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Evaluations of nonlocal electron-phonon couplings in tetracene, rubrene, and C10-DNBDT-NW
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In organic molecular semiconductors (OSCs), fluctuation of transfer integrals originating from thermally
induced molecular vibrations is suggested to cause large scatterings of carriers, and to be a most important
factor for the suppression of their carrier mobility. The intrinsic carrier mobility under such a fluctuation of
transfer integrals is calculated using the transient localization theory, in which the estimation of transfer-integral
fluctuation depending on each OSC is indispensable. In the present study, we provide a methodology to evaluate
nonlocal electron-phonon couplings in OSCs using the density functional theory, which enables us to evaluate
precisely the fluctuation magnitude of transfer integrals. Our method is based upon the combination of the
frequency correction to reduce numerical inaccuracies in normal-mode frequencies, the extraction of tight bind-
ing parameters using maximally localized Wannier functions, and the explicit consideration of anharmonicity of
phonons. We apply this method to classical OSCs, tetracene and rubrene, and a recently developed high-mobility
OSC, 3,11-didecyl-dinaphtho[2,3-d:2′,3′-d ′]benzo[1,2-b:4,5-b′]dithiophene (C10-DNBDT-NW). We succeeded
in identifying the low-frequency vibrations dominating the fluctuation of transfer integrals at room temperature,
which we consider to be the main factors to limit the intrinsic mobility.

DOI: 10.1103/PhysRevB.102.245201

I. INTRODUCTION

Organic molecular semiconductors (OSCs) have been at-
tracting much attention for their application to printable and
flexible organic field-effect transistors (OFETs) [1]. OSCs
have a relatively low carrier mobility compared to that of typ-
ical inorganic semiconductors such as silicon [2]. Therefore,
high mobility OSCs are needed to expand the applications
of OFETs. In recent years, it has been reported that sev-
eral OSCs such as rubrene and 3,11-didecyl-dinaphtho[2,3-
d:2′,3′-d ′]benzo[1,2-b:4,5-b′]dithiophene (C10-DNBDT-NW)
have a mobility exceeding 10 cm2/V s at room temperature
[3,4]. These OSCs show a Hall effect [5,6] and a negative
temperature dependence of the mobility [6,7], which suggest
that band transport occurs in these OSCs. However, the charge
transport mechanism at room temperature in high mobility
OSCs is not considered to be simple coherent band transport
because the estimated values of mean free paths of carriers are
comparable to or shorter than the intermolecular distances [8].

According to the transient localization theory [8–11],
which has recently been proposed to explain the mechanism of
charge transports in OSCs, thermally induced intermolecular
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vibrations act as dynamic structural disorder, and limit the
intrinsic mobility. In general, the energies of intermolecular
vibrations or equivalently lattice phonons are smaller than the
thermal energy at room temperature (kT ∼ 200 cm−1) due to
weak intermolecular interactions, and, therefore, can be ther-
mally excited. The dynamic disorder is predicted to fluctuate
the transfer integral by several tens of percent [10], so it is
natural to consider that it will induce a transient localization
of the electronic wave function. Thus, the information of
intermolecular vibrations affecting the transfer integrals and
restricting the intrinsic mobility should contribute to the de-
velopment of guidelines in the design of high mobility OSCs.

On the basis of these backgrounds, in the present study,
we focus on the intermolecular vibrations in three typical
OSCs: classical OSCs, tetracene and rubrene, and a recently
developed high-mobility OSC consisting of sulfur-bridged
N-shaped π cores and alkyl chains, C10-DNBDT-NW.
C10-DNBDT-NW is a promising OSC for practical use be-
cause it meets the necessary conditions for printable and
flexible OFETs: sufficient solubility for solution processes,
high thermal stability, and high mobility [4,12]. In those
OSCs, we theoretically identify the intermolecular vibra-
tional modes, which strongly modulate the transfer integral
by computing nonlocal electron-phonon (e-ph) couplings with
density functional theory (DFT) calculations. We also calcu-
late the infrared (IR) and Raman spectra in the low-frequency
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region of three kinds of OSCs. By comparing the calculated
spectra with the corresponding spectra experimentally ob-
tained, we verify the validity of the vibrational calculations.

For the reliable evaluations of e-ph coupling strengths, both
the harmonic frequency and the transfer integral should be
obtained with high accuracy. In OSCs, the cohesive forces
of intermolecular vibrations are determined by weak van der
Waals forces, so that their harmonic frequencies are small
(typically less than 100 cm−1), resulting in numerical errors
in the harmonic-frequency calculations becoming significant.
Therefore, we apply the frequency correction method [13]
to low-frequency modes in order to reduce numerical inac-
curacies of harmonic frequencies. Accurate transfer integrals
can be calculated with maximally localized Wannier func-
tions (MLWFs) [14–16]. In addition, we take anharmonicity
into account in the calculations of transfer-integral fluctu-
ations associated with phonons with very low frequencies
(<10 cm−1).

As for the nonlocal e-ph interactions of three OSCs fo-
cused here, several studies have been reported so far in
Refs. [17–19] in tetracene, Refs. [10,13,16,17,20–24] in
rubrene, and Refs. [10,25] in C10-DNBDT-NW. Among
them, the extraction of tight binding parameters using
MLWFs and the incorporation of anharmonic components of
phonons were performed only in rubrene in Refs. [16,21],
respectively. In C10-DNBDT-NW, the normal mode calcula-
tions were done only with a force field method [25], but no
DFT calculations have been reported. The comparative studies
of nonlocal e-ph interactions in the three OSCs presented here,
based upon the same DFT framework including the frequency
correction, the MLWFs, and the anharmonicity of phonons,
will give valuable information to understand different charac-
teristics of electric conductions in various kinds of OSCs.

This paper is organized as follows. In Sec. II, we sum-
marize the crystal structures of three OSCs. In Sec. III,
we introduce calculation methods including standard normal
mode analysis, the frequency correction, the computations of
IR/Raman spectra, transfer integrals with MLWFs, nonlocal
e-ph couplings, and anharmonicity of phonons. Then we show
our theoretical results in the Sec. III A summary given in
Sec. IV.

II. CRYSTAL STRUCTURES OF TETRACENE, RUBRENE,
AND C10-DNBDT-NW

Figure 1 shows the structure of each OSC [26–28].
The molecular long axis of rubrene lies within the her-
ringbone plane, while the molecular short axis of tetracene
and C10-DNBDT-NW lies within the herringbone plane.
The space group of each OSC is P1̄, Cmca, and P21/c
for tetracene, rubrene, and C10-DNBDT-NW, respectively
[26–28]. Transfer integrals between neighboring molecules
within the herringbone plane are defined as shown in Fig. 1.
The number of different kinds of transfer integrals between
nearest neighbor sites is 4 in tetracene: ta1, ta2, td1, and td2,
while it is 2 in rubrene (tb and td ) and C10-DNBDT-NW (tc and
td ), due to the difference in symmetry of the crystal structures.
The maximum values of hole mobility previously reported
in their FETs are 2.4 cm2/V s in tetracene [29], 40 cm2/V s
in rubrene [3], and 16 cm2/V s in C10-DNBDT-NW [4].
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FIG. 1. Molecular structures and packing structures of (a)
tetracene [26], (b) rubrene [27], and (c) C10-DNBDT-NW [28] with
maximally localized Wannier functions constructed from HOMO
bands. The alkyl chains of C10-DNBDT-NW are not shown for
clarity.

Rubrene shows quasi-one-dimensional electric conduction
[30], while tetracene and C10-DNBDT-NW show two-
dimensional ones [31,32].

III. CALCULATION METHOD

A. Normal mode analysis

To investigate low-frequency intermolecular vibrations or
lattice phonons, we perform periodic boundary DFT calcula-
tions with CRYSTAL 17 code [33], which uses an all-electron
Gaussian-type basis set. The B3LYP [34,35] exchange and
correlation functional is employed with the 6-31G(d) basis set
[36]. Grimme’s D3 dispersion correction is applied in order to
treat London dispersion interactions [37].

First, the geometrical optimization is performed using the
crystallographic data obtained experimentally [26–28]. The
space group is fixed to an experimentally obtained one: P1̄ for
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tetracene, Cmca for rubrene, and P21/c for C10-DNBDT-NW.
The calculations are performed with the primitive cell, which
contains two molecules. The threshold energy is set to �E <

10−10 hartree, and 8 × 8 × 8 k-point samplings with
�-centered k meshes are employed following the Monkhorst-
Pack scheme [38].

Here, we detail the geometry optimization in rubrene.
When the cell parameters are optimized, the lattice con-
stants b and c of rubrene become smaller than those of
the experimental structure at room temperature (2% and 5%
underestimations, respectively). One of the causes for this
underestimation is lack of thermal expansion in DFT calcu-
lations. In an x-ray diffraction study [27], the temperature
dependence of the cell parameters are reported between 100
and 300 K in rubrene single crystals. The cell parameters are
linearly decreased by lowering the temperature in this range.
When we assume that the cell parameters are also linearly de-
creased from 100 to 0 K, the decreases in b and c by lowering
the temperature from 300 to 0 K are estimated at 0.5% and
2%, respectively. Therefore, the cause of the underestimation
is not only the lack of thermal expansion in the DFT calcu-
lations. These underestimations are not considered to be due
to basis set superposition error (BSSE) because the underesti-
mations of b and c also occur when the basis set is improved
to pob-TZVP-rev2 [39] (3% and 6% underestimations, re-
spectively). A most plausible reason is that the D3 dispersion
correction overestimates the intermolecular attractive force.
Hence, we fix the cell parameters to the experimental values
[26–28], which will give harmonic frequencies close to the
experimental results.

After the cell-fixed geometry optimization, �-point vibra-
tional frequency calculations [40,41] are performed with the
same conditions. Mass-weighted dynamical matrix W (q = 0)
takes the form

Wiα, jβ (q = 0) = Hiα, jβ√
MiMj

. (1)

Mi is the mass of the atom i, and Hiα, jβ is the second derivative
of potential energy surface V (u) at equilibrium position with
respect to a displacement of atom i in the α-axis direction and
a displacement of atom j in the β-axis direction:

Hiα, jβ =
[

∂2V (u)

∂uiα∂u jβ

]
u=0

(i, j = 1, 2, . . . , N α, β = x, y, z),

(2)
where N is the number of atoms in a unit cell. The equi-
librium structure corresponds to u = 0. In the CRYSTAL
code, the first derivative of V (u) with respect to the atomic
displacement, viα = ∂V/∂uiα , is calculated analytically. Then
mass-weighted dynamical matrix is numerically obtained via
two-point formula:

Wiα, jβ ≈ W (num)
iα, jβ

= 1√
MiMj

viα (0, . . . , uiα, . . .) − viα (0, . . . , 0, . . .)

uiα
.

(3)

We set the step size of displacement along each Carte-
sian axis uiα = 0.003 Å. The harmonic frequencies and the
normal modes are defined by the following eigenvalue
problem:

W eλ = ω2
λeλ. (4)

eλ is the unit eigenvector and ωλ is the harmonic frequency of
the mode λ. The harmonic frequencies and the normal modes
at the � point are computed by diagonalizing W (num). We
define the eigenvalue and the eigenvector of W (num) as [ω(1)

λ ]2

and e(num)
λ , respectively, in order to distinguish them from the

exact results which do not include numerical errors. The rela-
tion between the unit eigenvector e(num)

λ and the displacement
of atom i of the phonon mode λ in the α-axis direction u(num)

λ,iα
is given as follows:

u(num)
λ,iα = e(num)

λ,iα√
Mi

Qλ. (5)

Here, Qλ is the normal mode coordinate.
The normal mode analysis was the most time-consuming

calculation. The time necessary for each calculation using
Intel Xeon E5-2690v4 (2.6 GHz) was ∼1 day (27 cores)
for tetracene, ∼5 days (27 cores) for rubrene, and ∼25 days
(20 cores) for C10-DNBDT-NW.

B. Frequency correction

The frequency obtained by the above-mentioned method,
ω

(1)
λ , is affected by numerical errors, especially in the low-

frequency region. In order to reduce the frequency errors,
frequency correction is performed in the same way as reported
in a previous study [13]. We calculate the increase in energy
�Eλ after changing the structure from u = 0 (optimized struc-
ture) to u = u(num)

λ for the given phonon mode λ. Then �Eλ is
fitted with a quadratic function with respect to the amplitude
Qλ:

�Eλ(Qλ) = 1
2

[
ω

(2)
λ

]2
Q2

λ, (6)

where ω
(2)
λ is the corrected frequency. The corrected frequency

ω
(2)
λ is more accurate than ω

(1)
λ (see the Appendix).

We apply the frequency correction only to low-frequency
modes whose frequencies are smaller than the threshold fre-
quency ωth since the relative error in the frequency tends to
decrease with increase of the frequency. No frequency correc-
tion is applied to any phonon modes in tetracene because their
calculated frequencies are sufficiently close to the experimen-
tal values. We set the threshold ωth to 100 cm−1 in rubrene
and C10-DNBDT-NW. In these OSCs, we confirmed that
|�ω/ω(2)| is less than 10% for 50 cm−1 < ω(2) < 100 cm−1,
which makes us expect that the numerical errors for ω(2) >

100 cm−1 are not serious. We consider the scaling factor of
B3LYP/6-31G(d) (0.96 [42]) additionally, and the resultant
frequency ω

(3)
λ becomes

ω
(3)
λ =

{
0.96ω

(2)
λ

(
for rubrene and C10-DNBDT-NW, ω

(1)
λ < 100 cm−1

)
0.96ω

(1)
λ

(otherwise)
. (7)
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Hereafter, we use ω
(3)
λ for the calculations of the IR/Raman

spectra and the nonlocal e-ph coupling constants.

C. IR/Raman spectrum

In order to verify the validity of the calculations of vi-
brations, IR/Raman spectra in the low-frequency region are
calculated. Imaginary part of the dielectric tensor is

ε2, j j (ω)

ε0
=

∑
λ

Im

{
f j j,λ

[
ω

(3)
λ

]2

[
ω

(3)
λ

]2 − ω2 − iωγλ

}
, (8)

where j j indicates the polarization direction, and f j j,λ and
γλ are the oscillator strength and damping factor for the vi-
brational mode λ, respectively. The oscillator strength f j j,λ

is computed by the Berry phase method implemented in
CRYSTAL code [43,44].

An intensity of polarized Raman scattering is described as

Iλ,i j ∝ C

(
∂αi j

∂Qλ

)2

. (9)

i( j) indicates the polarization of incident (outgoint) light, and
αi j is the polarizability tensor. The prefactor C depends on
temperature T and the frequency of the incident light ωL as
follows [45,46]:

C ∼
[
ωL − ω

(3)
λ

]4

30ω
(3)
λ

1

1 − exp
(− h̄ω

(3)
λ

kT

) . (10)

Unpolarized Raman intensities for a powder sample, Iλ,tot,
can be calculated as [47,48]

Iλ,tot ∝ C
[
10G(0)

λ + 5G(1)
λ + 7G(2)

λ

]
, (11)

where G(0)
λ , G(1)

λ , and G(2)
λ are the rotation invariants:

G(0)
λ = 1

3

(
∂αxx

∂Qλ

+ ∂αyy

∂Qλ

+ ∂αzz

∂Qλ

)2

,

G(1)
λ = 1

2

[(
∂αxy

∂Qλ

− ∂αyx

∂Qλ

)2

+
(

∂αyz

∂Qλ

− ∂αzy

∂Qλ

)2

+
(

∂αzx

∂Qλ

− ∂αxz

∂Qλ

)2]
,

G(2)
λ = 1

2

[(
∂αxy

∂Qλ

+ ∂αyx

∂Qλ

)2

+
(

∂αyz

∂Qλ

+ ∂αzy

∂Qλ

)2

+
(

∂αzx

∂Qλ

+ ∂αxz

∂Qλ

)2]
+ 1

3

[(
∂αxx

∂Qλ

− ∂αyy

∂Qλ

)2

+
(

∂αyy

∂Qλ

− ∂αzz

∂Qλ

)2

+
(

∂αzz

∂Qλ

− ∂αxx

∂Qλ

)2]
. (12)

Raman spectra are calculated with the Coupled-Perturbed
Kohn-Sham method implemented in CRYSTAL code [49,50].

D. Transfer integral

Transfer integrals are calculated with MLWFs, which are
constructed from Bloch functions consisting of the highest-
occupied molecular orbital (HOMO) [14–16]. Because the
unit cell contains two molecules, there are two HOMO-
derived bands and two corresponding Bloch functions, ψ1k(r)
and ψ2k(r). The α th Wannier function (WF) is defined as

wαR(r) = Vcell

(2π )3

∫
BZ

dk e−ik·R
2∑

β=1

U (k)
αβ ψβk(r), (13)

where R is the lattice vector, Vcell is the volume of the unit
cell, and U (k)

αβ is a 2 × 2 unitary matrix. MLWFs are defined
as WFs where the unitary matrix U is set so as to minimize
the localization functional :

 =
2∑

α=1

[〈wα0|r2|wα0〉 − |〈wα0|r|wα0〉|2]. (14)

Although the WF is not necessarily localized in a molecule,
the MLWF is localized in a molecule.

Here, the MLWF wα0(r) is assumed to be localized at
the molecule located at δα . The transfer integral between
molecule N centered at rN = RN + δαN and molecule M cen-

tered at rM = RM + δαM is obtained as

tMN = 〈wαM RM |ĤKS|wαN RN 〉, (15)

where ĤKS is the Kohn-Sham Hamiltonian.
Here, we mention the difference between the MLWF

method adopted here and the dimer projection (DIPRO)
method [51,52]. The latter is a standard method to compute
transfer integrals of OSCs. Strictly speaking, transfer integrals
obtained by the DIPRO method are different from the exact
tight binding parameters corresponding to HOMO-derived
bands because a band consists of not only HOMOs but also
other molecular orbitals such as second highest occupied
molecular orbitals (SHOMOs). A transfer integral obtained
using MLWFs is an effective value including the contribu-
tion from SHOMOs to HOMO-derived bands, which enlarges
bandwidth in some OSCs such as [1] benzothieno[3,2-b
][1]benzothiophene (BTBT) based OSCs [53]. Previous re-
search shows that the difference between computed transfer
integrals of pentacene with the MLWF method and those with
the DIPRO method is less than 10 meV, whereas e-ph coupling
constants of pentacene obtained by the DIPRO method are
slightly overestimated [16]. The transfer integrals calculated
with MLWFs exactly correspond to tight binding parameters,
and thus precise transfer integrals and nonlocal e-ph coupling
constants can be obtained.
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We calculate band structures, MLWFs, and transfer in-
tegrals using a plane-wave based code, XTAPP [54–56],
in the optimized structures used in the vibrational calcu-
lations mentioned above. We adopt the norm-conserving
pseudopotentials [56] and the Perdew-Burke-Ernzerhof (PBE)
exchange–correlation functional [57,58], which is one of the
generalized gradient approximation (GGA) functionals. The
k-point samplings are done in 5 × 5 × 3 for tetracene and
rubrene, and 3 × 3 × 4 for C10-DNBDT-NW with a �-
centered grid. We confirmed that the changes in the values of
the calculated transfer integrals are smaller than 0.2% when
we varied the k-point sampling to 6 × 6 × 3 (3 × 6 × 6) in
tetracene and rubrene (C10-DNBDT-NW). The cutoff energy
is set to 81 Ry for all the materials.

E. Nonlocal e-ph coupling

Nonlocal e-ph couplings are introduced in a tight-binding
Hamiltonian as follows:

Ĥ = Ĥel + Ĥe−ph + Ĥph

=
∑

N

εN ĉ†
N ĉN +

∑
M 	=N

t̂MN ĉ†
MĉN

+
∑
λq

h̄ωλq

(
b̂†

λqb̂λq + 1

2

)
. (16)

Here, Ĥel (Ĥph) is the electron (phonon) terms, Ĥe−ph is
the e-ph coupling terms, ĉN (ĉ†

N ) is the annihilation (creation)
operator of an electron at the N th site with energy εN , and
b̂λq (b̂†

λq) is the annihilation (creation) operator of an phonon
belonging to mode λ with wave vector q and frequency ωλq.
t̂MN represents the transfer integral between N th site and Mth
site including e-ph coupling terms defined by

t̂MN = tMN + 1√
N

∑
λq

gλMN (q)(b̂†
λq + b̂λ,−q)

≡ tMN +
∑

λ

�t̂λMN . (17)

tMN is the transfer integral of the equilibrium structure, N

is the number of unit cells, gλMN (q) is the e-ph coupling
constant:

gλMN (q) =
√

h̄

2ωλq

∂tMN

∂Qλq
, (18)

and �t̂λMN is a transfer integral fluctuation by phonons be-
longing to mode λ. Hereafter, we only consider the transfer
integral between nearest neighbor molecules. Considering a
bulk system and taking the thermodynamic limit N → ∞,
the variance of the transfer integral at temperature T is calcu-
lated as

〈(�t̂MN )2〉T ≡ 〈(t̂MN − t )2〉T

=
∑

λ

〈(�t̂λMN )2〉T

=
∑

λ

Vcell

(2π )3

∫
dq |gλMN (q)|2 coth

(
h̄ωλq

2kT

)
.

(19)
〈Ô〉T is the thermal average value of an observable Ô at
temperature T defined as

〈Ô〉T = Tr
[
Ôexp

(− Ĥph

kT

)]
Tr

[
exp

(− Ĥph

kT

)] . (20)

The transfer integral fluctuation 〈(�t̂MN )2〉T is the key
factor to compute the carrier mobility in a framework of the
transient localization theory [10].

In our study, in order to avoid the high computational cost,
we ignore the contributions of acoustic phonons to the transfer
integral fluctuation. We compute e-ph couplings of only �-
point phonons, gλMN (0), and approximate those with wave
vector q, gλMN (q), using gλMN (0). We call this treatment a
�-point approximation. Here, we consider the meaning of this
approximation. The q-dependence of e-ph coupling constant
gλMN (q) can be modeled as follows [59]:

gλMN (q) = 1

2
gλMN (0)

√
ωλ0

ωλq
(eiq·RM + eiq·RN )

+ 1

2
gλMN (qNM )

√
ωλqNM

ωλq
e−iqNM ·RM (eiq·RM − eiq·RN ).

(21)

In Eq. (21), qNM = π (RN − RM )/|RN − RM |2. We neglect
the q dependence of the frequency of an optical phonon mode
(ωλq ≈ ωλ,q=0 ≡ ωλ). When molecules form a herringbone
structure on the xy plane, 〈(�t̂λMN )2〉T for the optical phonon
mode is expressed as follows:

〈(�t̂λMN )2〉T ≈

⎧⎪⎨
⎪⎩

1
2

[|gλMN (0)|2 + ∣∣gλMN
(

π
a ex

)∣∣2]
coth

( h̄ωλ

2kT

)
(rM = rN ± aex )

|gλMN (0)|2 coth
( h̄ωλ

2kT

) (
rM = rN ± a

2 ex ± b
2 ey

) . (22)

The variance of the transfer integral between the near-
est neighbor sites along the crystal axis is dominated
by the frequencies of the �-point phonons and zone-
edge phonons, which correspond to the in-phase vibra-
tions and out-of-phase vibrations, respectively. The �-point
approximation ignores the contribution from zone-edge
optical phonons. Therefore, fluctuation of the transfer in-
tegral along the crystal axis is underestimated when we

apply the �-point approximation. On the other hand, the
variance of the transfer integral between the nearest neigh-
bor sites along the diagonal axis can be calculated with
the �-point e-ph coupling because the �-point phonon
modes include both in-phase vibrations and out-of-phase
vibrations.

We calculate the mode-resolved variance of transfer in-
tegral at room temperature from the �-point optical phonon
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mode σ 2
λMN defined as

σ 2
λMN ≡ |gλMN (0)|2 coth

[
h̄ω

(3)
λ

2kT

]
. (23)

The e-ph coupling constant gλMN (0) is computed via the
central-difference approximation:

gλMN (0) ≈
√

h̄

2ω
(3)
λ

tMN (�Qλ,q=0) − tMN (−�Qλ,q=0)

2�Qλ,q=0
. (24)

We set �Qλ,q=0 = 0.1
√

h̄/ω(1) for the numerical deriva-
tive.

F. Anharmonicity of low-frequency phonons
in C10-DNBDT-NW

According to the previous research [21], very low-
frequency modes in alkylated OSCs show strong anharmonic-
ity. Furthermore, as we discuss in the next section, we
observe two imaginary frequency modes in C10-DNBDT-NW
when fixing the space group as P21/c. Therefore, in
C10-DNBDT-NW, anharmonicity of phonons should be taken
into account. In order to estimate the anharmonic effects, the

potential curves of very low-frequency modes (<10 cm−1)
and the imaginary frequency modes are fitted with a quartic
function and the Schrödinger equation of the one-dimensional
anharmonic oscillator is solved. The Hamiltonian takes the
form

Ĥanharm,λ = 1

2
P̂2

λ + 1

2

[
ω

(2)
λ

]2
Q̂2

λ + αλ

∣∣ω(2)
λ

∣∣5/2

√
h̄

Q̂3
λ

+βλ

∣∣ω(2)
λ

∣∣3

h̄
Q̂4

λ, (25)

where P̂λ is the momentum operator which satisfies
[Q̂λ, P̂λ] = ih̄, and αλ and βλ are the dimensionless an-
harmonic constants. We introduce annihilation (creation)
operator bλ (b†

λ) as

b̂λ =
√∣∣ω(2)

λ

∣∣
2h̄

Q̂λ + i√
2h̄

∣∣ω(2)
λ

∣∣ P̂λ,

b̂†
λ =

√∣∣ω(2)
λ

∣∣
2h̄

Q̂λ − i√
2h̄

∣∣ω(2)
λ

∣∣ P̂λ. (26)

Then, the Hamiltonian becomes

Ĥanharm,λ

h̄
∣∣ω(2)

λ

∣∣ =
{

b̂†
λb̂λ + 1

2 + αλ

2
√

2
(bλ + b†

λ)
3 + βλ

4 (bλ + b†
λ)

4 (
for ω

(2)
λ : real

)
− b̂λb̂λ+b̂†

λb̂†
λ

2 + αλ

2
√

2
(bλ + b†

λ)
3 + βλ

4 (bλ + b†
λ)

4 (
for ω

(2)
λ : imaginary

) . (27)

By numerically diagonalizing the anharmonic Hamilto-
nian, the eigenstates |φn〉 and eigenenergies En are obtained.
The amplitude of the anharmonic phonon 〈Q2

λ〉anharm,T can be
calculated as

〈
Q2

λ

〉
anharm,T = Tr

[
Q̂2

λexp
(− Ĥanharm,λ

kT

)]
Tr

[
exp

(− Ĥanharm,λ

kT

)]
=

∑
n 〈φn|Q̂2

λ|φn〉exp
(− En

kT

)
∑

n exp
(− En

kT

) . (28)

We compute the mode-resolved transfer integral variance
at room temperature from a �-point anharmonic phonon
σ 2

λMN,anharm defined as

σ 2
λMN,anharm =

∣∣∣∣∂tMN

∂Qλ

∣∣∣∣
2〈

Q2
λ

〉
anharm,T . (29)

Note that this procedure only takes account of anharmonic
terms proportional to Q3

λ,q=0 or Q4
λ,q=0, while there are many

more anharmonic terms, e.g., third order terms are gener-
ally described as

∑
λ1q1λ2q2λ3q3

�λ1q1λ2q2λ3q3
Qλ1q1

Qλ2q2
Qλ3q3

. A
methodology of calculating all the anharmonic coefficients
and applying it to an inorganic material SrTiO3 were reported
[60]. However, the application of this method to OSCs re-
quires a high computational cost due to the large number of
atoms in a unit cell in OSCs. Therefore, we only consider
Q3

λ,q=0 and Q4
λ,q=0 terms, which enables us to characterize the

effect of anharmonicity.

IV. RESULTS AND DISCUSSIONS

A. Frequency correction

We examine the influence of the frequency correction
introduced in Sec. III B. Figure 2 shows an example of
the frequency correction applied to the lowest frequency
mode in C10-DNBDT-NW (ω(1) = 2.9 cm−1). The broken
line shows the change in energy, �E = 1

2 (ω(1) )2Q2, as a

-0.04 -0.02 0 0.02 0.04
0

0.5

1

1.5

2

X (Å)

E
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m
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/c
el

l)

Frozen phonon
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(2)

FIG. 2. The detail of the frequency correction applied to the
lowest frequency modes of C10-DNBDT-NW (ω(1) = 2.9 cm−1). The
dashed line is �E = 1

2 (ω(1) )2Q2, the red circles are DFT-calculated
change in energy per cell, and the solid line is the fitting curve
�E = 1

2 (ω(2) )2Q2.
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function of an atomic displacement X corresponding to
a normal mode coordinate Q, which is defined by X =
Q/

√
Mtot where Mtot is the total mass of the atoms in

the unit cell. The open circles show the change in energy
per cell obtained by the DFT-based calculation. The solid
line is its fitting curve, �E = 1

2 (ω(2) )2Q2. From this fit-
ting, the corrected frequency ω(2) = 8.0 cm−1 is obtained.
The magnitude of frequency correction �ω ≡ ω(2) − ω(1) is
5.1 cm−1.

We evaluate the magnitudes of frequency correction of
the low-frequency modes λ (<100 cm−1), �ωλ ≡ ω

(2)
λ −

ω
(1)
λ , in rubrene as well as in C10-DNBDT-NW by per-

forming the same procedures. The results of rubrene and
C10-DNBDT-NW are shown in Figs. 3(a) and 3(b), respec-
tively, in which not only �ωλ but also its relative value
�ωλ/ω

(2)
λ are presented. The maximum value of �ωλ/ω

(2)
λ

is 11% for the mode with ω
(2)
λ = 35 cm−1 in rubrene and

63% for the mode with ω
(2)
λ = 8 cm−1 in C10-DNBDT-NW.

The large value of �ωλ/ω
(2)
λ in C10-DNBDT-NW is proba-

bly related to the fact that this OSC has very low-frequency
modes, and those modes are strongly affected by numerical
errors. The results indicate that the frequency correction is
important to estimate precisely amplitudes of thermally in-
duced intermolecular vibrations in OSCs, especially when
the mass of the constituent molecule is large. On the other
hand, we do not apply the frequency correction to normal
modes in tetracene because their calculated frequencies are
very close to the experimental values, which is shown in
Sec. III B.

B. IR/Raman spectrum

In order to verify the reliability of the vibrational calcu-
lations presented above, we further calculate the IR/Raman
spectra in the low-frequency region and compare the results
with the spectra experimentally obtained. The symmetries
of the normal modes and IR/Raman-active polarization di-
rections are summarized in Table I. Here, we calculate
the unpolarized Raman spectrum in tetracene, the polarized
Raman and IR spectra in rubrene, and the polarized Ra-
man spectra in C10-DNBDT-NW. Some of those spectra
were experimentally obtained [61–63]. The polarized Ra-
man spectra of C10-DNBDT-NW are measured in the present
study.

In the Raman spectroscopy of C10-DNBDT-NW, a Horiba
LabRAM HR Evolution spectrometer equipped with an op-
tical microscope and a He-Ne laser (633 nm) was used. The
polarization of the incident light was controlled via a half-
wave plate. A polarizer was set to select the polarization of
the detected scattered light. The spectra were measured in the
backscattering geometry.

1. Raman spectrum in tetracene

In Fig. 4, the solid line shows the unpolarized Raman
spectrum of a powder sample of tetracene at 298 K experi-
mentally obtained in the previous study [61]. The wavelength
of the incident light is 752.5 nm. The broken line shows the
calculated spectrum obtained in the present study, in which
the full width at half maximum is set to 8 cm−1 in all the
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FIG. 3. The results of the frequency correction to (a) rubrene and
(b) C10-DNBDT-NW.

modes in common. The calculated spectrum well reproduces
the frequency and relative intensity of each Raman band (Ag

mode) in the experimental spectrum. The root-mean-square
deviation (RMSD) of the frequencies calculated in our study
from the frequencies experimentally obtained in the range
of 20 cm−1 < ω(3) < 150 cm−1 is 1.9 cm−1, which is much
smaller than that (∼8.0 cm−1) of the frequencies evaluated by
the quasiharmonic lattice dynamics calculations [61]. It also
much smaller than RMSDs in the other OSCs as described
below.
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TABLE I. List of IR/Raman-active polarization directions in
tetracene, rubrene and C10-DNBDT-NW.

Symmetry IR Raman

Tetracene Ag inactive all
Au all inactive

Rubrene Ag inactive xx, yy, zz
B1g inactive xy
B2g inactive xz
B3g inactive yz
Au inactive inactive
B1u z inactive
B2u y inactive
B3u x inactive

C10-DNBDT-NW Ag inactive xx, yy, zz, xz
Bg inactive xy, yz
Au y inactive
Bu x, z inactive

2. Polarized Raman and absorption spectra in rubrene

Figures 5(a) and 5(b) show the experimental polarized Ra-
man spectra in rubrene crystals previously reported at room
temperature [62] and the corresponding spectra calculated in
the present study, respectively. The wavelength of the incident
light is 647.1 nm. The direction of electric fields of the inci-
dent light is parallel to the b axis and that of the scattering
light is parallel to the b or c axis as shown in the upper panel.
In two configurations, the peaks observed in the experiments
are almost reproduced in the calculations, while the relative
intensities of the peaks at 35, 105, and 120 cm−1 and peak
positions of the peaks at 35 and 75 cm−1 are slightly deviated.
RMSD of peak frequencies evaluated using the experimen-
tal spectrum in the range of 20 cm−1 < ω(3) < 200 cm−1 is
6.5 cm−1.

Figure 6(a) shows the spectra of imaginary part of dielec-
tric constants, ε2, in the terahertz (THz) region in a rubrene
single crystal. The electric fields of lights are parallel to
the b or c axis. Those spectra were measured at 294 K
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FIG. 4. Comparison of an experimental unpolarized Raman
spectrum of tetracene (the black solid line) taken from Ref. [61]
and a calculated one (the red broken line) at room temperature. The
wavelength of the incident light is 752.5 nm. The calculated Raman
peaks were convolved using Lorentzian line shapes with a full width
at half-maximum (FWHM) of 8 cm−1.
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FIG. 5. Comparison of (a) experimental polarized Raman spectra
of rubrene taken from Ref. [62] and (b) calculated ones at room
temperature. The wavelength of the incident light is 647.1 nm.
The calculated Raman peaks were convolved using Lorentzian line
shapes with a FWHM of 8 cm−1.

using the THz time-domain spectroscopy (THz-TDS) and re-
ported previously by some of the authors in this paper [61].
Figure 6(b) shows the calculated ε2 spectra, which repro-
duce well both the frequency and oscillator strength of each
band experimentally obtained. RMSD of peak frequencies
evaluated using the experimental spectrum in the range of
40 cm−1 < ω(3) < 350 cm−1 is 7.4 cm−1.

While the computed Raman spectra are somewhat different
from the experimental ones, the computed IR spectra well
reproduce the experimental ones. Therefore, we consider that
the computed normal modes in rubrene are reliable.

3. Polarized Raman spectra in C10-DNBDT-NW

Figures 7(a) and 7(b) show the experimental polarized
Raman spectra in C10-DNBDT-NW single crystals at room
temperature and the corresponding calculated spectra. The
wavelength of the incident light is 633 nm. The directions of
electric fields of the incident and scattering lights are parallel
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FIG. 6. Comparison of (a) experimental polarized ε2 spectra of
Rubrene taken from Ref. [63] and (b) calculated ones at room tem-
perature. The red and blue lines show the spectra with the electric
fields of lights parallel to the b and c axis, respectively. In the
calculated spectra, γλ is set to 8 cm−1.
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FIG. 7. Comparison of (a) experimental polarized Raman spectra
of C10-DNBDT-NW and (b) calculated ones at room temperature.
The wavelength of the incident light is 633 nm. The calculated
Raman peaks were convolved using Lorentzian line shapes with a
FWHM of 8 cm−1.

to the b or c axis as shown in the upper panel. The overall
features of the experimental spectra are almost reproduced by
the calculated ones, although the relative intensity of each
band in the calculated spectra is not completely the same
as those in the experimental spectra. The RMSD of peak
frequencies evaluated using the experimental spectrum in the
range of 90 cm−1 < ω(3) < 220 cm−1 is 4.1 cm−1.

Combining the comparisons of the IR/Raman spectra in the
three OSCs, we can consider that our vibrational calculations
are reliable.

C. Transfer integral

As mentioned in Sec. III C, we calculate transfer integrals
using MLWFs. First, we calculate the MLWFs using the
Bloch functions of the HOMO-derived bands in the region
of −1.2 eV < E < −0.6 eV and obtain the band dispersions
by taking into account all the transfer integrals between two
molecules far from each other, which is called Wannier inter-
polated bands. In Fig. 8, we show by the red solid lines the
band dispersions of C10-DNBDT-NW thus obtained, which
are completely the same as those obtained using the PBE
exchange-correlation functional shown by the solid black
lines. These results support the validity of the MLWFs ob-
tained in our framework. The MLWFs for tetracene and
rubrene are computed in the same way. The obtained MLWFs
in tetracene, rubrene, and C10-DNBDT-NW are visualized
in Fig. 1. Each MLWF is localized in a molecule, which is
one of the conditions to treat MLWFs as the basis of a tight
binding model. The results of Wannier interpolated bands and
visualized MLWF show that the construction of tight binding
model corresponding to HOMO-derived bands is successful
(see Fig. 8). The tight binding parameters computed using
these MLWFs are listed at Table II. The calculated transfer
integrals are consistent with those reported in the previous
studies [4,64], in which the dimer projection method (DIPRO)
[51,52] and the experimentally determined structure were
used [4,26,27]. Note that there are many previous studies that
report the transfer integral of rubrene [10,13,16,20–23,65],
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FIG. 8. PBE band structure (black solid lines) and Wannier in-
terpolated bands (red dotted lines) of C10-DNBDT-NW. The band
dispersions are plotted along the high-symmetry points where � =
(0,0,0), Y = (0,1/2,0), Z = (0,0,1/2), S = (0,1/2,1/2). The zero of
energy is the fermi level.

and a variety of values of tb are reported (85 meV � tb �
145 meV). A possible origin for such variations is the dif-
ference in the structures used in the calculations, e.g., an
experimentally obtained structure or an optimized structure.
The difference of functional used for the calculations of
transfer integrals may also cause the variations. It was re-
ported that a transfer integral derived by the DFT calculation
linearly increases with the amount of Hartree-Fock (HF) ex-
change in rubrene [65]. The amount of HF exchange is 0% in
the PBE functional, so that our calculated transfer integral tb
is relatively small.

D. Fluctuation of transfer integral without anharmonicity

The low-frequency nonlocal e-ph coupling constants
gλMN (0) are obtained by the numerical derivatives of transfer
integrals computed with the MLWFs as detailed in Sec. III E.

TABLE II. Tight binding parameters of HOMO-derived bands
for tetracene, rubrene, and C10-DNBDT-NW (in meV). �ε is the
on-site energy difference between two molecules in a unit cell.

This work Reference [4,64]

Tetracene ta1 10.77 16
ta2 −5.75 −4
td1 68.34 70
td2 −20.61 −23
�ε 8.81

Rubrene tb 76.91 83
td 16.02 15
�ε 0

C10-DNBDT-NW tc 68.09 51
td 44.80 50
�ε 0
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TABLE III. Calculated harmonic frequencies and e-ph couplings in tetracene.

Symmetry ω
(3)
λ (cm−1) ga1 (meV) ga2 (meV) gd1 (meV) gd2 (meV)

Ag 43.9 3.3 3.0 0.03 −0.4
46.5 3.5 −2.1 −1.8 −1.9
60.7 −0.7 2.4 0.9 −2.1
85.1 0.5 0.6 −0.9 0.4

115.6 −0.4 −0.6 2.7 0.9
129.0 −0.9 0.1 −6.2 −2.4
168.2 −0.1 −0.2 −0.3 0.02
171.6 0.4 −0.2 −0.3 −0.9
210.4 0.6 0.6 0.9 0.1
215.7 0.7 −0.2 −1.7 −2.1

Au 32.1 0 0 −2.0 4.0
66.2 0 0 0.1 −0.5
70.1 0 0 −0.2 1.6
96.4 0 0 −4.5 −1.6

103.9 0 0 −2.5 −1.8
136.8 0 0 −0.5 1.0
146.7 0 0 −0.7 −2.1
163.4 0 0 0.7 0.9
168.2 0 0 −0.2 −0.8

The values of gλMN (0) are shown in Tables III–V for tetracene,
rubrene, and C10-DNBDT-NW, respectively. We also calcu-
late the mode-resolved variance of transfer integral σ 2

λMN at
293 K and investigate the important normal modes having
large σ 2

λMN , which is one of the main topics of the present
study.

Before the discussion about the identifications of the im-
portant normal modes, we mention the relation between the

symmetry of phonons and the e-ph coupling constants. Some
of e-ph coupling constants become zero from symmetry:
ga1 = ga2 = 0 for Au modes in tetracene, gb = 0 for B1g, B2g,
Au, B1u, B2u, and B3u modes in rubrene, gd = 0 for B1g, B2g,
Au, and B3u modes in rubrene, and gc = 0 for Au and Bu modes
in C10-DNBDT-NW.

Figure 9 shows the mode-resolved variances of the transfer
integrals σ 2

λa1, σ 2
λa2, σ 2

λd1, and σ 2
λd2 in tetracene, and Fig. 10

TABLE IV. Calculated harmonic frequencies and e-ph couplings in rubrene.

Symmetry ω
(3)
λ (cm−1) gb (meV) gd (meV) ω

(3)
λ (cm−1) gb (meV) gd (meV)

Ag 33.2 −1.8 0.04 114.9 −1.6 0.4
73.3 −4.2 1.1 137.3 1.4 0.04

101.0 −1.3 0.4
B1g 30.7 0 0 103.4 0 0

42.3 0 0 123.7 0 0
82.1 0 0 161.9 0 0

B2g 29.4 0 0 94.2 0 0
58.2 0 0 130.1 0 0
79.6 0 0 158.5 0 0

B3g 41.2 1.9 −0.5 116.0 −0.6 0.3
63.4 −4.8 0.4 136.9 −1.7 −1.1
79.8 0.7 0.2

Au 19.4 0 0 90.8 0 0
44.3 0 0 110.5 0 0
86.7 0 0 168.5 0 0

B1u 33.4 0 −0.2 81.6 0 −1.0
44.5 0 0.7 105.5 0 −0.5
70.9 0 −0.3

B2u 46.8 0 −0.7 80.6 0 −0.6
48.3 0 −0.8 118.4 0 −0.6
71.8 0 0.3

B3u 35.3 0 0 131.1 0 0
80.8 0 0 165.7 0 0
85.7 0 0

245201-10



EVALUATIONS OF NONLOCAL ELECTRON-PHONON … PHYSICAL REVIEW B 102, 245201 (2020)

TABLE V. Calculated harmonic frequencies and e-ph couplings in C10-DNBDT-NW.

Symmetry ω
(3)
λ (cm−1) gc (meV) gd (meV) ω

(3)
λ (cm−1) gc (meV) gd (meV)

Ag 21.0 0.8 −0.6 105.0 −0.07 −1.2
22.5 0.03 0.03 114.1 0.3 −0.8
41.1 −0.6 0.2 128.3 −0.1 −0.04
43.8 0.1 −0.2 130 0.06 0.008
56.8 −0.008 −0.009 134.7 −0.5 −0.3
58.6 −0.2 −0.04 140.8 −0.4 0.3
69.5 −0.4 0.09 155.2 0.7 −0.2
79.7 −0.2 0.3 160.1 −0.6 0.3
91.0 −0.06 −0.2 163.9 −0.07 0.03
92.1 0.09 −0.3 190.6 0.4 −0.3

Bg 8.8 −0.3 1.5 111.6 0.4 −0.3
30.6 0.5 −0.4 125.2 −0.05 −0.2
39.7 0.4 0.2 130.2 −0.07 −0.1
51.5 −0.4 −0.04 133.6 0.42 −0.9
55.9 0.06 −0.09 142.2 −0.08 −0.9
57.8 −0.3 −0.3 152.8 0.9 0.9
73.2 0.4 0.2 158.3 0.4 0.5
84.6 −0.08 0.5 163.9 0.04 0.009
89.2 0.1 0.4 191.9 0.2 0.2
93.9 0.3 −0.6 198.4 −0.2 0.2

Au 7.7 0 −3.0 108.6 0 −0.5
19.7 0 1.3 123.1 0 0.2
33.9 0 0.08 126.0 0 −0.4
38.8 0 0.7 131.5 0 −1.2
43.3 0 0.7 133.1 0 0.2
52.2 0 −1.1 156.3 0 0.2
63.8 0 −1.0 164.5 0 0.01
73.2 0 0.3 167.5 0 −1.3
82.6 0 0.3 176.0 0 1.6
88.4 0 0.04

Bu 17.7 0 0.04 116.4 0 0.2
28.5 0 0.04 124.4 0 0.04
36.0 0 −0.01 125.4 0 0.1
45.3 0 −0.09 129.2 0 0.1
55.4 0 −0.12 132.9 0 −0.1
65.7 0 0.5 155.2 0 1.0
69.4 0 −0.3 157.8 0 −0.1
85.7 0 −0.06 164.4 0 0.1
92.4 0 −0.6 177.9 0 0.7

100.2 0 −2.1

shows the normal modes A–F which strongly fluctuate the
transfer integrals. As seen in Fig. 10, except for mode E, these
modes are simple intermolecular vibrational modes. In mode
E, the intermolecular translation is mixed with the molecular
bending.

The fluctuations of the transfer integrals, �tMN , in
tetracene calculated with the e-ph coupling constants obtained
in our study (in Ref. [18]) based on the �-point approximation
are 10 meV (15 meV) for �ta1, 9.1 meV (13 meV) for �ta2,
19 meV (25 meV) for �td1, and 19 meV (26 meV) for �td2.
The values of �tMN computed in tetracene are almost the same
as those computed in the previous study.

Figure 11(a) shows the mode-resolved variances of the
transfer integrals σ 2

λb and σ 2
λd in rubrene. Here, we focus only

on the variances of transfer integral tb, σ 2
λb, because rubrene

shows quasi-one-dimensional electric conduction along the b
axis. In fact, it is ascertained that σ 2

λb is larger than σ 2
λd . The

upper panel of Fig. 11(a) shows that the normal modes G and
H strongly fluctuate tb. These two modes are schematically
shown in Fig. 11(b). They are both intermolecular libration
within the herringbone plane. The strong e-ph coupling of
these modes are consistent with the previous studies [20,63].

�tb and �td in rubrene at 293 K calculated with the
e-ph coupling constants in our study are 13 and 6.4 meV,
respectively. �tb calculated using e-ph coupling constants in
Ref. [20] reaches 23 meV. Although the �tb value evaluated
in our study is about half of that reported in the previous
study, the �tb/tb values evaluated in two studies are almost
the same with each other: 17% in our study and 18% in
Ref. [20]. On the other hand, the reported values of �tb/tb
at room temperature in Refs. [17,23] are much larger (48%
and 33%, respectively), in which a supercell approach was
used to sample the q points other than the � point. This
difference implies that the �-point approximation causes an
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underestimation of �tb/tb due to the lack of the contribution
of the zone-boundary optical phonons and acoustic phonons.

Figure 12(a) shows the mode-resolved variances of the
transfer integrals σ 2

λc and σ 2
λd in C10-DNBDT-NW. σ 2

λd of
the normal modes I–K are especially large among all of σ 2

λc
and σ 2

λd . Those three modes are schematically illustrated in
Fig. 12(b). In mode I, the molecule is translated along the
long molecular axis. Mode K resembles mode I except for the
motions of the alkyl chains. The alkyl chains are deformed
in mode K, while they are not in mode I. Mode J is an inter-

B  46.5 cm-1 (Ag)A  43.9 cm-1 (Ag)

D  32.1 cm-1 (Au) E  96.4 cm-1 (Au)

C  60.7 cm-1 (Ag)

F 129.0 cm-1 (Ag)

FIG. 10. Atomic displacements of normal modes A–F in tetracene.

molecular libration mode. A previous study reported that the
frequency of modes I and J are 16.3 and 15.2 cm−1, respec-
tively [25], whereas our calculation gives the frequencies of
7.7 and 8.8 cm−1, respectively. Although the absolute values
of frequencies are somewhat different, both results suggest
that the low-frequency modes play significant roles in the
scatterings of carriers suppressing the mobility.

Mode I has the largest σ 2
λd value, that is consistent with

the previous calculation [25]. Our results show that the total
contribution of the �-point phonons including mode I to the

fluctuation of td is 60% of the original value (
√∑

λ σ 2
λd

td
=

60%), and that mode I contributes 81% to the total variance
of td ( σλ=I,d√∑

λ σ 2
λd

= 81%). Therefore, the fluctuation of mode

I should be one of the main factors to suppress carrier mo-
bility. This prediction, where the very low-frequency mode I
(ω = 7.7 cm−1 = 11 K) limits the mobility, is consistent with
a temperature T dependence of spin-lattice relaxation time T1

obtained from electron spin resonance spectroscopy, where
the relation between T1 and T does not change in the range
from 10 to 300 K (T1 ∝ T −2.85) [6]. A similar result has been
reported for C8-DNTT, whose thermally induced translation
along the long molecular axis contributes the most to the total
fluctuation of the transfer integral [21]. Our results also show

that the fluctuation of tc is small (
√∑

λ σ 2
λc√

2tc
= 6%) under the

�-point approximation in C10-DNBDT-NW. Another previ-
ous study [10] using a molecular dynamics simulation shows
that the fluctuation of td is 58%, which is in good agreement
with our result (60%). On the other hand, the study shows
that the fluctuation of tc reaches 38% [10], which is larger
than our result (6%). Considering that our calculations neglect
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G 63.4 cm-1 (B3g) H 73.3 cm-1 (Ag)
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FIG. 11. (a) Mode-resolved variances of transfer integrals in-
duced by thermally excited phonon σ 2

λb and σ 2
λd at room temperature

in rubrene. (b) Atomic displacements of normal modes G and H.
The atomic displacements in phenyl side groups are denoted by blue
arrows.

the contributions of the zone-edge phonons and the previ-
ous molecular dynamics simulation includes the contributions
from all the wave vectors of phonons, the zone-edge phonons
(qz = π/c) are likely to contribute strongly to the fluctuation
of tc.

E. Anharmonicity of phonons in C10-DNBDT-NW

In this section, we discuss the anharmonicity of the very
low-frequency modes, I and J, and imaginary frequency
modes, L and M (see Fig. 13). Figure 14 shows the potential
curves of these modes and the fitting curves with quartic func-
tions. These potential curves are even functions. This means
that the symmetry of these modes is not Ag, and the symme-
try of the crystal structure after displacing atoms along the
normal mode coordinate is lower than that of the equilibrium
crystal structure. Therefore, the dimensionless anharmonic
constant for the third-order term αλ in Eq. (25) becomes
zero. The anharmonic constant for the fourth-order term, βλ,
and the mode-resolved transfer integral variances, σ 2

λc,anharm

and σ 2
λd,anharm, are listed in Table VI. The mode-resolved

variances of transfer integrals with harmonic approximation,

0
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I 7.7 cm-1 (Au) J 8.8 cm-1 (Bg) K 19.7 cm-1 (Au)

FIG. 12. (a) Mode-resolved variances of transfer integrals in-
duced by thermally excited phonon σ 2

λc and σ 2
λd at room temperature

in C10-DNBDT-NW. (b) Atomic displacements of normal modes
I–K. The atomic displacements in alkyl chains are denoted by blue
arrows.

σ 2
λc,harm and σ 2

λd,harm, are also listed for comparison. σ 2
λc,anharm

and σ 2
λd,anharm for the imaginary frequency modes are small

enough to ignore although imaginary frequency modes give
infinite contributions of transfer integral fluctuations within
the harmonic approximation. It is because thermal vibrations
of these modes are suppressed due to the strong anharmonic-
ity. The mode-resolved variances of all transfer integrals for
modes I and J decrease to 36% and 39% of those computed
with harmonic approximation, respectively. The total amount
of the transfer integral fluctuation for td reaches 0.42td when
we consider the anharmonicity of I, J, L, and M, while it
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L 12.8i cm-1 (Bg) M 9.0i cm-1 (Au)

FIG. 13. Atomic displacements of two imaginary frequency
modes in C10-DNBDT-NW. The atomic displacements in alkyl
chains are denoted by blue arrows.

equals 0.60td when we do not consider the anharmonicity.
This result suggests that anharmonicity cannot be ignored for
quantitative assessment of the transfer integral fluctuation in
C10-DNBDT-NW. The total amount of the transfer integral
fluctuation for tc with anharmonicity (without anharmonicity)
is 0.062tc (0.064tc). The reason why the �tc value does not
depend on the presence of the anharmonicity of phonons is
that the magnitudes of the e-ph coupling constants of tc for I,
J, L, and M are negligibly small.

F. Calculation of hole mobility based on transient
localization theory

We estimate the hole mobility of each OSC at 293 K based
on the transient localization theory. We use the open-source
code in Refs. [11,66]. The values of tMN and �tMN are set
to the above-mentioned values in Secs. III C–III E. Typical
phonon energy h̄/τ defined in Ref. [11] is set to 5 meV
for tetracene and rubrene, which is the same as the value
used in Ref. [11], and 1 meV for C10-DNBDT-NW, which
corresponds to the frequency of mode I. The size of a supercell
and the number of samplings are 40 × 40 × 1 and 50, respec-
tively. We check the convergence of the size of a supercell
in each OSC. The obtained hole mobilities are μb = 6.6 ±
0.3 cm2/V s in tetracene, μb = 78 ± 3 cm2/V s in rubrene,
and μc = 46 ± 3 cm2/V s in C10-DNBDT-NW. While the
relative relation of the magnitudes of calculated hole mobil-
ities is consistent with that evaluated from the experimental
transfer characteristics in FETs, the calculated hole-mobility
values themselves are two to three times as large as the corre-
sponding experimental values [3,4,29]. These overestimations
may originate from the �-point approximation since it un-
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FIG. 14. Potential curves of low-frequency modes I and J,
and imaginary frequency modes L and M in C10-DNBDT-NW.
Solid lines are fitting curves with a quartic function, (a) �E <

20 cm−1/cell, (b) �E < 350 cm−1/cell. The definition of X is the
same as in Fig. 2.

derestimates the fluctuations of the transfer integrals. There
are several papers reporting that experimental mobilities of
OSCs were reproduced using the transient localization theory
combined with first principle calculations [10,23,24,67,68],
some of which computed the mobility of rubrene [10,23,24].
We expect that the extension of our methodology to the super-
cell should provide more accurate charge mobilities, while it
requires high computational costs.

G. Comparison of three OSCs

Finally, we compare tetracene, rubrene, and
C10-DNBDT-NW from the viewpoint of transfer integrals and
phonons. The carrier mobility averaged over the herringbone
plane μave in the equilibrium structure depends on not only
absolute values of the transfer integrals but also thesign of
their products. One of the preferred conditions of OSCs
showing high μave is that the absolute values of the transfer
integrals between the nearest neighbor sites are preferred to
be close to each other and their product to have a positive
sign [10]. Tetracene does not satisfy the condition about
sign of transfer integrals (ta1td1td2 < 0), while rubrene and
C10-DNBDT-NW satisfy it (tbt2

d > 0 for rubrene, tct2
d > 0 for

C10-DNBDT-NW). When comparing C10-DNBDT-NW and
rubrene, both the transfer integrals along the crystal axis and
along the diagonal axis are fairly large in C10-DNBDT-NW,
while the transfer integral along the diagonal axis is very small
in rubrene as listed in Table II. Therefore, C10-DNBDT-NW
is the most promising material for having high μave in
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TABLE VI. Anharmonicity of low-frequency modes and imaginary frequency modes in C10-DNBDT-NW at room temperature.

Mode ω(3) (cm−1) αλ βλ σ 2
c,harm (meV2) σ 2

c,anharm (meV2) σ 2
d,harm (meV2) σ 2

d,anharm (meV2)

I 7.7 0 0.018 0 0 470 170
J 8.8 0 0.014 3.3 1.3 110 40
L 12.8i 0 0.42 0.0057 0.053
M 9.0i 0 4.0 0 4.6

these OSCs from the viewpoint of transfer integrals in the
equilibrium structure.

As mentioned in Sec. IV D, mode D in tetracene and mode
I in C10-DNBDT-NW play important roles on the fluctua-
tions of transfer integrals, both of which are the translational
modes along the out-of-plane directions. On the other hand, in
rubrene, the e-ph coupling constants of this mode (Au mode,
19.4 cm−1) become zero due to the symmetry. This suggests
that the high crystal symmetry increases the carrier mobility
in rubrene.

The strong modulations of transfer integrals by ther-
mally induced out-of-plane molecular translations observed
in tetracene and C10-DNBDT-NW originate not only from
the large e-ph couplings but also from the low-frequency val-
ues. The translational mode along the out-of-plane direction
has the lowest frequency among the optical phonon modes
in the three OSCs in common, and thus this mode can be
thermally excited with large amplitudes. The harmonic fre-
quencies of the out-of-plane translational modes, ωOPT, in
tetracene, rubrene, and C10-DNBDT-NW are 32.1, 19.4, and
7.7 cm−1, respectively. We consider the reason for small ωOPT

in C10-DNBDT-NW as follows. The frequency ωOPT is pro-
portional to

√
kopt/Mmole, where kOPT is the intermolecular

force constant corresponding to the out-of-plane translation
and the Mmole is the molecular mass. The ratio of 1/

√
Mmole

in the three OSCs is tetracene: rubrene: C10-DNBDT-NW =
1: 0.655: 0.560, while the ratio of ωOPT is 1: 0.60: 0.24.
Therefore, the small ωOPT in C10-DNBDT-NW cannot be
explained solely by the large Mmole. kOPT is considered to
be proportional to Mmoleω

2
OPT. Mmoleω

2
OPT = 1.4, 1.2, and

0.25 nN/Å for tetracene, rubrene, and C10-DNBDT-NW. kOPT

in tetracene and rubrene are not very different, while that
in C10-DNBDT-NW is about five times smaller than the
others. This result suggests that the causes for small har-
monic frequency for the out-of-plane translational mode in
C10-DNBDT-NW are both the large molecular mass and the
small force constant.

V. SUMMARY

In this paper, we examined the mode-resolved
variances of transfer integrals originated from thermally
excited intermolecular phonons in tetracene, rubrene, and
C10-DNBDT-NW based on DFT. The calculated IR/Raman
spectra nicely reproduced the experimental results, which
demonstrates the validity of the vibrational calculations
presented here. The introductions of the frequency correction
and the possible anharmonicity enable us to calculate
the accurate evaluation of the transfer integral fluctuation
in C10-DNBDT-NW. We identified the intermolecular
vibrational modes which strongly modulate the transfer

integral. The comparison of three OSCs in terms of the
transfer integrals and out-of-plane intermolecular vibration
was reported. Although the methodology introduced in this
paper needs relatively high computational cost, it can give
the highly accurate frequencies and nonlocal e-ph coupling
constants of �-point phonons.

CCDC 1995124 contains the supplemental crystallo-
graphic data for C-DNBDT at 296 K. These data can be
obtained free of charge from The Cambridge Crystallographic
Data Centre [28].
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APPENDIX

In this Appendix, we show that the corrected frequency
ω

(2)
λ is more accurate than ω

(1)
λ . We define the difference

between W and W (num) as �W (err):

W = W (num) + �W (err). (A1)

The corrected eigenvalue of W is derived by using the
first order perturbation theory in which �W (err) is treated as
a perturbative term:

ω2
λ = {

ω
(1)
λ

}2 + {
e(num)
λ

}T
�W (err){e(num)

λ

} + O({�W (err)}2
)

= {
e(num)
λ

}T
W

{
e(num)
λ

} + O({�W (err)}2
). (A2)√

{e(num)
λ }T

W {e(num)
λ } is the corrected frequency whose error is

O({�W (err)}2), whereas the error of ω
(1)
λ is O(�W (num)). The

relation between {e(num)
λ }T W {e(num)

λ } and �Eλ(Qλ) is derived
as

�Eλ(Qλ) ≡ V
(
u(num)

λ

) − V (0)

= 1

2

∂2V

∂uiα∂u jβ
u(num)

λ,iα u(num)
λ, jβ + O

(
Q3

λ

)

= 1

2

{
e(num)
λ

}T
W

{
e(num)
λ

}
Q2

λ + O
(
Q3

λ

)
. (A3)

Then, ω
(2)
λ =

√
{e(num)

λ }T
W {e(num)

λ } is immediately ob-

tained from this equation, and thus ω
(2)
λ is found to be a

corrected frequency which is more accurate than ω
(1)
λ .
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