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Electron-phonon drag enhancement of transport properties from a fully coupled ab initio
Boltzmann formalism
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We present a combined treatment of the nonequilibrium dynamics and transport of electrons and phonons
by carrying out ab initio calculations of the fully coupled electron and phonon Boltzmann transport equations.
We find that the presence of mutual drag between the two carriers causes the thermopower to be enhanced
and dominated by the transport of phonons, rather than electrons as in the traditional semiconductor picture.
Drag also strongly boosts the intrinsic electron mobility, thermal conductivity and the Lorenz number. Impurity
scattering is seen to suppress the drag enhancement of the thermal and electrical conductivities, while having
weak effects on the enhancement of the Lorenz number and thermopower. We demonstrate these effects in
n-doped 3C-SiC at room temperature, and explain their origins. This work establishes the roles of microscopic
scattering mechanisms in the emergence of strong drag effects in the transport of the interacting electron-phonon
gas.
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I. INTRODUCTION

In a typical electron (phonon) Boltzmann transport prob-
lem, the phonon (electron) system acts as a momentum bath
as the latter is assumed to return to equilibrium infinitely fast.
This famous “Bloch assumption” [1] was first challenged by
Peierls [2]. Since then, pioneering work by Gurevich [3] theo-
rized the effect of nonequilibrium phonons and electrons—the
mutual drag—on the transport of an interacting electron-
phonon gas. Experimental evidence of the phonon drag effect
on the thermopower of germanium and silicon was found in
the 1950s [4–6]. In 1954, Herring carried out a calculation
combining simple analytical models and a partial coupling
of the electron and the phonon Boltzmann transport equa-
tions (BTEs) [7]. To date Herring’s analysis of the problem
has remained the basis for understanding the drag physics in
the context of thermoelectricity. A self-consistent description
of the mutual electron and phonon drag effects, however,
requires a closed-loop flow of momentum between the two
coupled systems of carriers.

To date various approaches have been taken to calculate
the electron-phonon mutual drag effect. Some approaches are
based on semiempirical models of interaction and idealized
electron and phonon band structures. Approaches in this class
include Herring’s original work [7] on bulk materials and
Cantrell and Butcher’s work on two-dimensional (2D) elec-
tron gases [8–10]. In another approach [11], Mahan, Broido,
and Lindsay combined semiempirical electron-phonon inter-
action and ab initio fitted phonon-phonon interaction with
Rode’s iterative BTE [12] within a partially coupled frame-
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work. Very recently, fully ab initio methods combining den-
sity functional theory (DFT) and the partially coupled BTE
were employed by Zhou et al. [13], Fiorentini and Bonini [14],
and Macheda and Bonini [15]. Lastly, semiempirical models
were combined with the DFT + BTE framework to obtain
a solution to the fully coupled electron-phonon (e-ph) BTEs
in Ref. [16].

Here we present a purely ab initio scheme for obtaining the
solution of the fully coupled BTEs of the interacting e-ph gas.
We apply this method to the n-doped cubic phase of silicon
carbide (3C-SiC), which is a large-band-gap material widely
used in thermoelectrics, power electronics, and quantum com-
puting. We calculate the effect of drag on the various transport
coefficients with and without the presence of charged impurity
scattering and interpret the results in terms of the various
electron-phonon scattering processes. At room temperature
and over a wide range of the carrier concentrations we find
that there is a surprisingly strong drag-driven increase of (i)
the electron mobility in the absence of impurities and (ii)
the thermopower and the Lorenz factor with and without
impurity scattering. The result is surprising because strong
drag behavior is typically associated with low temperatures.
Our results build on the recent formulation of the coupled
e-ph BTEs and the prediction of strong phonon drag gain of
electron mobility in GaAs using semiempirical models for
e-ph scattering [16]. In this work the e-ph matrix elements
are calculated completely from first principles. This allows
us to capture the full wave-vector dependence of the e-ph
coupling, which is absent in simpler analytical models. This
method accurately captures the details of the electron and
phonon band structures that semiempirical models cannot.
Moreover, since the method is ab initio, it enables the study of
materials for which the semiempirical model parameters are
not known.
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II. THEORY AND COMPUTATION

A. Coupled electron-phonon transport theory

Here we present the coupled e-ph BTEs originally for-
mulated in Ref. [16]. Within the weak-field, linear-response
regime, the electron and phonon distribution functions are,
respectively,

fmk ≈ f 0
mk

[
1 + (

1 − f 0
mk

)
�mk

]
,

(1)
nsq ≈ n0

sq

[
1 + (

1 + n0
sq

)
�sq

]
,

where m (s) denotes the electron (phonon) band (branch),
k (q) is the electron (phonon) wave vector, f 0

mk (n0
sq) is the

Fermi-Dirac (Bose-Einstein) distribution function, and �mk
(�sq) measures the deviation of the electron (phonon) from
equilibrium due to the presence of an external field.

The deviation functions themselves can be written as fol-
lows:

�mk = −β∇T · Imk − βE · Jmk,
(2)

�sq = −β∇T · Fsq − βE · Gsq,

where β ≡ (kBT )−1, T is the temperature, kB is the Boltz-
mann constant, ∇T is the temperature gradient field, E is the
electric field, Imk (Fsq) are the response coefficients of the
electron (phonon) states to the temperature gradient, and Jmk
(Gsq) are the response coefficients of the electron (phonon)
states to the electric field.

The coupled BTEs for the temperature gradient and the
electric field, respectively, can then be written succinctly
as [16]

I = I0 + �IS[I] + �ID[F],

F = F0 + �FS[F] + �FD[I],

J = J0 + �JS[J] + �JD[G],

G = �GS[G] + �GD[J],

(3)

where we have dropped the indices to avoid clutter.
In Eqs. (3), the terms with the superscript zero describe

drift due to the applied field. The (out)scattering rates that
enter this term are equivalent to the inverse lifetimes obtained
from the leading-order self-energy diagrams in the Migdal
approximation. The expressions for I0, F0, and J0 are given by
Eqs. (A8), (A11), and (A14), respectively. The scattering rates
entering these quantities are given by Eqs. (A5) and (A7). The
electric field phonon BTE does not contain such a field term
because phonons do not carry charge. The terms with super-
script S (for “self”) are functionals of the deviation function
of the same carrier species, whereas the terms with superscript
D (for “drag”) are functionals of the deviation function of the
other species. These terms, given by Eqs. (A9), (A10), (A12),
(A13), and (A15)–(A18), describe the inscattering corrections
and the momentum exchange between the two interacting
gases that are not included in the field terms. In the absence
of the self and drag terms, one recovers the widely used
relaxation time approximation (RTA). Specifically, by phonon
(electron) drag we mean the transfer of momentum via scatter-
ing from the phonons (electrons) to the electrons (phonons).
In this work we obtain the full solution of the coupled set of

BTEs by starting with the RTA solution and then iterating to
self-consistency. From the final solution of the coupled BTEs
we compute the phonon and electronic components of the
thermal conductivity, electron mobility, and the thermopower.
In this work we calculate both the electron-phonon and the
phonon-phonon matrix elements from first principles.

The ab initio electron-phonon matrix elements are given
by [17]

gsmn
kq =

√
h̄

2ωsq
〈ζn[k+q]|∇sqVSCF|ζmk〉, (4)

where h̄ is the reduced Planck constant, |ζmk〉 is the Kohn-
Sham state, and ∇sqVSCF is the derivative of the self-consistent
Kohn-Sham potential. Note that the derivative is atomic mass
normalized. In the Appendix we provide the matrix elements
and the corresponding RTA scattering rate expressions using
simple analytical models of e-ph interaction. This provides a
valuable check for the ab initio calculations.

The ab initio phonon-phonon matrix elements are given
by [18]

V ±
λλ′λ′′ =

∑
〈i〉 jk

∑
αβγ

�
αβγ

i jk

eiα
s (q)e jβ

s′ (±q′)ekγ

s′′ (−q′′)√
mimjmk

, (5)

where the phonon state λ ≡ (s, q), greek indices denote the
Cartesian directions, i, j, k identify atoms in the supercell,
the triangular brackets denote restricted summation over the
atoms in the primitive unit cell, � is the third-order force
constants (IFC3) tensor, mi denotes the mass of atom i, and
ei

s(q) denotes the branch s phonon eigenfunction in the cell
where atom i resides for wave vector q.

Once the solutions to Eqs. (3) are known, one can calculate
the full set of transport coefficient tensors. From the electronic
charge current we get{

σαβ

[σS]αβ

}
= 2e

V kBT

∑
ν

f 0
ν

(
1 − f 0

ν

)
vα

ν ×
{

Jβ
ν

−Iβ
ν

}
, (6)

where e is the magnitude of the electronic charge, V is the
supercell volume, vα

ν is the velocity of the electron in state
ν ≡ (m, k) in the Cartesian direction α, σ is the electronic
conductivity tensor, and S = Q is the Seebeck thermopower
tensor. The mobility tensor is defined as μ = σ (ne)−1, where
n is the charge-carrier concentration.

From the electronic heat current we get{
α

αβ

el

κ
αβ

0,el

}
= − 2

V kBT

∑
ν

(εν − EF) f 0
ν

(
1 − f 0

ν

)
vα

ν

×
{

Jβ
ν

−Iβ
ν

}
, (7)

where EF is the chemical potential, αel is related to the
electronic Peltier thermopower tensor Qel = αel(σT )−1, and
κ0,el is the electronic thermal conductivity tensor in the zero-
electric-field condition. The electronic thermal conductivity in
the zero-current condition is given by κel = κ0,el − αelQ.

From the phonon heat current equation we get{
α

αβ

ph

κ
αβ

ph

}
= 1

V kBT

∑
λ

h̄ωλn0
λ

(
1 + n0

λ

)
vα

λ ×
{−Gβ

λ

Fβ

λ

}
, (8)
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where vα
λ is the velocity of the phonon in state λ in the

Cartesian direction α, αph is related to the phonon Peltier
thermopower tensor Qph = αph(σT )−1, and κph is the phonon
thermal conductivity tensor.

Lastly, the Lorenz number is defined as L = κel(σT )−1.
For cubic systems, such as 3C-SiC, all the off-diagonal

components of each transport tensor are zero and all the di-
agonal components are identical.

B. Computational details

We use the QUANTUM ESPRESSO [19] suite for our den-
sity functional theory and density functional perturbation
theory calculations. The norm-conserving, Perdew-Zunger
(local density approximation) pseudopotential [20] is used.
Our calculated relaxed lattice constant is 4.339 A. This is
in good agreement with the experimental value of 4.360 A
in Ref. [21] and previously calculated values of 4.34, 4.33,
and 4.342 A in Refs. [22–24], respectively. We interface with
the EPW code [17,25,26] to compute the electron-phonon ma-
trix elements. We use a 6 × 6 × 6 coarse electron (k) and
phonon (q) wave-vector mesh. We print out the information
related to the Wannier representation of the electron-phonon
matrix element from EPW and read into our transport code.
The polar Wannier to Bloch transformation of the matrix
elements is performed and the data are saved for reuse
for the concentration sweep and the various types of BTE
solutions. The computational cost is reduced by using an
effective transport window of 0.4 eV from the conduction-
band minimum. Doping is simulated by moving the chemical
potential and the chosen energy window is sufficiently large
for the concentration range considered in this work. All re-
sults presented in the text are calculated on a 65 × 65 × 65
q mesh and 130 × 130 × 130 k, k+q mesh. This means
that in the electronic transition probabilities calculation, the
electronic and the phonon wave-vector meshes are both
130 × 130 × 130. All the phonon transition probabilities are
calculated on the 65 × 65 × 65 mesh, where the summa-
tion over the electronic states is performed over the finer
130 × 130 × 130 mesh. During the iterative solution of the
coupled BTEs, the phonon quantities are interpolated onto
the finer mesh whenever needed. We use the shorthand
(65, 130) for this choice of the meshes. In the Appendix we
discuss code validation and numerical convergence. The scat-
tering transition probabilities are given by Eqs. (A1)–(A3).
These require evaluation of the energy-conserving delta
functions for the electron-phonon and phonon-phonon pro-
cesses. The analytic tetrahedron method [27] is used to
approximate these delta functions. Electron-impurity scatter-
ing (assuming singly charged dopants) is calculated using
the Brooks-Herring model [28]. In this model, the impu-
rity is taken to be a static, Yukawa-type scattering center
and the electron-defect scattering is treated in the first Born
approximation. The phonon-phonon matrix elements are cal-
culated from the real-space IFC3s. The IFC3s are calculated
using finite displaced supercells. A 5 × 5 × 5 (250 atoms)
supercell is used with a sixth-nearest-neighbor (0.548 nm)
cutoff. The THIRDORDER.PY [18,29] code is used to gen-
erate the displaced supercells. QUANTUM ESPRESSO is used
to compute the forces in the 292 displaced supercells.

FIG. 1. Breakdown of the electronic RTA scattering rates for car-
rier concentrations 1016 cm−3 (solid symbols) and 1020 cm−3 (open
symbols) at 300 K. For the latter, the chemical potential is shown by
the blue vertical line.

The THIRDORDER.PY code is then used to read the forces and
compute the IFC3s, which are then used as an input to the
transport code. Phonon-isotope scattering is calculated in the
Tamura model [30].

III. RESULTS AND DISCUSSION

A. Scattering rates

The electronic scattering rates in the RTA do not include
drag, but are already useful for the physical interpreta-
tion of the roles of the various scattering mechanisms in
transport. Figure 1 shows the RTA rates for the n-doped
3C-SiC at 300 K. The zero of the energy axis is at the
conduction-band minimum energy, ECBM. In the low-doping
case, when the electron chemical potential is in the band gap,
the low-energy electrons predominantly scatter against low-
energy acoustic phonons via the piezoelectric and acoustic
deformation-potential-type interactions. Both these interac-
tions are quasielastic in nature since the phonon energies are
small compared to the electron energies. Around 80 meV,
the acoustic scattering rate increases sharply. This originates
from the deformation-potential-type scattering of the longi-
tudinal acoustic (LA) phonon at the X point of the Brillouin
zone. Note here that while the acoustic and optic vibrational
modes are distinct near the zone center, the same is not true
near the zone boundary. Moreover, the zone-boundary LA
phonon energy is close to that of the optic phonons. As such,
the deformation potential coupling of the electrons to the
X -point LA phonon is optical in nature. In Ref. [31] it has
been shown by group theoretic analysis that since 3C-SiC
has a threefold-degenerate conduction-band minimum at the
X point, the phase space for intervalley scattering is severely
restricted and only the LA phonons at the X point can con-
tribute significantly. Thus, the kink at 80 meV is due to the
onset of the intervalley X -point LA phonon emission. Note
that this interaction is inelastic since the phonon energy is
not negligible. Similarly, the longitudinal optic (LO) phonon
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FIG. 2. Breakdown of the phonon RTA scattering rates at 300 K
into phonon-electron (e), phonon-phonon (ph), and phonon-isotope
(iso) channels.

emission onset can be clearly seen around 120 meV. Po-
lar optical phonon scattering dominates at higher energies.
Very similar scattering rate features have been reported in
Ref. [32]. For the high-doping case (chemical potential in
the conduction band), there is a large dip in the inelastic
polar LO phonon-scattering rates. This is a phase-space re-
duction effect. The scattering phase space is essentially the
RTA scattering rates expression [Eq. (A5)] with the e-ph
matrix elements set to unity. As such, both the energy con-
servation effect (conveyed by the delta function) and the
statistics effect (conveyed by the presence of the Fermi-Dirac
functions) are included in the definition of the phase space.
Physically, when approaching the chemical potential from
below, the electronic occupation number sharply decreases,
leading to a reduction in the LO phonon absorption rates.
On the other hand, when approaching the chemical potential
from above, the lower-energy states are nearly full, causing
the LO phonon emission rates to decrease. The combined
effect is that the electrons near the chemical potential interact
less with LO phonons, which again makes the quasielastic
low-energy phonon and inelastic high-energy acoustic phonon
scattering the dominant channels. Thus, in both the low- and
high-doping regimes, the transport active electrons pump mo-
mentum into the low-energy and zone-boundary acoustic and
the LO phonons, rendering these phonons strongly drag ac-
tive. Note also that at high doping concentrations, the charged
impurity scattering channel dominates the electron-phonon
channel.

Figure 2 shows the phonon RTA scattering rates break-
down into the phonon-electron, phonon-isotope, and phonon-
phonon channels. We do not include grain boundary scattering
in this work. The phonon-phonon scattering rates increase
with phonon energy. The phonon-isotope scattering rates
are weak for low-energy phonons, but are comparable to
the phonon-phonon rates for near-zone-boundary acoustic
phonons and the optic phonons. The phonon-electron scatter-
ing rates for low-energy acoustic phonons drop off sharply
with increasing energy, which is typical of piezoelectric

FIG. 3. Phonon (right axis, green) and electron (left axis, blue)
thermal conductivity as a function of carrier concentration at 300 K.
Note that for the no-drag case for phonons (dashed green line), the
impurity scattering channel in the electronic system is irrelevant for
phonon transport.

and acoustic deformation-type scattering. There is strong
scattering at 80 meV, corresponding to optical deformation-
type scattering with the X -point LA phonon, which gives a
dominant contribution to intervalley scattering as mentioned
earlier. The phonon-electron scattering rates for the 120-meV
LO phonons are also strong owing to the polar nature of
their coupling to the electrons. The momentum received
from the electrons can be distributed and dissipated into the
phonon system via anharmonic phonon-phonon interaction
and fed back into the electron system via phonon-electron
interaction. In general, the flow of momentum back into
the electron system results in an enhancement of the elec-
tronic transport coefficients (mobility, thermal conductivity,
and thermopower) due to phonon drag. On the other hand, a
low overall rate of momentum dissipation within the phonon
system manifests itself as electron-drag-induced enhancement
of the phonon transport coefficients (thermal conductivity and
thermopower), given that the phonon system has received
excess momentum from the electron system. Note that the
low-energy acoustic phonons have low anharmonic scattering
rates and have fewer momentum-destroying umklapp anhar-
monic scattering. As such, they can sustain the momentum
received from the electronic system for a long time in contrast
to the shorter-lived optical phonons.

While the analysis presented above based on the RTA
scattering rates provides a relatively simple qualitative picture,
the iteration process of the coupled BTEs nontrivially mixes
the momentum in the interacting system of electrons and
phonons. Nonetheless, the RTA scattering rates allow us to
interpret the drag phenomena predicted by the self-consistent
coupled solutions.

B. Thermal conductivity

Figure 3 shows the thermal conductivity, κ , as a function
of the carrier concentration. The phonon contribution com-
pletely dominates the electronic contribution to κ over the
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FIG. 4. Spectral decomposition of the phonon thermal conduc-
tivity for a carrier concentration of 1020 cm−3.

entire range of carrier concentrations. In the low-doping limit,
the computed phonon κ (433 W m−1 K−1) is similar to the
calculated values in the literature—about 10% lower than
those reported in Refs. [22–24]. The literature calculations
are formally equivalent to the decoupled, iterative phonon
BTE calculation in our formulation. The effect of drag on the
phonon κ , while increasing with carrier concentration, is over-
all small. This is a consequence of the fact that the drag active
zone center and zone boundary acoustic and high-energy opti-
cal phonons contribute weakly to the phonon κ . At 1020 cm−3

doping concentration, the electron-drag-induced gain of the
phonon κ is only around 8%, if charged impurity scattering
of electrons is not included. If charged impurity scattering
is included, this drag gain is uniformly negligible, since the
amount of momentum feedback from the electronic system
diminishes with increasing carrier concentration due to the
increasing dissipation of electronic momentum by charged
impurities. To understand this effect we show in Fig. 4 the
spectral phonon κ for a carrier concentration of 1020 cm−3.
The contribution to thermal conductivity comes from a large
range of acoustic phonon frequencies, which is a consequence
of the fact that in this material, the LA phonons can sustain
a high velocity over a large portion of the Brillouin zone.
Zone center acoustic phonons do not contribute strongly to
the thermal conductivity since the specific heat for those
modes is small. Similarly, optic phonons and zone-boundary
acoustic phonons contribute negligibly due to their low group
velocities. The dashed green curve gives the spectral κ when
the phonon BTE is decoupled from the electron BTE, i.e.,
when there is no electron drag effect. Comparing to the
solid red curve denoting the case where drag is included
but neglecting electron-charged impurity scattering, we see
that the effect of drag is to boost the thermal conductivity
contribution from acoustic phonons between around 5 and
25 meV. These are precisely those phonons that have higher
or comparable phonon-electron scattering rates compared to
the phonon-phonon channel. Moreover, these small-energy
phonons are also the ones into which the electrons pump mo-
mentum strongly, setting up a robust circulation of momentum

FIG. 5. Electron mobility as a function of carrier concentration
at 300 K.

between the two systems. Thus, these strongly drag active
phonons dissipate momentum less when drag is considered as
opposed to when it is neglected. However, since the additional
gain in κ is small compared to the contribution from the whole
acoustic phonon spectrum, the overall gain in κ due to drag
is modest. The red crosses denote the case where drag is
included along with the charged impurity scattering channel
for electrons. In this case, the effect of drag is destroyed since
the momentum transferred by the acoustic phonons to the
electrons is dissipated by strong impurity scattering which
is the dominant scattering mechanism at high carrier con-
centrations. The calculated weak electron drag effect on the
phonon κ is in agreement with the findings in Ref. [16] for
GaAs and validates the fact that numerous phonon κ calcu-
lations on different materials that have ignored the electron
drag effect have, nevertheless, found good agreement with
experiments.

The electronic contribution to κ , while negligible com-
pared to the phonon counterpart, features a strong phonon
drag effect at high carrier concentrations when charged im-
purity scattering is ignored for the same reasons given above:
in the absence of the dissipative impurity scattering chan-
nel, there is a persistent circulation of momentum between
the electron and phonon systems mediated by the interac-
tion of electrons with strongly drag active zone center and
zone boundary acoustic and high-energy optical phonons.
At 1020 cm−3 doping concentration, the phonon drag gain
of the electronic κ is 37% in the presence of charged
impurity electron scattering, and 171% in the absence of
impurities.

C. Carrier mobility

Figure 5 shows the electron mobility versus carrier con-
centration. The charged impurity scattering channel begins
to limit the mobility above 1016 cm−3 carrier concentra-
tion. The highest measured mobility at room temperature is
980 cm2 V−1 s−1 for a carrier concentration of 4 × 1016 cm−3

[33], which is in excellent agreement with our calculated
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FIG. 6. Spectral decomposition of the electron mobility for a
carrier concentration of 1020 cm−3. The zero of the energy axis is at
the conduction-band minimum (CBM). The vertical red line denotes
the position of the chemical potential.

values of 1116 and 888 cm2 V−1 s−1 at 1016 and 1017 cm−3,
respectively, when charge impurity scattering is included in
the calculation. In the absence of impurity scattering of elec-
trons, the phonon drag gain of the mobility is substantial:
16% (191%) at 1018 (1020) cm−3 carrier concentration. If
techniques such as modulated doping can be realized on bulk
samples, then our prediction of the strong phonon drag gain
of mobility can be experimentally tested.

To demonstrate the drag effect we present in Fig. 6
the spectrum of the electronic mobility μ for a carrier
concentration of 1020 cm−3. The vertical red line denotes
the position of the chemical potential at this concentration.
First, the peak of the mobility contribution is roughly
centered around the chemical potential. This is expected
for two reasons: (1) the phase-space reduction of inelastic
scattering of electrons from optic and zone-boundary acoustic
phonons happens near the chemical potential, and (2) the
Fermi window function f 0(1 − f 0) that appears in the
mobility expression peaks at the chemical potential. The
small asymmetry in the spectrum is due to the energy
dependence of the electronic density of states which roughly
goes as

√
E − ECBM and the fact that the scattering rates

themselves have energy dependence. The solid (dashed) blue
curve denotes the case with (without) phonon drag while
ignoring electron-charged impurity scattering. There is a
large drag boost in the spectral mobility coming from a large
energy range. This is a consequence of the fact that in this
material, electrons interact strongly with the zone-center and
zone-boundary acoustic phonons and the polar optic phonons.
In turn, for these phonon modes, the phonon-electron
scattering rates dominate the phonon-phonon rates. As such,
a robust momentum circulation is sustained between the
electron and the phonon systems mediated via these phonon
modes. Thus, electrons dissipate significantly less momentum
when drag is included as opposed to when it is ignored. On
the other hand, when the strongly dissipative electron-charged
impurity scattering channel is turned on, the drag effect is

FIG. 7. Lorenz number as a function of carrier concentration at
300 K.

destroyed. This is seen by comparing the blue crosses (drag
with electron-impurity scattering) and blue cross-dashed (no
drag with electron-impurity scattering) lines.

D. Lorenz number

Figure 7 shows the Lorenz number, L, as a function of dop-
ing concentration. For metals, the Wiedemann-Franz (WF)
law value of the Lorenz number is 2.44 × 10−8 W � K−2,
and for semiconductors is expected to vary between 1.5 and
2.5 × 10−8 W � K−2 [34]. The Lorenz number is a crucial
ingredient for decoupling the lattice thermal conductivity κph

and the electronic contribution κel from measurements of the
total κ [35]. While the deviations of L from the metallic
limit are expected in materials that exhibit significant inelastic
scattering, our finding is that it is the drag effect that leads to
exceptionally high L values in 3C-SiC over a wide range of
carrier concentrations. This strong violation of the WF law is a
consequence of the fact that the electron κ has a stronger drag
enhancement compared to the mobility over a large doping
range.

E. Thermopower

We now examine the absolute value of the thermopower,
|Q|, in the Peltier picture in Fig. 8. The Peltier picture
provides a clear separation of the phonon and electron con-
tributions, |Qph| and |Qel|, respectively, to the thermopower
since both phonons and electrons can carry heat. Such a
clean separation is not possible within the Seebeck pic-
ture since phonons do not carry charge. We show in the
Appendix that, within numerical errors, the Peltier and
the Seebeck pictures give the same thermopower, in ac-
cordance with the Kelvin-Onsager relation [36]. |Qph| is
nonzero only when the phonon-electron interaction is present,
since the phonon system does not explicitly couple to the
applied electric field. As such, any nonzero phonon con-
tribution is purely an electron drag effect. Surprisingly, we
find that in the low-doping limit |Qph| in the fully cou-
pled BTE solution is noticeably higher than |Qel|, whereas
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FIG. 8. Absolute value of the total thermopower and its electron
and phonon components as a function carrier concentration at 300 K.

in the high-doping limit, they are nearly equal. This ex-
ceptionally strong drag effect is largely a consequence of
the predominance of the scattering of electrons by small-
energy acoustic phonons, which pumps excess momentum
into these phonons, as well as the relatively large lifetimes
of these phonons, which allows them to retain the excess
momentum without dissipation. As the carrier concentration
decreases, |Qph| is expected to approach a constant [7]. First,
we consider the drag effect without the impurity channel
for electron scattering. For the acoustic phonons the carrier
concentration dependence comes only from the reduction
of the scattering phase space of electrons at the chemi-
cal potential by the X -point LA phonons, while low-energy
acoustic phonon scattering is unaffected by the location
of the chemical potential. At low carrier concentrations,
when the chemical potential is in the band gap, the rate at
which low-energy acoustic phonons receive momentum from
electrons remains nearly the same as a function of carrier
concentration. Since the phonon-phonon scattering rates are
independent of the carrier concentration in our rigid band
model, and since the phonon-electron scattering rates scale
linearly with the concentration in the low-doping limit, as
can be seen in Fig. 9, the total amount of momentum re-
ceived from the electron system that is sustained in the
phonon system thus approaches a constant with decreasing
carrier concentration. With increasing carrier concentration,
the phonon-electron scattering rates begin to dominate the
phonon-phonon scattering rates and progressively more of
the excess momentum is returned to the electronic system.
As a consequence, |Qph| decreases with increasing carrier
concentration. This has been described as the “saturation
effect” [7].

This is demonstrated further in Fig. 10, which shows
the spectrum of the phonon contribution to the ther-
mopower Q for carrier concentrations 1015 (blue symbols) and
1020 cm−3 (cyan symbols). In both cases, there is no effect
of the electron-charged impurity scattering channel (crosses)
on Qph, which we explain shortly. Note that when the phonon

FIG. 9. Phonon-electron scattering rates scaled by the carrier
concentration at 300 K.

BTE is decoupled from the electron BTE in the presence of an
external electric field, the phonon contribution to Q is trivially
zero. For the low-concentration case (green line), there is
strong drag effect on the low-energy acoustic phonons. These
phonons receive momentum from the electronic system due to
strong electron-phonon coupling. Since the external electric
field does not couple to phonons, the non-drag-activated high-
velocity acoustic phonons are not driven out of equilibrium
and, as such, only the small-energy acoustic phonons con-
tribute to Q. For the high-concentration case, phonon-electron
scattering rates are higher than phonon-phonon ones and, as
such, the phonons return the momentum received from the
electrons. This leads to a reduction in the phonon contribution
of Q compared to the low-doped case.

On the other hand, the drag enhancement of |Qel| is negligi-
ble. The reason for this lies in the fact that |Qel| is proportional
to the ratio of the carrier heat and charge current densities,
both of which are boosted by the phonon drag with increasing
carrier concentration, leading to significant cancellation. Very

FIG. 10. Spectral decomposition of the phonon contribution to
thermopower Q for carrier concentrations 1015 and 1020 cm−3.
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similar arguments explain the strong drag effect on |Q| in the
Seebeck picture which we discuss below.

The Seebeck picture, where the thermopower is the re-
sponse of the electronic system to an applied temperature
gradient field under an open circuit condition, seemingly
poses a puzzle: how can there be a strong phonon drag boost
of the Seebeck |Q| at low carrier concentrations where none
exists for the electronic contribution to the thermopower, ther-
mal conductivity, and mobility? We first note that the drift of
phonons in a Seebeck experiment occurs due to a direct cou-
pling to the applied temperature gradient field, and not merely
as a secondary effect due to phonon-electron coupling. In the
nondegenerate limit, as the carrier concentration is decreased,
the phonon-electron scattering rates also diminish proportion-
ally. Therefore, the rate of momentum transferred from the
long-lived low-energy acoustic phonons to the electron system
is proportional to the carrier concentration. However, as there
are now proportionally fewer electrons in the system, the
momentum gain from the phonon system per electron is a
constant. For the buildup of a Seebeck voltage, it is the mo-
mentum gain per electron that matters since this allows more
electrons to overcome the growing, self-consistent electric
field during the transient period. On the other hand, with in-
creasing carrier concentration, the phonon-electron scattering
rates increase sublinearly, as shown earlier. Thus, in the high-
doping limit, increasing the carrier concentration decreases
the momentum gain per electron; hence the phonon drag gain
of |Q|—the “saturation effect”—occurs. A similar analysis
has been done for a partially coupled calculation in Ref. [13].

Lastly, we discuss the striking insensitivity of the
thermopower to the presence of impurity scattering. In
the Seebeck picture, the rate of momentum received by
the phonons from the temperature gradient field and, thus,
the momentum transfer to the electronic system remains the
same as before. With increasing doping concentrations, the
rate of draining of momentum from the electronic system in
the impurity channel increases. As such the same steady-state
voltage will develop in the end. In other words, the total
momentum received per electron from the phonon system
remains the same regardless of the presence of impurities.
Similar arguments hold in the Peltier picture in terms of the
constancy of the momentum-retaining capacity of the phonons
in the presence of an impurity scattering channel in the elec-
tronic system. |Qel| is unaffected by impurity scattering for
similar reasons which has previously been demonstrated by
ab initio calculations in Ref. [14]. For the drag component
of the thermopower the same has been shown in Ref. [13].
We have numerically verified this phenomenon by artificially
increasing the electron-charged impurity scattering rates by
a factor of 100 at both the 1015 and 1020 cm−3 doping
concentrations and found that the same |Qph| and |Qel| as
before are reproduced. In the Appendix we present a similar
analysis to show that |Qph| and |Qel| are also largely unaf-
fected by phonon-isotope scattering, corroborating the results
in Ref. [13].

IV. CONCLUSION

In this work we study combined nonequilibrium dynam-
ics of electrons and phonons resulting in the mutual drag
effect by solving fully coupled electron and phonon Boltz-
mann transport equations, treating both electron-phonon and
phonon-phonon coupling at the ab initio level and taking
into account impurity scattering. In the case of 3C-SiC at
room temperature, we found that the intrinsic electron mo-
bility is significantly enhanced by the phonon drag, while the
phonon thermal conductivity is weakly affected. We saw that
phonon transport accounts for a remarkably large contribution
to the thermopower, over a wide doping range, contrary to the
conventional picture in semiconductors. Also, the electron-
phonon drag causes a significant increase in the Lorenz
number, outside the range previously expected in semi-
conductors, which affects how lattice thermal conductivity
measurements should be interpreted. These are consequences
of the strong piezoelectric and acoustic deformation-potential-
type scattering of electrons by low-energy acoustic phonons
and optical deformation-type scattering by the zone-boundary
LA phonons, and the large LO phonon energy in this material.
Since such features are typically absent in nonpolar or weakly
polar materials, we expect the room-temperature drag effect to
be weaker in those materials compared to that in 3C-SiC. The
presence of impurity scattering suppresses the strong drag en-
hancement of the electron mobility and thermal conductivity,
while having a much weaker effect on the drag enhancement
of the Lorenz number and thermopower. Based on this anal-
ysis, we expect that the hexagonal polytypes, 2H-, 4H-, and
6H-SiC, will, and a wide range of polar semiconductors in
general will also exhibit similarly strong drag phenomena
even at room temperature.
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APPENDIX A: COUPLED BTEs

Here we provide the expressions for the various terms in
the BTEs given in Eqs. (3) in the main text. We use the follow-
ing notation when needed for an electronic state: ν ≡ (m, k),
where m is the electronic band index and k is the wave vector.
Similarly, a phonon mode is denoted by λ ≡ (s, q), where s
is the branch index and q is the wave vector. Furthermore, we
use the notation [k + q] to denote (k + q) modulo G, where
G is the reciprocal lattice vector.

The phonon absorption (+) and emission (−) transition
probabilities for electrons are given by

{
X +

νν ′λ

X −
νν ′λ

}
= 2π

h̄

∣∣gsmn
kq

∣∣2
{

f 0
mk

(
1 − f 0

n[k+q]

)
n0

sqδ(εn[k+q] − εmk − h̄ωsq)

f 0
mk

(
1 − f 0

n[k+q]

)(
1 + n0

s−q

)
δ(εn[k+q] − εmk + h̄ωs−q)

}
, (A1)
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where εmk is the electron energy and h̄ωsq is the phonon
energy.

The phonon-electron scattering transition probabilities are
identical to the + processes given above, but for clarity we
write it separately as

Yλmnk =2π

h̄

∣∣gsmn
kq

∣∣2
f 0
mk

(
1 − f 0

n[k+q]

)
n0

λδ(εn[k+q] − εmk − h̄ωλ).

(A2)

The third-order phonon-phonon transition probabilities
are [18]

W ±
λλ′λ′′ =π h̄

4

|V ±
λλ′λ′′ |2

ωλωλ′ωλ′′

(
n0

λ + 1
)(

n0
λ′ + 1

2
± 1

2

)

× n0
λ′′δ(ωλ ± ωλ′ − ωλ′′ ). (A3)

We can collect the total electronic outscattering
probability in

Rν =
∑
nλ

(X +
νn[k+q]λ + X −

νn[k+q]λ) + Rimp
ν , (A4)

where Rimp
ν is the charged impurity scattering term.

In terms of the above, electronic RTA scattering rates are
given by

W e,RTA
ν = Rν

f 0
ν

(
1 − f 0

ν

) . (A5)

Similarly, for the phonon system we have

Qλ =
∑
λ′λ′′

(
W +

λλ′λ′′ + 1

2
W −

λλ′λ′′

)
+ 2

∑
mnk

Yλmnk + Qiso
λ , (A6)

where the prefactor 2 of Y is due to the spin degrees of
freedom and Qiso

ν denotes the isotope scattering term.
The phonon RTA scattering rates are

W ph,RTA
λ = Qλ

n0
λ

(
n0

λ + 1
) . (A7)

In this study we considered two fields and four equations.
We give the expression for them below.

1. Electron response to temperature gradient field

The field coupling term is

I0
ν = εν − EF

RνT
f 0
ν

(
1 − f 0

ν

)
vν, (A8)

where EF is the chemical potential and vν is the electronic
group velocity. This is the RTA term.

The self term is given by

�IS,ν = 1

Rν

∑
nsq

In[k+q](X
+
νn[k+q]λ + X −

νn[k+q]λ), (A9)

and the drag term is given by

�ID,ν = 1

Rν

∑
nsq

(X −
νn[k+q]λFs−q − X +

νn[k+q]λFsq). (A10)

2. Phonon response to temperature gradient field

The field coupling term is given by

F0
λ = h̄ωλvλn0

λ

(
n0

λ + 1
)

QλT
, (A11)

where vλ is the phonon group velocity. This is the RTA term.
The self and the drag terms are given by

�FS,λ = 1

Qλ

∑
λ′λ′′

[
W +

λλ′λ′′ (Fλ′′ − Fλ′ )

+1

2
W −

λλ′λ′′ (Fλ′′ + Fλ′ )

]
, (A12)

�FD,λ = 2

Qλ

∑
mnk

Yλmnk(In[k+q] − Imk ). (A13)

3. Electron response to electric field

The field coupling, RTA term is given by

J0
ν = e

Rν

f 0
ν

(
1 − f 0

ν

)
vν . (A14)

The self and drag terms are

�JS,ν = 1

Rν

∑
nsq

Jn[k+q](X
+
νn[k+q]λ + X −

νn[k+q]λ), (A15)

�JD,ν = 1

Rν

∑
nsq

(X −
νn[k+q]λGs−q − X +

νn[k+q]λGsq). (A16)

4. Phonon response to electric field

There is no field coupling between phonons and the electric
field. The self and drag terms are

�GS,λ = 1

Qλ

∑
λ′λ′′

[
W +

λλ′λ′′ (Gλ′′ − Gλ′ )

+1

2
W −

λλ′λ′′ (Gλ′′ + Gλ′ )

]
, (A17)

�GD,λ = 2

Qλ

∑
mnk

Yλmnk(Jn[k+q] − Jmk ). (A18)

APPENDIX B: CODE VALIDATION: COMPARISON TO
SIMPLE MODELS

To validate our code, we compared the ab initio 3C-SiC
RTA scattering rates to those from simple analytical mod-
els. We first discuss briefly the simple model calculations.
In the model system we assume that the free carriers in the
system form a homogeneous electron gas described by an
isotropic, parabolic electron band with effective mass m∗. For
zone center and zone edge acoustic phonons we consider the
acoustic deformation potential (ADP) and zero-order optic
deformation potential (ODP) types of scattering, respectively.
The matrix elements for these processes take the form of [37]

gDP
q =

√
h̄

2V ρωq
Mq, (B1)
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where V is the volume and ρ is the mass density with

MADP
q = DAq,

(B2)
MODP

q = DO,

where q is understood to be the magnitude of the phonon wave
vector connecting two electronic states. DA and DO are the
acoustic and optic deformation potentials.

We assume that the near-zone-center LA phonons take part
in ADP scattering, whereas the LA phonons near the X point
take part in ODP scattering. For the latter the degeneracy
effect is taken into account by multiplying the scattering rates
with an appropriate degeneracy factor [38].

Since 3C-SiC is a noncentrosymmetric, strongly polar
material, the piezoelectric scattering channel is also consid-
ered. As is customary, we combine all acoustic branches
into one effective piezoactive branch. This is done by
averaging the zone-center TA and LA branch speeds to ob-
tain an effective speed vPZ. The matrix element for this
process is [37]

gPZ
q =

√
h̄e2e2

PZ

2V ρvPZε2
0κ

2∞q

(
q2

q2 + q2
TF

)
, (B3)

where ePZ is the piezoelectric scattering strength, ε0 is the
permittivity of free space, κ∞ is the high-frequency dielec-
tric constant, and qTF is the Thomas-Fermi screening wave
vector computed assuming a homogeneous electron gas. The
term in the brackets is due to Thomas-Fermi screening, and
is required for this scattering mechanism to regularize the
singularity at the conduction-band edge in the corresponding
scattering rates expression, which we present shortly.

Lastly, we considered the polar optic phonon (POP) scat-
tering from the zone-center LO phonons using the Fröhlich
interaction [37]

gPOP
q =

√
h̄e2ωLO

2V ε0q2

(
1

κ∞
− 1

κ0

)
, (B4)

where ωLO is the angular frequency of the LO phonon at the
zone center and κ0 is the static dielectric constant.

Obtaining the RTA scattering rates from these matrix
elements involves performing elementary integrals of the
electron-phonon collision term. For two-dimensional systems,
such calculations are demonstrated in Ref. [39]. The gener-
alization to three dimensions is straightforward and here we
simply provide the final scattering rate expressions. For the
zone-center ADP channel we get

W ADP(Ek ) = 23/2(DA)2kBT (m∗)3/2
√

Ek

2π h̄4ρv2
LA

, (B5)

where m∗ is the effective mass density-of-states mass, Ek is
the electron energy measured from the CBM, and vLA is the
LA phonon speed.

The X -point LA phonon ODP scattering rates can be
shown to be

W ODP(Ek ) = (gV − 1)(m∗)3/2(DO)2

√
2π h̄3ρωX,LA[1 − f 0(Ek )]

n0(h̄ωX,LA)

× {
[1 − f 0(Ek + h̄ωX,LA)]

√
Ek + h̄ωX,LA

TABLE I. The materials parameters of 3C-SiC for simple model
calculations. me stands for electron mass. The deformation potentials
and the piezoelectric interaction strength are from fitting the RTA
scattering rates from the ab initio calculations. The rest of the pa-
rameters are taken or calculated from Refs. [40,41].

Parameter Symbol Value

Effective mass m∗ 0.35me kg
Valley degeneracy gV 3
Density ρ 3166 kg m−3

LO phonon energy h̄ωLO 118 meV
X -point LA phonon energy h̄ωX,LA 80 meV
LA phonon speed vLA 12.5 km s−1

Piezoelectric phonon speed vPZ 17.6 km s−1

Acoustic deformation potential DA 10 eV
Optic deformation potential DO 1.25 × 1011 eV m−1

Piezoelectric strength ePZ 0.76 C m−2

High-frequency dielectric constant κ∞ 6.52
Static dielectric constant κ0 9.59

+ [1 − f 0(Ek − h̄ωX,LA)]
√

Ek − h̄ωX,LA

× e
h̄ωX,LA

kBT �(Ek − h̄ωX,LA)
}
, (B6)

where ωX,LA is the X -point LA phonon angular frequency, n0

is the Bose-Einstein distribution, and the � is the Heaviside
theta function. Since this is an intervalley scattering process,
we multiplied the expression by (gV − 1), where gV is the
valley degeneracy factor following Ref. [38].

The piezoelectric scattering rates are given by

W PZ(Ek ) = e2
PZe2kBT m∗

2π h̄3ρv2
PZκ2∞ε2

0 k

×
[

1 + 1

1 + 4k2/q2
TF

− q2
TF

2k2
log

(
1 + 4k2

q2
TF

)]
.

(B7)

Lastly, the polar optic phonon RTA scattering rates are

W POP(Ek ) = e2

4πε0

(
1

κ∞
− 1

κ0

)
k

2h̄

h̄ωLO

Ek

n0(h̄ωLO)

1 − f 0(Ek )

×
{

[1 − f 0(Ek + h̄ωLO)]log

∣∣∣∣k + k+
k − k+

∣∣∣∣
+ [1 − f 0(Ek − h̄ωLO)]log

∣∣∣∣k + k−
k − k−

∣∣∣∣
× e

h̄ωLO
kBT �(Ek − h̄ωLO)

}
, (B8)

where k± ≡
√

k2 ± 2m∗ωLO/h̄.
The material parameters are presented in Table I. The de-

formation potentials and piezoelectric strength are chosen to
roughly match the results obtained from ab initio calculations.

In Fig. 11 we compare the ab initio RTA scattering rates
against those from the simple model calculations. We first
note that the analytic POP RTA scattering rates contain no
free parameters and, as such, provide a strong check for the
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FIG. 11. Comparison of ab initio and simple model electronic
RTA scattering rates for carrier concentrations 1016 cm−3 (top panel)
and 1020 cm−3 (bottom panel) at 300 K. The zero of the energy axis
is at the conduction-band minimum. For the high-doping case the
electron chemical potential is in the conduction band and is shown
by the blue vertical line.

ab initio calculations. We note that the ab initio and model
optic phonon-scattering rates are in excellent agreement. Both
show the salient physical features of the system: (1) the onset
of LO phonon emission around 120 meV (top panel) and
(2) the phase-space reduction effect at the chemical potential
for the high-concentration case (bottom panel). Similarly, the
X -point LA ODP model phonon-scattering rates also show
the emission onset around 80 meV for the low-concentration
case and a noticeable phase-space reduction effect near the
chemical potential for the high-concentration case. The main
difference between the ab initio and the model calculation
comes from the low-energy acoustic phonon scattering. As
mentioned before, the piezoelectric scattering rates diverge
at the conduction-band minimum and screening is used to
regularize the divergence in the model calculation. In the ab
initio calculation we do not use screening. Instead, a small
phonon energy cutoff is used, below which the scattering
matrix elements are set to zero. This is a standard technique

FIG. 12. Mobility in silicon at 300 K. The experimental data are
taken from Ref. [43].

that is also used in the EPW software, which our code inter-
faces with. The low energy discrepancy between the simple
model piezoelectric scattering and the ab initio polar acoustic
scattering has also been noted in Ref. [42] for n-doped GaAs.

APPENDIX C: CODE VALIDATION: CUBIC Si

To validate our code we ran it on silicon, which has pre-
viously been studied using the ab initio partially coupled
method in Refs. [13,14]. In Figs. 12 and 13 we present the
results for a modest (30,90) mesh which already gives decent
agreement with measurements and previous ab initio calcula-
tions. In particular, the moderately strong drag effect on the
thermopower is accurately captured.

FIG. 13. Thermopower breakdown in silicon at 300 K. The ex-
perimental data are from Ref. [6].
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FIG. 14. Phonon thermal conductivity vs carrier concentration
for various meshes.

APPENDIX D: CONVERGENCE

Below we present the convergence test for the transport co-
efficients with respect to different mesh densities. For all these
tests, we compare the results of the full solution of the coupled
BTEs in the presence of charged impurities. In Figs. 14–16
we present the phonon thermal conductivity, carrier mobility,
and the thermopower in the Seebeck and the Peltier pictures
for different mesh densities. The values obtained between the
(45, 180) and the (65, 130) meshes are close for most of the
values in the full concentration range. The Kelvin-Onsager
relationship dictates that the thermopower in both the See-
beck and the Peltier pictures must match [36]. Although we
found perfect agreement at the relaxation time approxima-
tion level, in the iterated solution to the coupled BTEs the
agreement deteriorates. The iteration process introduces some
error due to the fact that a relatively coarse phonon mesh

FIG. 15. Carrier mobility vs carrier concentration for various
meshes.

FIG. 16. Thermopower in the Seebeck and Peltier pictures vs
carrier concentration for various meshes.

is used and certain coarser mesh quantities are interpolated
onto the finer mesh. Moreover, the thermopower is a ratio
of two different transport coefficients, and it is difficult to
get the same level of accuracy for both the numerator and
the denominator using the same set of meshes. Nevertheless,
we see good agreement of the Kelvin-Onsager relation at the
low- and the high-doping limits, with the largest deviation
coming from the mid concentration ranges.

APPENDIX E: EFFECT OF PHONON-ISOTOPE
SCATTERING ON DRAG

In Table II we compare various transport coefficients and
their drag enhancement at concentrations 1015 and 1020 cm−3

for three cases: (1) without phonon-isotope scattering, (2) with
phonon-isotope scattering, and (3) with artificially 100 times
enhanced phonon-isotope scattering. The electron-charged
impurity scattering channel has been turned off. We find that
the electron mobility shows negligible change at the low
carrier concentration for all three cases. At the high carrier
concentration, the drag enhancement decreases as the dissi-
pative phonon-isotope scattering gets progressively stronger.
For case 3, the phonon-isotope scattering rates are still small
compared to the phonon-electron scattering rates for the low-
energy acoustic phonons, but become comparable for the
optical phonons. Thus, the optic phonon drag gain to the
electron mobility is reduced in this case.

Next we consider the phonon thermopower Qph. This quan-
tity is not strongly affected by the presence of the dissipative
isotope scattering channel. The reason for this is that the
spectral contribution to Qph comes from the small-energy
acoustic phonons and even for the artificially enhanced iso-
tope scattering (case 3), the phonon-isotope scattering rates
are still significantly smaller than the phonon-electron rates.
The electron thermopower Qel is also weakly affected by the
phonon-isotope scattering channel. This is again related to the
fact that the presence of strong phonon-isotope scattering rates
will only reduce the drag activity of the optic phonons while
leaving the low-energy acoustic phonons unaffected.
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TABLE II. The effect of phonon-isotope scattering on the drag enhancement of various transport coefficients in the absence of charged
impurity scattering of electrons. We compare three cases: no isotope scattering, usual isotope scattering, and artificially 100 times enhanced
isotope scattering. The values in the brackets are the percentage increase of the transport coefficient with respect to the corresponding nondrag
value. The ∞ symbol implies that Qph is trivially zero for the nondrag case.

Case 1, no ph-iso Case 2, ph-iso Case 3, 100×ph-iso

Concentration (cm−3) 1015 1020 1015 1020 1015 1020

μ (cm2 V−1 s−1) 1163.51 (0.03) 2424.66 (196.77) 1163.50 (0.03) 2385.49 (191.98) 1163.40 (0.02) 1516.22 (85.58)
Qph (10−3 V K−1) −1.20 (∞) −0.10 (∞) −1.19 (∞) −0.10 (∞) −0.99 (∞) −0.07 (∞)
Qel (10−3 V K−1) −1.02 (0.00) −0.09 (36.27) −1.02 (0.00) −0.09 (35.82) −1.02 (0.00) −0.08 (22.80)
κph (W m−1 K−1) 490.05 (0.00) 436.68 (6.62) 433.36 (0.00) 380.57 (7.59) 131.55 (0.01) 90.74 (13.61)

Lastly, the phonon thermal conductivity κph is strongly
affected by the magnitude of the isotope scattering rates.
The low-concentration limit of κph reduces from 490 to
132 W m−1 K−1 between case 1 and case 3. For the high-
concentration case, these numbers are 437 and 91 W m−1 K−1.
In the main text it was explained why the electron drag en-
hancement of κph is small at low carrier concentrations. The
same argument applies here. For the high-concentration case,

the drag enhancement of κph increases between cases 1 and 3.
This is understood by noticing that for the low-energy acoustic
phonons, the isotope scattering rates are negligible even for
case 3. Thus, the reduction of the κph due to isotope scattering
comes from the mid-energy range. The drag enhancement,
however, comes from the low-energy acoustic phonons. Thus,
the drag enhancement constitutes a progressively larger share
of κph as we sweep from case 1 to case 3.
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