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Coupled dimer and bond-order-wave order in the quarter-filled
one-dimensional Kondo lattice model
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Motivated by experiments on the organic compound (Per)2[Pt(mnt)2], we study the ground state of the one-
dimensional Kondo lattice model at quarter filling with the density matrix renormalization group method. We
show a coupled dimer and bond-order-wave (BOW) state in the weak-coupling regime for the localized spins
and itinerant electrons, respectively. The quantum phase transitions for the dimer and the BOW orders occur at
the same critical coupling parameter Jc, with the opening of a charge gap. The emergence of the combination
of dimer and BOW order agrees with the experimental findings of the simultaneous Peierls and spin-Peierls
transitions at low temperatures, which provides a theoretical understanding of such a phase transition. We also
show that the localized spins in this insulating state have quasi-long-ranged spin correlations with collinear
configurations, which resemble the classical dimer order in the absence of a magnetic order.
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I. INTRODUCTION

Since the discover of Krogmann salts [1], many quasi-one-
dimensional materials have been found to show various spin
and charge orders [2] at low temperatures such as the blue
bronzes K0.3MoO3 [3,4], the transition metals NbSe3 and TaS3

[5], CuGeO3 [6,7], and the 2:1 D2X organic salt [8]. Inter-
estingly, (Per)2[Pt(mnt)2] that contains quarter-filled metallic
chains and half-filled insulating chains shows a unique com-
bination of charge and spin order at almost the same transition
temperature [9–13], which indicates that the transition is
driven by the coupling between the two chains.

This coupling effect could be best described by the one-
dimensional Kondo lattice (KL) model [14–18] that consists
of itinerant electrons coupled with periodic localized spins
through the Kondo coupling parameter J . In the large J regime
the ground state phase diagram is dominated by ferromag-
netism [19,20] as a result of the Kondo effect. At small J the
Kondo effect is suppressed and the phase belongs to a univer-
sal class of Tomonaga-Luttinger liquid at generic fillings with
zero charge and spin gap [21,22]. However, for certain J at
commensurate fillings of n = 1

2 [23], n = 3
4 [24], and n = 1

[25], the state becomes insulating, and the insulating state at
quarter filling (n = 1

2 ) is mostly related to the experimental
results of (Per)2[Pt(mnt)2].

The one-dimensional KL model at n = 1
2 has been the-

oretically investigated to suggest an insulating state with
semiclassical collinear spin configurations that resemble the
dimer order at extremely small J [26]. Whether such a
state can be stabilized taking full account of the quantum
fluctuations remains an open question, because quantum fluc-
tuations are especially enhanced in low dimensionality. In
addition, numerical studies have shown an insulating state
with dimerization of the localized spins that survives up to

an intermediate J [23,27]. However, certain competing orders
may appear in the itinerant electrons and the true nature of this
state remains unexplored.

Motivated by experiments of the quasi-one-dimensional or-
ganic compound (Per)2[Pt(mnt)2], we study the ground state
of the one-dimensional KL model with the density matrix
renormalization group (DMRG) [28–30]. We provide de-
tailed numerical evidence of the dimer order for the localized
spins and discuss the nature of this dimer order. A coupled
bond-order wave (BOW) is also found in this regime with a
simultaneous quantum phase transition along with the dimer
order at the critical Jc, and we discuss the possible connections
between our results and experimental observations.

We consider the standard KL Hamiltonian with an isotropic
coupling term, which is given as

H = −t
L−1∑

i=1,σ

c†
i,σ ci+1,σ + H.c. + J

L∑
i=1

−→
Si · −→si , (1)

where c†
i,σ is the electron creation operator on site i with spin

index σ , and is summed over the system length L;
−→
Si is the lo-

calized spin- 1
2 operator; −→si = 1

2

∑
α,β c†

i,α
−→σ α,βci,β represents

the conduction electron spin operator with −→σ being the Pauli
matrices in the spin space. The hopping parameter t and the
lattice spacing ξ are set to 1 for the rest of the paper unless
noted otherwise.

Our main results focus on quarter filling with interme-
diate coupling J as illustrated in Fig. 1. First, we obtain a
finite order parameter for both dimer and BOW order after
a finite-size extrapolation for various J and identify a si-
multaneous transition point at Jc ≈ 1.2. In order to reduce
the effect by the open boundary condition, we show the
same order using both finite and infinite DMRG (iDMRG)
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FIG. 1. The schematic ground state phase diagram of the one-
dimensional KL model for 0.25 < n < 0.75 and 0 < J < 2. The red
regime at n = 1

2 is the insulating dimer/BOW state; the blue one
labeled FM is the ferromagnetic state; the pink one labeled TLL is
the Tomonaga-Luttinger liquid.

methods in this regime (see Appendix B). In addition, we
show quasi-long-ranged spin-spin correlations of the localized
spins with patterns similar to the semiclassical prediction of
�� [26], without breaking the spin S(U )2 symmetry. Mean-
while the dimer correlation remains an exponential decay
function, which is qualitatively different from the dimer-
ized phase at the Majumdar-Ghosh point in the Heisenberg
model [31]. Our results represent important progress in un-
derstanding the collective behavior of localized spins coupled
to the itinerant electrons in one- or quasi-one-dimensional
systems.

We use the finite-size and infinite U (1) DMRG method
[32,33] with 5000–8000 states in order to reach the trunca-
tion error at around 10−8. For finite DMRG various lengths
are used for the finite-size extrapolation with open boundary
conditions, and the physical observables such as the spin
correlations are extracted using the middle half of the chain in
order to minimize the boundary effect. Various states are kept
and lengths are tested to ensure the numerical convergence of
the results.

The rest of the paper is organized as follows: In Sec. II,
we present numerical evidence for the coupled dimer and
BOW order in the intermediate J at n = 1

2 , as well as the
breakdown of such order in the presence of a large Zee-
man field. We further confirm such a phase with a finite
charge gap in Sec. III. In Sec. IV we study the spin cor-
relation functions. Section V contains discussions and a
summary.

II. COUPLED DIMER AND BOW ORDER

The simplest spin- 1
2 dimer state consists of every neighbor-

ing pairs of spins forming an independent spin singlet state
[34]. The order parameter of the dimer states 〈D〉 is defined
by the difference between neighboring spin bonds as given in

FIG. 2. (a) The local dimer order and (b) BOW order is obtained
on a finite chain of L = 112 at n = 1

2 , J = 0.6. Only half of the lattice
is shown due to inversion symmetry. The inset of (a) and (b) is the
same quantity, respectively, plotted near the center to show the same
wave vector of q = π . The finite-size extrapolation of (c) the dimer
order and (d) the BOW order is shown for several J at n = 1

2 , where
a least-squares fit to the second order of polynomials in 1/L is used.
The dimer order and BOW order after the extrapolation are given in
(e) and (f) as a function of J , respectively.

Eq. (2), where
−→
S i refers to the localized spin at site i,

〈D〉 = lim
L→∞

〈D(L)〉,

〈D(L)〉 = 1

L

L∑
i

(−1)i〈Di〉

= 1

L

L∑
i

(−1)i〈−→S i · −→
S i+1〉. (2)

Following the original study of this dimer order in the one-
dimensional KL model [23], we show a robust dimer pattern
in real space without any pinning field at n = 1

2 for the lo-
calized spins. As an example given in Fig. 2(a), the dimer
order becomes almost uniform away from the boundary. With
respect to the concerns that this result may be an artificial
effect caused by the open boundary, we also show the same
order with iDMRG methods (see Appendix B). Besides the
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dimer order, the BOW is identified in the same regime with
the order parameter that is defined by the alternating electron
hopping energy as below,

〈B〉 = lim
L→∞

〈B(L)〉,

〈B(L)〉 = 1

L

L∑
i

(−1)i〈Bi〉

= 1

2L

L∑
iσ

(−1)i〈C†
iσ · Ci+1σ + H.c.〉. (3)

As shown in Fig. 2(b), the alternating hopping energy between
the neighboring sites also becomes uniform away from the
boundary, suggesting a finite BOW order for the itinerant elec-
trons. Meanwhile the electron density on every site remains
the same away from the boundary.

The dimer and BOW orders are extrapolated into the
thermodynamic limit using various lengths L as shown in
Figs. 2(c) and 2(d). The orders have a slight decay over the
system length in the bulk of the dimer/BOW regime and
remain finite after the extrapolation of L → ∞. The extrap-
olated dimer order is given in Fig. 2(e), where it increases
monotonically from 0 as J decreases from 1.2. The extrapo-
lated BOW order also becomes finite below J = 1.2 as shown
in Fig. 2(f), and reaches maximum at J ≈ 0.85. For extremely
small J the numerical results are hard to converge, and we
cannot be sure whether the order parameters go to zero at finite
J . However, based on the results, we show a simultaneous
quantum phase transition into the coexisting dimer and BOW
state at Jc ≈ 1.2. The two orders are coupled as they vanish at
the same critical Jc.

In the presence of a strong external field h, the spins po-
larize and break the dimer order [23]. We have found that
for J = 0.8, the dimer order breaks down at around h = 0.05,
where the BOW order also vanishes. This further supports the
coexistence of these two orders.

III. CHARGE GAP AND SPIN GAP

Another quantity to separate this commensurate phase at
n = 1

2 from the phases at a generic filling is the finite charge
gap that is defined as

�c = lim
L→∞

[E0(Ne = N + 2)

+ E0(Ne = N − 2) − 2E0(Ne = N )], (4)

where E0(Ne) is the ground state energy in the total electron
number sector Ne. As shown in Fig. 3(a), the charge gap is
extrapolated into the thermodynamic limit in a similar way as
the order parameters, and remains finite after the extrapolation
in the coexisting dimer/BOW state. The extrapolated charge
gap is plotted against J in Fig. 3(b), where it also becomes
finite below Jc = 1.2. The charge gap rises monotonically as
J decreases from 1.2 and reaches maximum at J ≈ 0.5. The
finite charge gap is consistent with the BOW order found in
this regime.

The spin gap is obtained by the energy difference between
the lowest states in the S = 0 and 1 spin sectors, respectively.
We calculate the spin gap in the dimer/BOW state with var-

FIG. 3. (a) is the finite-size extrapolation of the charge gap for
various J at n = 1

2 . We use a least-squares fit to the second order of
polynomials in 1/L. (b) is the extrapolated charge gap plotted against
J .

ious system lengths. A very small spin gap (in the order of
10−4) is obtained after the finite-size extrapolation, and it
decreases with increasing states, indicating a vanishing spin
gap. The localized spins have formed a dimer state, but the
effective electron spin in one unit cell is 1

2 , which is consistent
with the gapless spin excitation, resembling the physics of the
spin- 1

2 Heisenberg chain.
Furthermore, we study the entanglement entropy of the

dimer/BOW state in the framework of the conformal field
theory [35]. As shown in Fig. 4(a), the entanglement entropy

FIG. 4. (a) is the entanglement entropy obtained with various
system lengths. The SEE(i) close to the left edge is fit by Eq. (5)
to obtain the central charge c. The red line in (b) refers to the
spin-spin correlations and the yellow line refers to the dimer-dimer
correlations. The results of (b) are obtained on a chain of L = 160
and x is chosen to be L

4 in order to minimize the boundary effect.
(c) is the same correlations with the log scale in the y axis showing
the correlation decay over distance. (d) is the finite-size extrapolation
of the structure peak value. All results above are obtained at n = 1

2 ,
J = 0.6.
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is plotted against the subsystem sizes at n = 1
2 , J = 0.6 for

various system lengths. The entanglement entropy shows a
logarithmic dependence of the subsystem sizes that follows
the general relation as below,

SEE(i) = c

6
ln

[ L

π
sin

( iπ

L

)]
+ g. (5)

Here, SEE(i) is the entanglement entropy of the subsystem
with the length i; L is the whole system length; c is the
central charge; g is a nonuniversal constant. The fitting gives
the central charge c ≈ 1 for various system lengths in the
dimer/BOW state, which is also consistent with the gapless
spin excitations.

IV. SPIN-SPIN CORRELATIONS

The localized spins are mediated by effective interactions
known as the Ruderman-Kittel-Kasuya-Yosida (RKKY) in-
teractions [36–38], which are long-ranged interactions with
a staggered sign. Thus, the resulting dimer state is expected to
be different from the dimerized phase at the Majumdar-Ghosh
point in the J1-J2 Heisenberg model. To further reveal the
nature of this dimer order, we obtain the spin-spin correlations
of the localized spins. As shown in Figs. 4(b) and 4(c), the
spin-spin correlations in the dimer/BOW state decay slowly
with the power-law behavior, and it oscillates with a period
of four lattice constants, which is doubled by the period of
the dimer order. This suggests that the dimer order originates
from the quasi-long-ranged correlations between the localized
spins instead of the formation of a spin singlet state between
neighboring sites. The collective behavior of the localized
spins could be regarded as a quantum analogy of the classical
dimer state (with a spin configuration of ��) without any
magnetic order (see Appendix A).

We further examine the nature of this dimer state by the
dimer-dimer correlations, which are defined as the two point
correlation functions of the neighboring spin bonds Ox(i) =
〈DxDx+i〉 − 〈Dx〉〈Dx+i〉, with Dx = −→

S x · −→
S x+1. As shown in

Figs. 4(b) and 4(c), the dimer-dimer correlation has an ex-
ponential decay over distance, and it is much smaller than
the spin-spin correlation. This result is obtained under the
open boundary condition on a finite-size chain. A more com-
plete study of the dimer-dimer correlation would be under
the periodic boundary condition with a vanishing dimer order
[39], but we have found that it is hard to reach numerical
convergence even for a small system length of L = 32 under
the periodic boundary condition. However, the robust dimer
order in the absence of a pinning field and the periodic pattern
in spin-spin correlations are consistent with the dimer state in
this regime.

To explore other possible spin orders, we study the spin
structure factor of the localized spins. The structure factor is
defined as

S(q) = 1

L

∑
i, j

〈−→S i · −→
S j〉eiq(ri−r j ). (6)

In the dimer/BOW state, the structure factor has only one
dominant peak at q = π

2 which could be seen from Fig. 4(b)
with a period of four lattice constants. The peak value in-
creases slowly with the system length L, and as shown in

Fig. 4(d), the peak value divided by the system length de-
creases rapidly and goes to zero in the thermodynamic limit,
which is consistent with the absence of any magnetic or-
der. This result is also expected from the general statement
that a spontaneous breaking of S(U )2 symmetry is forbid-
den for the one-dimensional system in the thermodynamic
limit [40].

V. DISCUSSIONS AND SUMMARY

Several studies [23,26,27] have suggested the dimerization
of localized spins at n = 1

2 in the one-dimensional KL model
with a finite charge gap. The dimerization enlarges the ef-
fective unit cell by 2, which may result in a band insulator
similar to the case at n = 1. However, we argue that the finite
charge gap is related to the emergent BOW, which is promoted
by the electron backscattering induced by the localized spins.
Indeed, a similar spin configuration to our spin correlation
result is realized with a semiclassical analysis considering
such backscattering terms [26]. In addition, the dimer order
can be stabilized by the emergence of the BOW with matching
wave vectors. Because the same spin coupling is energetically
favored by the RKKY interaction [41,42], the neighboring
sites with a smaller hopping bond energy have more of a
tendency to form parallel localized spins.

The emergence of this coexisting dimer and BOW state
depends crucially on the commensurate electron filling, which
may raise concerns about whether the state remains stable
under a perturbation. In particular, previous numerical studies
of this state have been conducted on a finite-size lattice with
an open boundary condition. With a large chemical poten-
tial applied on the edge, the dimer order becomes weaker
and in general a short-ranged order may be induced by the
open boundary such as the Friedel oscillations of the electron
density [39,43]. Here, we have shown the dimer/BOW order
with almost the same value on an infinitely long chain (see
Appendix B), indicating that the order is robust. Also, the
DMRG algorithm only targets for the lowest state at a given
electron filling because of the conservation of total electrons,
while in the grand canonical ensemble this state may survive
in a small range of electron fillings [44].

The organic compound (Per)2[Pt(mnt)2] is shown to be the
experimental realization of the one-dimensional KL model
[8], and could be best explained by our results. In partic-
ular, the perylene chain in the compound is metallic with
quarter-filled electrons and the Pt(mnt)2 chain is insulating
with half-filled electrons that could be considered as localized
spins. The interactions between the electrons in these two
different chains make it an effective one-dimensional weakly
coupled KL at n = 1

2 . At low temperatures this compound
shows a combination of the dimer phase for the insulating
stack [9,13], and the charge-density-wave (CDW) phase for
the metallic stack [12,45,46]. The experimental measurement
of different properties shows that the dimer and CDW phase
transition occurs at almost the same temperature [47,48]. Our
numerical results also show a simultaneous phase transition
at intermediate Jc. The quantitative difference between the
BOW and the CDW is just the position of the peak of the
wave, and thus may appear similarly in the experiments as
electron density modulations; see the review [2]. In addition,
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the spin-Peierls transition into the dimer phase agrees with the
finite dimer order identified in this regime.

However, the dimer/BOW state identified here has a
matching wave vector while the experimental results show
that the wave vector of the perylene chain with CDW order
and the Pt chain with a dimer order differs by a factor of 2
(qPt = 2qper). This difference is not understood, which could
be an effect of more chains weakly coupled together or struc-
tural transitions in experimental systems. Future studies may
include two itinerant electron chains coupled by the magnetic
impurities.

To summarize, we have numerically identified a coupled
dimer and BOW order for the localized spins and itinerant
electrons, respectively, in the one-dimensional KL model at
n = 1

2 . The study of its evolution with the Kondo coupling J
shows a simultaneous quantum phase transition of both orders
at Jc ≈ 1.2. This result agrees quantitatively with the experi-
mental findings on the organic compound (Per)2[Pt(mnt)2].
The localized spins are mediated by the RKKY interactions
that result in a correlated dimer state with quasi-long-ranged
spin-spin correlations. This dimer state is qualitatively dif-
ferent from the dimerized phase in the extended Heisenberg
model where every neighboring spin pair forms a singlet
state. Although the results are restricted to one dimension,
it provides another example of the interaction-driven phase
transition [49–51] and a reconsideration of the Kondo physics.
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APPENDIX A: NUMERICAL CONVERGENCE

We ensure the convergence of the DMRG results by check-
ing various quantities with increasing states. As an example
at J = 0.6 shown in Fig. 5, the ground state energy remains
almost unchanged over increasing states, as well as the dimer
and BOW order. We have also found a very small localized
spin value 〈Sz

i 〉 that decreases with increasing states kept,
indicating the absence of a magnetic order.

For most of our calculations in the insulating dimer/BOW
state, 5000 states are used in order to achieve a truncation
error of 10−8. Generally, the convergence is harder to reach
for smaller J , thus more states are needed.

APPENDIX B: INFINITE DMRG RESULTS

We show the same order parameters in the dimer/BOW
state with iDMRG methods. The ground state energy per site
is obtained by both finite DMRG and iDMRG methods with

FIG. 5. (a) The ground state energy, (b) the dimer order, (c) the
BOW order, and (d) the localized spin value 〈Sz

i 〉 at the center for
various states kept in the dimer/BOW state.

increasing states at the same parameters. As given in Fig. 6,
the energy obtained by the two methods is very close (the
slight difference is due to the finite-size effect) and remains
almost the same with increasing states, indicating the conver-
gence of the results. Under the iDMRG methods, the ground
state at n = 1

2 , J = 0.8 has a uniform alternating localized
spin bond with 〈D〉 = 0.1427 and electron hopping energy
with 〈B〉 = 0.0134, which only differs by 1% from the finite-
size DMRG results.

FIG. 6. The ground state energy per site with increasing states,
obtained with finite-size DMRG and iDMRG at n = 1

2 , J = 0.8. For
the finite-size DMRG method the energy per site is obtained through
the center half of the chain to minimize the boundary effect.
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