣∣
2

k2
l � = 0, l ∈ {1, 2}, (6)

where ∇2
σφ is the Laplacian in the (σ, φ) coordinates. The term

in front of kl can be interpreted as a spatial modulation acting
on the effective refractive index of the host medium [33].

General modal solutions to (6) are available and are fre-
quently utilized in acoustic and electromagnetic scattering
problems [30,31]. Following the established results, we can
write the incident, reflected, and transmitted electric fields as

Ei
z =

∞∑
m=−∞

Ai
mJm(k2|W (ζ )|)e jm∠W (ζ ),

Et
z =

∞∑
m=−∞

At
mJm(k1|W (ζ )|)e jm∠W (ζ ),

Er
z =

∞∑
m=−∞

Ar
mH (2)

m (k2|W (ζ )|)e jm∠W (ζ ), (7)

where A{i,t,r}
m are the coefficients corresponding to the mth

incident, transmitted, and reflected modes. Here, Jm and H (2)
m

are the Bessel function and the Hankel function of the second
kind, respectively.

Since the fields are 2π periodic in φ for any fixed σ , we
may represent them as N × 1 vectors by sampling them at
N equally spaced sampling points along the circle Cσφ as
follows:

Ē {i,r}
z [n] = E {i,r}

z (ζ )|σ→α+,φ=2(n−1)π/N ,

Ē t
z [n] = Et

z (ζ )|σ→α−,φ=2(n−1)π/N ,

n ∈ [1, N]. (8)

In general, uniformly distributed sampling points in the ζ

plane will not be mapped to uniformly spaced points in the
Z plane. However, this is not necessarily disadvantageous,
since we can choose W to yield higher sampling rates at sharp
corners in the physical plane, where more rapid variations in
surface parameters are expected.

An equivalent representation of the boundary electric fields
is given in terms of their modal expansion coefficients Â{i,t,r}
as follows:

Â{i,t,r}[m] = A{i,t,r}
m , m ∈ [1, M], (9)

where the shifted index

m � 2m − M − 1

2
(10)

is introduced so that the center entry of Â{i,t,r} corresponds
to the fundamental (0th) mode. The infinite summations in (7)
have been truncated to M terms to facilitate their computation.

The vectors Ē {i,t,r}
z and Â{i,t,r} can be algebraically related

to each other by performing a modal decomposition. With
the circular cylindrical O-BMSs examined previously, the
eigenfunctions of the modal expansions are orthogonal on the
physical cross-section perimeter. Thus, the modal decomposi-
tion of Ē {i,t,r}

z amounted to N-point discrete Fourier transforms
(N-DFT) which can be implemented using the DFT ma-
trix [28]. This is not applicable for the present problem,
because the modal wave functions in (7) are not orthogonal
on Cσφ . However, examining the summations, we can still take
inspiration from the DFT matrix formalism and write

Ē {i,t,r}
z = P{i,t,r}Â{i,t,r},

Pi[n][m] = Jm (k2|W (ζ 
n )|)e jm∠W (ζ 

n ),

Pt [n][m] = Jm (k1|W (ζ 
n )|)e jm∠W (ζ 

n ),

Pr[n][m] = H (2)
m (k2|W (ζ 

n )|)e jm∠W (ζ 
n ), (11)

where

ζ 
n � αe j2(n−1)π/N . (12)

We can derive similar vector representations of the mag-
netic fields, which can be algebraically related to Ē {i,t,r}.
From (7), analytical expressions for the magnetic fields may
be obtained using the time harmonic Maxwell-Faraday equa-
tion:

∇rθ × �E {i,t,r} = − jωμ �H {i,t,r}. (13)
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Under the conformal mapping W , Eq. (13) is transformed into

1

hσ hφhz

∣∣∣∣∣∣∣∣
σ̂hσ φ̂hφ ẑhz

∂
∂σ

∂
∂φ

∂
∂z

hσ E {i,t,r}
σ hφE {i,t,r}

φ hzE {i,t,r}
z

∣∣∣∣∣∣∣∣
= − jωμ �H {i,t,r},

(14)

where

hι =
√∣∣∣∣∂r

∂ι

∣∣∣∣
2

+
∣∣∣∣ r∂θ

∂ι

∣∣∣∣
2

+
∣∣∣∣∂z

∂ι

∣∣∣∣
2

. (15)

As stated in our initial assumptions, we have ∂/∂z = 0 and
E {i,t,r}

σ = E {i,t,r}
φ = 0.

Because W is conformal in our region of interest, the
component of �H {i,t,r} tangential to Crθ corresponds to the
φ component along the circle Cσφ . Therefore, to effectively
leverage (2), we simply evaluate H {i,t,r}

φ , which according
to (14) are given by

Hi
φ =

∞∑
m=−∞

γ2,m(W, ζ )Ai
mJm(k2|W (ζ )|)e jm∠W (ζ ),

Ht
φ =

∞∑
m=−∞

γ1,m(W, ζ )At
mJm(k1|W (ζ )|)e jm∠W (ζ ),

Hr
φ =

∞∑
m=−∞

τ2,m(W, ζ )Ar
mH (2)

m (k2|W (ζ )|)e jm∠W (ζ ), (16)

where the function compositions

γl,m(W, ζ ) = kl

jωμhσ

J ′
m(kl |W (ζ )|)

Jm(kl |W (ζ )|)
∂

∂σ
|W (ζ )|

+ m

ωμhσ

∂

∂σ
∠W (ζ ),

τl,m(W, ζ ) = kl

jωμhσ

H (2)′
m (kl |W (ζ )|)

H (2)
m (kl |W (ζ )|)

∂

∂σ
|W (ζ )|

+ m

ωμhσ

∂

∂σ
∠W (ζ ), (17)

can be interpreted as the spatially varying modal wave admit-
tances for various components of the mth mode. The implicit
dependency of hσ on W and ζ is suppressed.

Sampling the magnetic fields above and below the O-BMS
at N equally spaced sampling points along the circle Cσφ

yields the following boundary field vectors:

H̄ {i,r}
φ [n] = H {i,r}

z (ζ )|σ→α+,φ=2(n−1)π/N ,

H̄t
φ[n] = Ht

z (ζ )|σ→α−,φ=2(n−1)π/N . (18)

Alternatively, based on (16), these vectors can be rewritten as

H̄ {i,t,r}
φ = Q{i,t,r}Â{i,t,r},

Qi[n][m] = γ2,m (W, ζ 
n )Jm (k2|W (ζ 

n )|)e jm∠W (ζ 
n ),

Qt [n][m] = γ1,m (W, ζ 
n )Jm (k1|W (ζ 

n )|)e jm∠W (ζ 
n ),

Qr[n][m] = τ2,m (W, ζ 
n )H (2)

m (k2|W (ζ 
n )|)e jm∠W (ζ 

n ), (19)

where m and ζ 
n are as defined in (10) and (12), respectively.

Comparing (11) with (19) leads to the algebraic relation-
ship between the boundary electric and the magnetic field
vectors as follows:

H̄ {i,t,r}
φ = Y{i,t,r}Ē {i,t,r}

z , Y{i,t,r} � Q{i,t,r}(P{i,t,r})−1. (20)

The matrices Y{i,t,r} can be interpreted as admittance ma-
trices which relate the incident, transmitted, and reflected
electric and magnetic fields for externally excited metasur-
faces.

Having obtained vector representations of the boundary
electromagnetic fields, we can also sample the O-BMS sur-
face parameters at the same sampling points, obtaining N × 1
surface property vectors Z̄se, Ȳsm, and K̄em. This allows us to
write the discretized form of the BSTC equations as

1
2

(
Ē t

z + Ē i
z + Ē r

z

)
= Z

(
Yt Ē t

z − YiĒ i
z − YrĒ r

z

) − K
(
Ē t

z − Ē i
z − Ē r

z

)
,

1
2

(
Yt Ē t

z + YiĒ i
z + Yr Ē r

z

)
= Y

(
Ē t

z − Ē i
z − Ē r

z

) + K
(
Yt Ē t

z − YiĒ i
z − YrĒ r

z

)
, (21)

where

Z = diag(Z̄se), Y = diag(Ȳsm), K = diag(K̄em). (22)

Note that the boundary magnetic field vectors are absent
from (21), owing to the application of (20), which eliminates
half of the unknowns in the analysis problem. Following
the same idea presented previously for circular cylindrical
O-BMSs, we can then rearrange (21) to derive closed-form
expressions for the transmitted and reflected boundary electric
fields. They can be written in terms of electric field transmis-
sion (Te) and reflection (Re) matrices, according to

Ē t
z = TeĒ i

z, Ē r
z = ReĒ i

z . (23)

The explicit expressions for these matrices are given by

Te = t−1
a tb, Re = r−1

a rb,

ta = (
1
2 Yr − Y − KYr

)−1( 1
2 Yt + Y + KYt

)
,

− (
1
2 I − ZYr + K

)−1( 1
2 I + ZYt − K

)
tb = (

1
2 I − ZYr + K

)−1( 1
2 I − ZYi + K

)
− (

1
2 Yr − Y − KYr

)−1( 1
2 Yi − Y − KYi

)
,

ra = (
1
2 I + ZYt − K

)−1( 1
2 I − ZYr + K

)
− (

1
2 Yt + Y + KYt

)−1( 1
2 Yr − Y − KYr

)
,

rb = (
1
2 Yt + Y + KYt

)−1( 1
2 Yi − Y − KYi

)
− (

1
2 I + ZYt − K

)−1( 1
2 I − ZYi + K

)
. (24)

Equivalently, we can write

Ât = (Pt )−1TePiÂi � TÂi,

Âr = (Pr )−1RePiÂi � RÂi, (25)

where T and R are the modal transmission and reflection
matrices. Using (24) and (25), we can evaluate the Â{t,r} cor-
responding to any set of given {Z̄se, Ȳsm, K̄em, Âi}. Then, the
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electromagnetic fields everywhere for which W is conformal
can be computed using truncated versions of (7) and (16).

B. Synthesis

As discussed in Sec. I, for practical reasons, we are often
interested in O-BMSs which can be implemented using only
reactive components. Thus, although the preceding analysis
is valid for general surfaces which may generate and/or ab-
sorb power, we restrict further investigations to those that are
passive and lossless.

A straightforward method of guaranteeing passivity and
losslessness is to enforce the condition of local power con-
servation (LPC), which is essentially a pointwise continuity
condition for the normal flux of the real power across the
metasurface. In the computational domain, it can be stated as

Re
{(

Ē i
z + Ē r

z

) 
 (
H̄ i

φ + H̄ r
φ

)∗ − Ē t
z 
 (

H̄t
φ

)∗} = 0, (26)

where 
 denotes elementwise product and (·)∗ denotes com-
plex conjugation.

Previously, it was demonstrated that transmissive scalar
metasurfaces can be made passive and lossless if they are
made to support some judiciously designed auxiliary reflec-
tion, while reflective surfaces can achieve this with some
auxiliary transmission [28]. However, identification of the
unknown auxiliary fields is generally nontrivial, since the
required auxiliary electric fields and auxiliary magnetic fields
must satisfy Maxwell’s equations in addition to (26). In the
present scenario, the problem is compounded by the non-
separable geometry of the metasurface, which renders the
approach of brute force optimization on the electromagnetic
field distribution [21,23] exceedingly difficult.

With the modal solutions obtained in Sec. II A, the total
number of unknowns in the LPC equation is halved. More
specifically, using (11) and (19), we can transform (26) into

Re{(Ē i + Pr Âr ) 
 (H̄ i + Qr Âr )∗ − Ē t 
 (H̄t )∗} = 0, (27)

for transmissive O-BMSs, and

Re{(Ē i + Ē r ) 
 (H̄ i + H̄ r )∗ − Pt Ât 
 (Qt Ât )∗} = 0, (28)

for reflective O-BMSs. Evaluation of the required auxil-
iary fields amounts to solving (27) for the unknown Âr or
solving (28) for the unknown Ât . Either case will not be chal-
lenging since these are straightforward nonlinear algebraic
equations.

If the field transformations of an O-BMS satisfies LPC,
then its constituent surface parameters have closed-form ex-
pressions given by [17]

K̄em = Re{Ē+
z 
 H̄−∗

φ − Ē−
z 
 H̄+∗

φ }
2Re{(Ē+

z − Ē−
z ) 
 (H̄+

φ − H̄−
φ )∗} ,

Ȳsm = j

2
Im

{
H̄+

φ + H̄−
φ

Ē+
z − Ē−

z

}
− jK̄em 
 Im

{
H̄+

φ − H̄−
φ

Ē+
z − Ē−

z

}
,

Z̄se = j

2
Im

{
Ē+

z + Ē−
z

H̄+
φ − H̄−

φ

}
+ jK̄em 
 Im

{
Ē+

z − Ē−
z

H̄+
φ − H̄−

φ

}
,

(29)

where

Ē+
z = Ē i

z + Ē r
z , Ē−

z = Ē t
z ,

H̄+
φ = H̄ i

φ + H̄ r
φ, H̄−

φ = H̄t
φ, (30)

since we have assumed external sources.
To summarize, the proposed design method for passive and

lossless conformal cylindrical O-BMSs has three main steps.
First, {Pr, Qr} or {Pt , Qt } are populated using (11) and (19).
Then, (27) or (28) is solved to obtain the required auxiliary Âr

or Ât . Last, with knowledge of the complete field distributions
at the MTS boundary, (29) is used to derive the required O-
BMS surface parameters.

C. Conformal transformations

For a given cross-sectional shape, we must identify the
appropriate function W which maps it to a circle. Although
general transformations based on series expansions are avail-
able [30], many practical geometries do not require such a
comprehensive description. In this work, as a proof of con-
cept, we consider a simple function,

Z = W (ζ ) = R

(
ζ + 1

qζ q

)
e jt , q ∈ Z, (31)

which maps the exterior of a circle centered at the origin of
the ζ plane to the exteriors of various hypotrochoids in the
Z plane [34]. For q = 1, it can be used to model ellipses.
For q > 1, the resulting hypotrochoids resemble equilateral
polygons with (q + 1) edges joined by rounded corners. The
parameters R and t stretch and rotate the mapped shape in the
Z plane, respectively. Other metasurface configurations that
require more sophisticated mappings are reserved for future
investigations.

D. Numerical considerations

Modal expansion methods involving Hankel functions are
known to suffer from numerical issues when they are used to
compute the scattered fields from obstacles with large aspect
ratios, such as highly elongated ellipses. This is due to the
poor behavior of the modal wave functions for small radial
arguments, which demands high numerical precision to be
properly evaluated.

This problem has been extensively investigated in the
context of the transition matrix (T -matrix) method for electro-
magnetic and acoustic scattering calculations [35,36]. Many
simple solutions are available. For instance, one can expand
the fields with alternative eigenfunctions based on the prob-
lem. In this work, we take a more general approach by
increasing the numerical precision of our calculations [37].

III. RESULTS AND DISCUSSIONS

In the following subsections, two-dimensional finite ele-
ment simulations are conducted with COMSOL MULTIPHYSICS

to provide validations for the proposed analysis and synthesis
techniques. In COMSOL, the O-BMSs are modeled as electric
and magnetic polarization current sheets whose complex am-
plitudes depend on the local averaged fields �Eav and �Hav , as
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TABLE I. Parameters for the quasisquare cylinder studied in
Example A.

f (GHz) N M R q t α εr1 εr2 rs (m) θs

1 351 251 0.5 3 π/8 1.33 3 1 2.8 0

described by

�Js = ẑ

[
jIm{Ysm}(ẑ · �Eav ) + Re{Kem}(t̂‖ · �Hav )

Re{Kem}2 − Im{Ysm}Im{Zse}
]
,

�Ms = t̂‖

[
jIm{Zse}(t̂‖ · �Hav ) − Re{Kem}(ẑ · �Eav )

Re{Kem}2 − Im{Ysm}Im{Zse}
]
, (32)

where �Js and �Ms are the surface electric and magnetic current
densities, respectively.

It is easy to see that the currents specified by (32) corre-
spond to those induced in a passive and lossless O-BMS, since
the real parts of Z̄se and Ȳsm and the imaginary parts of K̄em,
which are responsible for power gain and/or dissipation [38],
are identically zero.

In COMSOL, the discrete vectors Z̄se, Ȳsm, and K̄em are inter-
polated using rectangular pulses to form continuous surfaces.
Conveniently, the local tangential unit vectors t̂‖ at any point
along a parametric curve are readily available as a built-in
variable in COMSOL.

Last, we note that in COMSOL, cross-sectional shapes with
high aspect ratios may require dense FEM meshes in order
to properly resolve their fine features. Designs with rapidly
varying surface properties also demand careful meshing. Nev-
ertheless, all the designs presented in this paper have short
simulation times on the order of minutes.

A. Evaluation of scattered fields

As a validation of the proposed framework, we first cal-
culate the external scattered fields of a quasisquare dielectric
cylinder coated with an impedance surface characterized by
its homogeneous properties:

Zse = j100, Ysm → ∞, Kem = 0. (33)

The incident field is a z-polarized cylindrical wave radiated by
an external electric line source located at (r, θ ) = (rs, θs); its
modal expansion can be inferred from the addition theorem
for Hankel functions to be [39]

Âi[m] = H (2)
m (k2rs)e− jmθs . (34)

The relevant geometric and material parameters for this
problem are summarized in Table I. The corresponding con-
formal transformation for the external region is visualized in
Fig. 3. The red and black contours correspond to loci of con-
stant φ and constant σ , respectively. The dielectric interface
and the cross section of the impedance surface in both planes
are highlighted with the blue curves.

In the following plots, we show comparison between the
fields evaluated using (25) and those obtained from COMSOL.
First, we calculate the average electric fields on the surface
(along the blue curves); the results are plotted in Fig. 4. The
horizontal axis corresponds to the physical angular coordinate

u

v

x

y

FIG. 3. Visualization of the conformal transformation specified
in Table I.

θ , which has a one-to-one correspondence with the computa-
tional angular coordinate φ for the present geometry.

In Fig. 5, we plot the total external electric field distribution
along the line y = 0, which is marked as the green curves in
Fig. 3.

In both of the cases examined above, we observe an almost
perfect match between the modal expansion prediction and
FEM results. The agreement in Fig. 4 is particularly encour-
aging because it lends credence to the proposed framework
as an analysis tool for the boundary fields. As we know, the
tangential field profile at a metasurface boundary defines its
very functionality.

B. Conformal O-BMS cloaks

In this section, we use the proposed synthesis technique
to design passive and lossless electromagnetic cloaks for
penetrable (dielectric) and impenetrable (perfect conductor)
cylindrical objects with noncircular cross sections and arbi-
trary electrical sizes.

1. Penetrable objects

First, we design a penetrable O-BMS cloak for dielectric
cylinders. Recently, penetrable cloaks have been proposed as
a passive and lossless low-profile solution for concealment
of certain objects from known external illuminations [20,28].
It was shown that if the object permits internal fields,

|E
z|

FIG. 4. Magnitude of the computed total electric fields along the
impedance surface (blue curves in Fig. 3).
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x

|E
z|

FIG. 5. Magnitude of the computed total electric fields along the
line y = 0 (green curves in Fig. 3).

then an O-BMS enclosure can be designed to satisfy LPC
by matching the power flow profiles of the incident and
transmitted fields. At the same time, the surface will incur
zero reflection, rendering the target invisible to all external
observers.

Penetrable cloaks possess several advantages and disad-
vantages when compared to other cloaking solutions. For
instance, volumetric metamaterial cloaks based on transfor-
mation optics can hide objects of any electrical size without
a priori knowledge of the incident field [40], but suffer
from complexity, bulkiness, and increased loss. Thin plas-
monic mantle cloaks can be used to dramatically suppress
the dominant component of the scattered fields from electri-
cally small objects [41,42]; they perform ideally within the
quasistatic regime. Active Huygens’ metasurface cloaks can
conceal any object from arbitrary external illuminations by
virtue of their reconfigurability [18,19], but demand constant
power supply and may suffer from stability issues caused
by their complex control circuitries. Penetrable cloaks forfeit
the robustness afforded by prior designs, since they require
knowledge of the external fields. By doing so, they gain
substantial improvements in terms of the efficiency, manu-
facturability, and integrability. They are ideal for applications
such as electromagnetic interference reduction inside wireless
communication systems [43,44].

The general schematic for a penetrable O-BMS cloak for a
noncircular dielectric cylinder is shown in Fig. 6. For illustra-

FIG. 6. Conformal scalar O-BMS cloak for penetrable dielectric
objects.

TABLE II. Parameters for the elliptic dielectric cylinder to be
concealed.

f (GHz) N M R q t α εr1 εr2 rs (m) θs

1 351 101 1/3 1 π/4 1.3 3 1 1.33 0

tive purposes, we consider a cylinder with an elliptic cross
section and assume the external incident fields to be those
radiated by a ẑ-directed line source located at (r, θ ) = (rs, θs).
The detailed geometric and material parameters are outlined
in Table II. With it, we populate all relevant matrices described
in Sec. II.

Next, we note that the penetrable cloak is a reflective MTS,
since we are specifying the desired reflection to be zero. Thus,
to ensure its passivity and losslessness, we solve the reflective
LPC equation (28) for the unknown auxiliary Ât , with Âi given
by (34) and Âr = 0. Using the f solve function in MATLAB,
with the Levenberg-Marquardt algorithm, we obtain the re-
quired auxiliary Ât , whose associated boundary electric and
magnetic fields are plotted in Fig. 7. Here, the solved vectors
Ē t

z and H̄t
‖ are interpolated to form continuous functions of the

computational angular coordinate φ.
As the final step, to synthesize the required O-BMS param-

eters, we insert the complete electromagnetic field distribution
into (29). The resultant {Z̄se, Ȳsm, K̄em} are interpolated and
plotted in Fig. 8. For legibility, Zse and Ysm are normalized
against the free space wave impedance ηo. We note that the
real parts of Zse and Ysm as well as the imaginary part of Kem

are excluded from the plot, since they are identically zero.
We implement the surface parameters of Fig. 8 in COMSOL

MULTIPHYSICS following (32) and illuminate the cylinder with
the cylindrical source. A snapshot of the resulting electric
field distribution Re{Ez} is plotted in Fig. 9(b). The wave
fronts emanating from the source location are unperturbed by
the cloaked target, signifying no observable reflections. For
reference, the field distribution without the O-BMS cloak is

FIG. 7. The required transmitted auxiliary electric field Et
z and

magnetic field Ht
‖ (≡ Ht

φ) for the passive and lossless cloaking of the
elliptic dielectric cylinder.
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FIG. 8. Synthesized passive and lossless O-BMS parameters for
cloaking the elliptic dielectric cylinder from an external line source.

shown in Fig. 9(a). Here, the external reflections caused by
the dielectric cylinder create a complex interference pattern in
conjunction with the incident cylindrical wave.

Re{Ez}
(V/m)

Source

y
(m
)

x (m)

Re{Ez}
(V/m)

SourceO-BMS

y
(m
)

x (m)

(a)

(b)

FIG. 9. Snapshot of simulated Re{Ez} for an elliptic dielectric
cylinder illuminated by an electric line source (a) without cloaking
and (b) with the O-BMS cloak.

FIG. 10. Conformal scalar O-BMS cloak for impenetrable PEC
targets.

2. Impenetrable objects

The cloaking configuration shown in Fig. 6 is unsuitable
for impenetrable targets such as perfect electric conductors
(PECs), for which Ât = 0. This is because it would be gener-
ally impossible to satisfy (28) while also demanding Âr = 0.
Tensorial surface cloaks which leverage nonradiative orthog-
onally polarized surface waves to achieve local power balance
have been proposed as a potential solution [21]. However,
their constituent meta-atoms may be difficult to realize in
practice, since they require intricate anisotropic geometries to
perform accurate polarization manipulation.

Recently, we proposed a passive and lossless scalar meta-
surface configuration capable of concealing impenetrable
targets [28]. A scalar O-BMS is placed around the target
without making contact with its exterior. This permits nonzero
fields on both sides of the O-BMS, allowing the prescription
of an internal power profile which matches the incident power
without incurring external reflections. However, the cloak and
the target were assumed to have circular cross sections. In
this work, we expand the design space by allowing the PEC
cylinder and its metasurface enclosure to take on (poten-
tially distinct) noncircular shapes. The proposed schematic
is shown in Fig. 10, in which the physical cross section of
the PEC in the Z plane is modeled by the curve Ca. The
cross section of the metasurface is modeled by the curve
Cb. Although it is not an inherent requirement, Cb should
be parallel to Ca if one wishes to minimize the overall pro-
file of the cloak. An additional advantage of parallel cross
sections is that the region between the PEC and the MTS
can be implemented using a flexible dielectric substrate with
constant thickness. On the other hand, one may wish to shape
the MTS differently from the PEC object due to structural
considerations.

To engineer the electromagnetic field distributions in this
problem, we must be able to simultaneously enforce the
appropriate boundary conditions on Ca and Cb. Since their
shapes may not be related in general, we employ two inde-
pendent conformal transformations, as illustrated in Fig. 11,
to handle the boundaries separately. In this figure, the ζa plane
and the ζb plane are the computational planes used to enforce
the boundary conditions on the PEC and the O-BMS, respec-
tively. As indicated in Fig. 11(a), we use a complex-valued
function, Wa, to map the circle Cυψ = {(υ,ψ )| υ = α,ψ ∈
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(a)

(b)

FIG. 11. Conformal mappings used to enforce boundary condi-
tions on (a) the impenetrable target and (b) the O-BMS.

[0, 2π ]} to Ca. Then, the enforcement of the condition of
vanishing tangential electric field along Ca is equivalent to
demanding Ez = 0 on Cυψ . In Fig. 11(b), we use the function
Wb to map the circle Cσφ = {(σ, φ)| σ = α, φ ∈ [0, 2π ]} to
Cb. The enforcement of the BSTCs on Cb then amounts to the
same problem as that investigated in Sec. III B 1.

As expected, the introduction of the PEC demands new
solutions to (1). To obtain them, we first recognize that the
problem remains unchanged from before for the external re-
gion (εr2). Thus, the general modal solutions for the incident
and the reflected fields are the same as those given in (7)
and (16), with the new mapping Wb in place of W . However,
in the internal region (εr1), the transmitted fields now possess
different expansions owing to the PEC target. Since this region
includes neither the origin nor infinity, it admits solutions in
the form of linear combinations of Jm and Neumann functions
Ym: {

Et
z

Ht
‖

}
=

∞∑
m=−∞

{
At

m

γm(Wι, ζι)At
m

}
Jm(k1|Wι(ζι)|)e jm∠Wι (ζι )

+
{

Bt
m

κm(Wι, ζι)Bt
m

}
Ym(k1|Wι(ζι)|)e jm∠Wι(ζι ),

ι ∈ {a, b}, (35)

where the function compositions

γm(W, ζ )= k1

jωμhl

J ′
m(k1|W (ζ )|)

Jm(k1|W (ζ )|)
∂

∂l
|W (ζ )|+ m

ωμhl

∂

∂l
∠W (ζ ),

κm(W, ζ )= k1

jωμhl

Y ′
m(k1|W (ζ )|)

Ym(k1|W (ζ )|)
∂

∂l
|W (ζ )|+ m

ωμhl

∂

∂l
∠W (ζ ),

(36)

are analogous to those in (17). In (36), l = ν for the mapping
Wa, and l = σ for the mapping Wb.

Using (35), we are able to write the electric field distribu-
tions along Ca and Cb, respectively, in terms of vectors Ēz,a

and Ēz,b defined as follows:

Ē t
z,ι = Pt

A,ιÂ
t + Pt

B,ιB̂
t ,

Pt
A,ι[n][m] = Jm (k1|Wι(ζ


n )|)e jm∠Wι(ζ 

n ),

Pt
B,ι[n][m] = Ym (k1|Wι(ζ


n )|)e jm∠Wι(ζ 

n ),

ι ∈ {a, b}. (37)

The total tangential electric fields must vanish on Ca, mean-
ing

B̂t = −(
Pt

B,a

)−1
Pt

A,aÂt . (38)

Combining (37) and (38), we can rewrite the total transmitted
electric field along Cb as

Ē t
z,b = [

Pt
A,b − Pt

B,b

(
Pt

B,a

)−1
Pt

A,a

]
Ât � Pt Ât . (39)

Thus, we have obtained a new definition for the matrix Pt

specific to the current problem configuration. On the other
hand, the definitions of P{i,r} remain unchanged from those
specified in (11).

We also sample the transmitted magnetic fields along Cb,
arriving at the vectorial representations as follows:

H̄t
‖,b ≡ H̄t

φ,b = [
Qt

A,b − Qt
B,b

(
Pt

B,a

)−1
Pt

A,a

]
Ât � Qt Ât ,

Qt
A,b[n][m] = γm (Wb, ζ


n )Jm (k1|Wb(ζ 

n )|)e jm∠Wb(ζ 
n ),

Qt
B,b[n][m] = κm (Wb, ζ


n )Ym (k1|Wb(ζ 

n )|)e jm∠Wb(ζ 
n ). (40)

Therefore, we have an updated Qt , whereas Q{i,r} remain
unchanged from (19).

Having defined the new Pt and Qt , we can calculate the
corresponding transmitted admittance matrix Yt using (20).
The matrices Yi and Yr can be calculated using (11), (19),
and (20). However, the mapping Wb should be used, since the
admittance matrices are defined for fields sampled on Cb.

Having properly defined Y{i,t,r} for the new problem, the
exact same steps used in Sec. III B 1 can be repeated to obtain
the cloak design for impenetrable targets. To illustrate, we
attempt to conceal a quasitriangular PEC cylinder from an
external plane wave traveling towards the negative x direction.
The cross section of the target is modeled by the mapping

Z = Wa(ζa) = 1

3

(
ζa + 1

2ζ 2
a

)
e j π

4 . (41)

As a simple demonstration, we choose an O-BMS cross sec-
tion modeled by the mapping

Z = Wb(ζb) = 1

3

(
10

9
ζb + 1

2
(

10
9 ζb

)2

)
e j π

4 . (42)

The rest of the relevant parameters for this design are summa-
rized in Table III. Note that our choices of Wa and Wb do not
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TABLE III. Parameters for the quasitriangular PEC cylinder to
be concealed.

f (GHz) N M α εr1 εr2

2 351 151 1.35 1 1

result in parallel Ca and Cb, although a good approximation is
achieved. Using (41) and (42), the admittance matrices Y{i,t,r}
are populated.

Next, we solve (28) by writing the modal expansion of the
incident plane wave as [39]

Âi[m] = jm

. (43)

Since this is a cloak, we again have Âr = 0. Inserting the asso-
ciated fields into (28), we solve for the required auxiliary Ât ,
whose corresponding boundary electric and magnetic fields
are plotted in Fig. 12.

The passive and lossless O-BMS parameters which support
the complete field distributions as we have determined are
plotted in Fig. 13.

Implementing this design in COMSOL and simulating with
an incident plane wave excitation, we obtain the total electric
field distributions shown in Fig. 14. In Fig. 14(a), we show the
fields without the metasurface cloak. As expected, the PEC
cylinder generates a significant amount of scattering and casts
a shadow due to its large electric size. In Fig. 14(b), we show
the total fields with the O-BMS cloak in place. It can be seen
that the external field distribution consists of just the incident
plane wave and contains no observable scattering, meaning
that the target has been successfully concealed. In the internal
region between the PEC and the O-BMS, we see a wavelike
field profile which serves to match the local power density of
the incident plane wave in a pointwise manner.

To examine the working principles of the cloak in more
detail, we plot the normal power density above (S+) and

FIG. 12. The required transmitted auxiliary electric field Et
z and

magnetic field Ht
‖ (≡ Ht

φ) for the passive and lossless cloaking of the
quasitriangular PEC cylinder.

FIG. 13. Synthesized passive and lossless O-BMS parameters for
cloaking the quasitriangular PEC cylinder from an external plane
wave.

below (S−) the O-BMS in Fig. 15. A perfect match between
the two profiles confirms that the cloak requires neither gain
nor loss. Interestingly, we observe two partitions in Fig. 15:
one in which the power flows outward and one in which it
flows inward. This suggests that the internal auxiliary fields
described by Fig. 12 harness the incident power on the illumi-
nated side of the cylinder while transporting it to be emitted
on the shadowed side. Therefore, the proposed cloak works
on the same principle as the previously demonstrated tensorial
cloaks which reroute power using surface waves [21].

Last, we note that in this example the thickness of the
internal region has been chosen to provide a clear illustration
of the working principle of the proposed design. In reality,
there is no inherent restriction on the distance between the
PEC and the O-BMS, which determines the overall profile of
the cloak.

C. Electromagnetic illusions

As a demonstration of the capability of the proposed
framework to accommodate internal sources, we design a
quasitriangular electromagnetic illusion metasurface which
transforms the cylindrical wave radiated by an electric line
source located at (r, θ ) = (rs, θs) into the combined fields of
two virtual sources located at (rs, θs + 2π

3 ) and (rs, θs + 4π
3 ).

A schematic of the design and a visualization of the conformal
transformation used in this problem are shown in Fig. 16.
The geometric and material parameters for this design are
summarized in Table IV.

A detailed investigation of general internally excited non-
circular cylindrical MTSs can be found in the Appendix. Here,
we simply note that the main ideas presented in the previous
sections remain unchanged, and we discuss some key results.

The first step of the design is to populate the admittance
matrices Y{i,t,r} using (A3). Then, we need to state the known

TABLE IV. Parameters for the illusion O-BMS.

f (GHz) N M α R q t εr1 εr2 rs (m) θs (rad)

1 351 71 1.29 1/3 2 0 1 1 0.25 2π/3
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Re{Ez}
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y
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Re{Ez}
(V/m)

y
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)

x (m)

(a)

(b)

FIG. 14. Snapshot of simulated Re{Ez} for a quasitriangular PEC
cylinder illuminated by a plane wave (a) without cloaking and
(b) with the O-BMS cloak.

field quantities in preparation to solve the LPC equation. Un-
like the previous examples, this is a transmissive metasurface,
since we are judiciously prescribing the transmitted fields
based on the known incident fields.

FIG. 15. Normal power density above and below the O-BMS
cloak for the quasitriangular PEC cylinder.

FIG. 16. Visualization of the conformal transformation for the
quasitriangluar illusion metasurface.

The incident fields are those radiated by an electric line
source located at (r, θ ) = (rs, θs). Since the source is located
in the internal region, it will be found somewhere inside the
circle Cσφ . That is,

|W −1(rse
jθs )| < α. (44)

This suggests that we should invoke the alternate form of the
addition theorem for Hankel functions [39], arriving at the
following modal expansion for the incident fields:

Âi[m] = Jm (k1rs)e− jmθs . (45)

Since the two virtual sources are also located in the internal
region, we can write

Ât [m] = Jm (k1rs)e− jmθs
{
e− j 2πm

3 + e− j 4πm

3
}
. (46)

To guarantee passivity and losslessness of the design, we
insert the fields associated with (45) and (46) into the trans-
missive LPC equation (27). We solve for the required Âr and
plot its associated boundary electromagnetic fields in Fig. 17.

To synthesize the required O-BMS, (29) is used in conjunc-
tion with the updated field definitions of Ē±

z and H̄±
φ provided

FIG. 17. Required auxiliary reflection for the quasitriangular il-
lusion metasurface shown in Fig. 16.
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FIG. 18. Synthesized passive and lossless O-BMS parameters for
the quasitriangular illusion metasurface.

in (A1). The solved passive and lossless surface parameters
are plotted in Fig. 18.

We implement the O-BMS in COMSOL and excite the real
line source. Snapshots of the resulting electric field distri-
bution are shown in Fig. 19. The internal [Fig. 19(b)] and
external [Fig. 19(c)] fields are plotted separately to provide a
better comparison with the desired field distribution radiated
by the two virtual sources [Fig. 19(a)]. We observe an almost
exact match for the external fields in Figs. 19(a) and 19(c),
which suggests that an external observer would perceive two
displaced virtual sources, instead of the single real source.

IV. CONCLUSIONS

We presented methods for analyzing and designing cylin-
drical metasurfaces with noncircular cross sections based
on conformal transformations. The physical space inhab-
ited by the irregularly shaped metasurface is mapped to a
new computational space in which the surface resides on
a perfectly circular cylinder. In the computational space, it
is straightforward to enforce the bianisotropic sheet transi-
tion conditions while solving the Helmholtz wave equation,
owing to the canonical shape of the boundary. This ad-
mits closed-form analysis and synthesis equations for various
cylindrical metasurface-based devices with unique cross-
sectional shapes. Importantly, since the problem is solved
analytically using modal expansions, we can efficiently iden-
tify field distributions that satisfy local power conservation,
guaranteeing passivity and losslessness of the generated de-
signs.

Finite element simulations were conducted to confirm the
accuracy of the proposed analysis method. Several passive and
lossless devices with different practical applications includ-
ing cloaking and electromagnetic illusions were demonstrated
with the help of the proposed design procedure. Their func-
tionalities were verified using finite element simulations.

APPENDIX: INTERNALLY EXCITED
CONFORMAL O-BMS

In this Appendix, we extend the framework presented in
the main text, in order to model internal sources. A general

Desired Virtual
Sources

Re{Ez}
(V/m)

x (m)

y
(m
)

Re{Ez}
(V/m)Real Source

O-BMS

x (m)

y
(m
)

Perceived
Sources

Real Source

Re{Ez}
(V/m)

x (m)

y
(m
)

(a)

(b)

(c)

FIG. 19. (a) Desired field distribution of two line sources. Snap-
shot of simulated Re{Ez} (b) inside and (c) outside of the MTS
cavity.

internally excited cylindrical scalar metasurface is depicted in
Fig. 20.

Due to the new source location, the incident and reflected
fields are now found inside Crθ , while the transmitted fields
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Crθ

(x)
r
θ

Zse,Ysm, Kem

εr1εr2

(z)

(y)

E -,H -

E +,H +

Sources

J M t||^
z^ n^

FIG. 20. Internally excited cylindrical O-BMS with noncircular
cross section.

are outside. In other words, in the computational plane, we
have

Ē+
z = Ē t

z , Ē−
z = Ē i

z + Ē r
z ,

H̄+
φ = H̄t

φ, H̄−
φ = H̄ i

φ + H̄ r
φ. (A1)

In the following sections, we explore the implications of (A1)
with respect to the analysis and the synthesis equations.

1. Analysis

A consequence of the interchanged locations of the in-
cident, transmitted, and reflected fields is that the general
solution to (6) is now given by the modal expansions

Ei
z =

∞∑
m=−∞

Ai
mH (2)

m (k1|W (ζ )|)e jm∠W (ζ ),

Et
z =

∞∑
m=−∞

At
mH (2)

m (k2|W (ζ )|)e jm∠W (ζ ),

Er
z =

∞∑
m=−∞

Ar
mJm(k1|W (ζ )|)e jm∠W (ζ ),

Hi
φ =

∞∑
m=−∞

τ1,m(W, ζ )Ai
mH (2)

m (k1|W (ζ )|)e jm∠W (ζ ),

Ht
φ =

∞∑
m=−∞

τ2,m(W, ζ )At
mH (2)

m (k2|W (ζ )|)e jm∠W (ζ ),

Hr
φ =

∞∑
m=−∞

γ1,m(W, ζ )Ar
mJm(k1|W (ζ )|)e jm∠W (ζ ), (A2)

which can be sampled at N equally spaced points along the
circle |ζ | = α in the computational plane and truncated to M
modes, forming the vectors

Ē {i,t,r}
z = P{i,t,r}Â{i,t,r}, H̄ {i,t,r}

φ = Q{i,t,r}Â{i,t,r},
Pi[n][m] = H (2)

m (k1|W (ζ 
n )|)e jm∠W (ζ 

n ),

Pt [n][m] = H (2)
m (k2|W (ζ 

n )|)e jm∠W (ζ 
n ),

Pr[n][m] = Jm (k1|W (ζ 
n )|)e jm∠W (ζ 

n ),

Qi[n][m] = τ1,m (W, ζ 
n )H (2)

m (k1|W (ζ 
n )|)e jm∠W (ζ 

n ),

Qt [n][m] = τ2,m (W, ζ 
n )H (2)

m (k2|W (ζ 
n )|)e jm∠W (ζ 

n ),

Qr[n][m] = γ1,m (W, ζ 
n )Jm (k1|W (ζ 

n )|)e jm∠W (ζ 
n ). (A3)

Then, the boundary electric and magnetic field vectors can
be related to each other algebraically with the help of the
admittance matrices Y{i,t,r} defined in (20).

In addition to the new expressions for Y{i,t,r}, the dis-
cretized BSTCs (21) must be updated to reflect the transposed
field locations specified by (A1). This leads to new formulas
for the modal transmission and reflection matrices T and R as
follows:

T = (Pt )−1t−1
a tbPi,

R = (Pr )−1r−1
a rbPi,

ta = (
1
2 I + ZYr − K

)−1( 1
2 I − ZYt + K

)
− (

1
2 Yr + Y + KYr

)−1( 1
2 Yt − Y − KYt

)
,

tb =(
1
2 Yr + Y + KYr

)−1( 1
2 Yi + Y + KYi

)
− (

1
2 I + ZYr − K

)−1( 1
2 I + ZYi − K

)
,

ra =(
1
2 I − ZYt + K

)−1( 1
2 I + ZYr − K

)
− (

1
2 Yt − Y − KYt

)−1( 1
2 Yr + Y + KYr

)
,

rb =(
1
2 Yt − Y − KYt

)−1( 1
2 Yi + Y + KYi

)
− (

1
2 I − ZYt + K

)−1( 1
2 I + ZYi − K

)
. (A4)

2. Synthesis

To design an internally excited O-BMS, we first note that
the LPC equation (26) assumes nothing about the source lo-
cation. Therefore, to ensure passivity and losslessness, we can
reuse (27) or (28), as long as we incorporate the appropriate
problem-specific definitions of {Pr, Qr} or {Pt , Qt } as speci-
fied in (A3).

Once the complete electromagnetic fields at the O-BMS
interface have been determined, the synthesis equations (29)
can be used in conjunction with (A1).
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