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The carrier generation in insulators subjected to strong electric fields is characterized by the Landau-Zener
formula for the tunneling probability with a nonperturbative exponent. Despite its long history with diverse
applications and extensions, study of nonequilibrium steady states and associated current response in the
presence of the generated carriers has been mainly limited to numerical simulations so far. Here, we develop
a framework to calculate the nonequilibrium Green’s function of generic insulating systems under a DC
electric field, in the presence of a fermionic reservoir. Using asymptotic expansion techniques, we derive a
semiquantitative formula for the Green’s function with nonperturbative contribution. This formalism enables us
to calculate dissipative current response of the nonequilibrium steady state, which turns out to be not simply
characterized by the intraband current proportional to the tunneling probability. We also apply the present
formalism to noncentrosymmetric insulators, and propose nonreciprocal charge and spin transport peculiar to
tunneling electrons.
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I. INTRODUCTION

Nonperturbative effects, which cannot be captured by
order-by-order calculation, lead to a drastic change in the
property of materials. The Landau-Zener tunneling [1,2] is
a representative nonperturbative phenomenon, where applica-
tion of an intense electric field to insulators leads to a rapid
increase in the carrier generation rate.

Responses of quantum materials against external stimuli
show a rich variety according to the symmetries of the under-
lying microscopic Hamiltonian. In particular, nonreciprocal
transport is an important class of phenomena extensively ex-
plored both in linear and nonlinear regimes [3–10]. While the
nonreciprocal response with a directional transport requires
broken inversion symmetry, the presence of the time-reversal
symmetry sometimes forbids the directionality, as typified in
Onsager’s reciprocal relation on generic linear responses [11].

Recent developments on the study of the nonlinear re-
sponses with a topological and geometric origin [12–17]
suggest that the nonperturbative regime also hosts diverse
novel phenomena including nonreciprocal transport and topo-
logical responses. Indeed, the nonreciprocity in the tunneling
probability due to the geometric phase effect has been pro-
posed recently [18,19].

Despite the potential importance, transport properties in
the nonperturbative regime have not been explored so in-
tensively. For the tunneling problems, quantitative estimation
of the electric current associated with the tunneling carriers
in the nonequilibrium states has been missing, except for
several numerical studies in graphene [20–23] and correlated
insulators [24–29], although the tunneling probability in the

equilibrium (or in a mesoscopic environment) has been stud-
ied in a broad context [30–42]. The difficulty to do so stems
from the far-from-equilibrium nature of the distribution of
the excited electrons in the nonperturbative regime. To deter-
mine the nonequilibrium steady state, we have to deal with
the Green’s function or density matrix of the system in an
open-dissipative setup. While such methods with the nonequi-
librium ensemble are actively studied [43–50], it is still a
nontrivial problem how to incorporate such nonequilibrium
nature with the nonperturbative treatment of the tunneling
process in the wave-function based theory.

In this paper, we consider a band insulator coupled to
a fermionic particle reservoir under a DC electric field.
The nonequilbirum steady state of this setup, schematically
depicted in Fig. 1, is realized as a result of a balance
between the nonperturbative excitation and relaxation due
to the dissipation. We derive a concise formula for the
nonequilibrium Green’s function of the steady state, which
includes a contribution from the nonperturbative tunneling
process as well as the dissipative effect. This enables us
to study the electric current due to the excited electrons,
which exhibits nontrivial behaviors which cannot be deduced
from the property of the tunneling probability. We clarify
that there appears a competition between intraband and in-
terband currents, which have different dependence on the
electric field. We also apply the obtained formula to noncen-
trosymmetric insulators, in order to discuss the nonreciprocal
transport. We reveal interesting phenomena, i.e., a crossover
of the nonreciprocity ratio due to the competition mentioned
above, and the nonreciprocal spin current due to the asym-
metric band dispersion. Such nonreciprocal spin current of
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FIG. 1. Schematic picture of the nonequilibrium steady state for
the open-dissipative Landau-Zener problem. The energy dispersion
of a two-band insulator is colored in red, according to the occupation
number n±. Electrons driven by a static electric field E undergo the
Landau-Zener tunneling with a probability P, when passing through
the gap minimum. Excited electrons have a lifetime t ∼ 1/2� due to
the coupling to the fermionic reservoir, which results in the exponen-
tial decay of the momentum distribution.

tunneling electrons may be related to chiral-induced spin
selectivity (CISS) found in DNA molecules, where photoex-
cited electrons show spin accumulation through propagating
in insulating DNA molecules [51,52].

This paper is organized as follows. In Sec. II, we develop
a framework to calculate the nonequilibrium Green’s function
of the tunneling problem. We first review the calculation of
the tunneling probability in isolated systems in Sec. II A.
We introduce a key method, the adiabatic perturbation theory
here. We extend this framework to open systems in Sec. II B,
and construct the nonequilibrium Green’s function using the
solution of the equation of motion for the isolated system. We
show the numerically calculated carrier density of the open
system using the proposed framework in Sec. II C. We per-
form an asymptotic expansion for the nonequilibrium Green’s
function in Sec. III, in order to derive approximate analytic
expressions. We summarize the main results in Sec. III A
with a brief sketch of the derivation. We provide detail of the
derivation with starting from the adiabatic limit in Sec. III B,
where we find that the asymptotic evaluation reproduces the
result of the Boltzmann equation with the relaxation-time
approximation. We combine this with the method of the con-
tour integral, to obtain the nonperturbative correction to the
Green’s function, in Sec. III C. We discuss the application of
the obtained formula in Sec. IV. We discuss the nonperturba-
tive electric current and associated nonreciprocity, as well as
the extension of the formalism to lattice systems. Finally, we
conclude the paper in Sec. V.

II. FORMULATION

A. Tunneling probability

We start with reviewing how the tunneling probability is
described in isolated systems. The open-system formalism

will be developed in the next subsection, based on the ap-
proach taken here.

In calculating the tunneling probability, the adiabatic
perturbation theory [18,30–32,53], a series expansion with
respect to a slowly changing parameter, plays a key role in
capturing the nonperturbative nature. To see this, let us intro-
duce a 2 × 2 Hamiltonian H in the momentum space (in the
first-quantized form)

H (k)|u±,k〉 = ε±(k)|u±,k〉, (1)

and consider its adiabatic time evolution. Here, |uα,k〉 is the
Bloch wave function of the upper (α = +) and lower (α = −)
bands with crystal momentum k and eigenenergy εα (k). In this
study we consider a gapped case ε−(k) < ε+(k).

We introduce a DC electric field E via the Peierls sub-
stitution H (k) → H (k − Et ), where we set e = h̄ = 1 for
simplicity. We consider the time evolution described by the
time-dependent Schrödinger equation

i∂t |�(t )〉 = H (k − Et )|�(t )〉. (2)

We set the initial state at t = ti → −∞ to be the eigenstate
on the lower band, i.e., |�(ti )〉 = |ψ−,k (ti )〉 ∝ |u−,k−Eti 〉 [see
Eq. (4) below].

It is well known as the adiabatic theorem that
|〈u−,k−Et |�(t )〉|2 → 1 in the weak field limit E → 0. The
tunneling probability, i.e., the probability to observe the state
in the upper band (usually after a long time),

P = |〈u+,k−Et |�(t )〉|2 = 1 − |〈u−,k−Et |�(t )〉|2, (3)

thus measures how much the adiabatic theorem is violated
due to nonzero field strength E �= 0. While this observation
implies that it is convenient to expand |�(t )〉 into the snapshot
eigenstates |u±,k−Et 〉, we here introduce a suitable basis with
an additional phase factor

|ψα,k (t )〉 = e−i
∫ t

t0
dt ′[εα (k−Et ′ )+EAαα (k−Et ′ )]|uα,k−Et 〉, (4)

where Aαβ (k) = i〈uα,k|∂k|uβ,k〉 is the Berry connection. Note
that the lower limit of the t ′ integral is chosen to t0 := k/E �=
ti for future convenience. Hereafter, we omit the arguments
k − Et when it is not confusing. While |uα,k−Et 〉 is not neces-
sarily smooth because of the arbitrariness of the phase factor
(as a function of k), |ψα,k (t )〉 does not depend on a gauge
choice of |uα,k−Et 〉 and is a smooth function of t ,1 thanks to
the Berry phase factor. We call |ψα,k (t )〉 the snapshot basis
throughout this paper.

Now, by expanding |�(t )〉 as

|�(t )〉 =
∑
α=±

aα (t )|ψα,k (t )〉 (5)

1The gauge transformation we consider here is defined as |uα,k〉 →
|uα,k〉ei	α (k) with an arbitrary real function 	α . Since the Berry
connection is transformed as Aαα (k) → Aαα (k) − ∂k	α (k), one can
check that indeed the snapshot basis does not depend on the gauge
choice of |uα,k〉 (except for the overall time-independent phase factor
arising from the gauge choice at the initial time, i.e., |ψα,k (t )〉 →
|ψα,k (t )〉ei	α (k−Et0 )).
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with a−(−∞) = 1 and a+(−∞) = 0, we obtain the equation
of motion for a±(t ) as

i

(
ȧ+(t )
ȧ−(t )

)
=

(
0 W (t )

W ∗(t ) 0

)(
a+(t )
a−(t )

)
, (6)

where

W (t ) = EA+−(k − Et )ei
∫ t

t0
dt ′[ε+−ε−+E (A++−A−− )]

. (7)

The adiabatic theorem immediately follows from the fact that
W (t ) → 0 as E → 0.

As |W (t )| = o(|E |0), we can regard W (t ) as a perturba-
tion to the adiabatic time evolution. Within the first order,
we obtain

a+(t ) � −i
∫ t

−∞
dt1W (t1). (8)

The formal full solution can also be obtained using the
time-ordered exponential. The tunneling probability is now
evaluated as P = |a+(t )|2.

As is well known as the Dykhne-Davis-Pechukas (DDP)
method [30,31], in t → ∞, one can evaluate Eq. (8) asymptot-
ically by employing the contour integral in the complexified t1
plane, which yields an essential singularity with respect to E .
We discuss the asymptotic evaluation in terms of the contour
integral for arbitrary t in Sec. III C.

We note that the difference of Berry connection A++ −
A−− that appears in Eq. (7) and seems gauge dependent
can be rewritten by a gauge-invariant quantity, i.e., so-called
“shift vector,”

R = A++ − A−− − ∂k arg A+−. (9)

This allows us to rewrite W (t ) as [18]

W (t ) = E |A+−(k − Et )|ei
∫ t

t0
dt ′(ε+−ε−+ER)+i arg A+−(0)

. (10)

This shift vector is known to appear in formulation of the
second-order nonlinear optical response called “shift current”
[12,13,15], and is a geometrical quantity that measures the
real space shift between the centers of valence and conduction
wave functions. As we show in Sec. IV B, shift vector also
governs nonreciprocity in the tunneling current.

B. Nonequilibrium Green’s function

Now, we introduce a particle reservoir (so-called Büt-
tiker bath [44,46]) and consider a nonequilibrium steady
state of the tunneling problem. We consider an open system
described by

Ĥ (t ) =
∑

k

Ĥk (t ), (11)

Ĥk (t ) =
∑
σσ ′

〈σ |H (k − Et )|σ ′〉ĉ†
kσ

(t )ĉkσ ′ (t )

+
∑
σ p

ωpb̂†
kσ p(t )b̂kσ p(t ) +

∑
σ p

Vpb̂†
kσ p(t )ĉkσ (t ) + H.c.

(12)

Here, H (k) is the Hamiltonian (1) defined in the previous sub-
section, and σ =↑,↓ is the pseudospin spanning the Hilbert

space of 2 × 2 Hamiltonian H (k) (corresponding to a sublat-
tice, for instance). Note that we neglect the real spin of the
electron here for simplicity. ĉkσ (t ) annihilates an electron with
momentum k and pseudospin σ, while b̂kσ p(t ) annihilates an
electron in a fermionic heat reservoir whose mode energy
is ωp. The second-quantized operators are represented in the
Heisenberg representation, and denoted by hats. The spectral
density of the fermionic reservoir is assumed to satisfy the
broadband condition∑

p

π |Vp|2δ(ω − ωp) = � = const, (13)

which makes the dissipative dynamics of electrons Markovian
[see Eq. (A6)].

As we are interested in the tunneling process, it is natural to
introduce the snapshot basis as in the isolated cases. Namely,
we introduce an expansion of the field operator into the snap-
shot eigenstates as

ĉkσ (t ) =
∑

α

ψ̂α,k (t )〈σ |ψα,k (t )〉 (14)

=
∑

α

ψ̂α,k (t )〈σ |uα,k−Et 〉e−i
∫ t

t0
dt ′(εα+EAαα )

, (15)

ψ̂α,k (t ) =
∑

σ

〈ψα,k (t )|σ 〉ĉkσ (t ). (16)

As the fermions in the reservoir are noninteracting, one
can trace them out. As a result, they are embedded in a
self-energy in terms of nonequilibrium Green’s function. By
inserting the above transformation to the snapshot basis into
the well-known formula for the self energy (in the real-time
representation with the original basis), we obtain [43,45]

GR(t, t ′) = GR
0 (t, t ′)e−�(t−t ′ ), (17)

GA(t, t ′) = GA
0 (t, t ′)e−�(t ′−t ), (18)

G<(t, t ′) = (GR ∗ �< ∗ GA)(t, t ′) (19)

:=
∫

dτ dτ ′GR(t, τ )�<(τ, τ ′)GA(τ ′, t ′) (20)

for the retarded, advanced, and lesser Green’s functions,
which are defined as [GR(t, t ′)]αβ = [GA(t ′, t )]∗βα =
− i〈{ψ̂α,k (t ), ψ†

β,k (t ′)}〉�(t − t ′), [G<(t, t ′)]αβ = i〈ψ†
β,k (t ′)

ψ̂α,k (t )〉 with �(t ) = [1 + sgn(t )]/2 being the step function.
Here, GR,A

0 denotes the Green’s functions of the isolated
system. The lesser Green’s function G< is a particularly
interesting quantity as it describes the electron occupation
in the nonequilibrium states. The lesser component of the
self-energy reads as

[�<(τ, τ ′)]αβ = i2�

∫
dω

2π
e−iω(τ−τ ′ ) fD(ω)〈ψα,k (τ )|ψβ,k (τ ′)〉

(21)

with fD being the Fermi-Dirac distribution function. We have
omitted the interval of integration (−∞,∞) for the τ, τ ′, ω
integral. While this transformation is straightforward, we
also provide a derivation using the Heisenberg equation in
Appendix A for completeness.

To complete the framework, we need to specify the re-
tarded Green’s functions of the isolated system GR

0 (t, t ′). As
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a±(t ) is the solution of the time-evolution equation (6), one
can explicitly construct the retarded Green’s function of the
isolated system using a unitary matrix

U (t ) =
(

a∗
−(t ) a+(t )

−a∗
+(t ) a−(t )

)
, (22)

which satisfies

iU̇ (t ) =
(

0 W (t )
W ∗(t ) 0

)
U (t ). (23)

One can easily check that GR
0 (t, t ′) is represented as

GR
0 (t, t ′) = −iU (t )U †(t ′)�(t − t ′). (24)

See also Appendix A.
To summarize, the nonequilibrium Green’s function of the

open system G< can be evaluated by (i) computing the time
evolution of the isolated system (6) to obtain a± and construct
GR

0 , and (ii) computing convolution of �< by performing τ, τ ′
and ω integrals in Eqs. (20) and (21). We provide analytic
expressions for the outcome of this framework using various
asymptotic methods in the next section.

Before closing the section, we remark that the nonequi-
librium Green’s function is time dependent, nevertheless, it
represents a steady state. This is because we focus on a single
electron with a particular momentum k (at t = 0), while the
(steady) many-body state consists of electrons with various
momenta. In other words, the Green’s function we consider
here is that for Ĥk (t ), while the physical system is given by
Ĥ (t ) = ∑

k Ĥk (t ) [see Eqs. (11) and (12)]. Many-body ex-
pectation values, which are given as a momentum average of
single-electron expectation values, are indeed time indepen-
dent since the direct relation between momentum and time,
k(t ) = k − Et , makes momentum average identical to time
average.

C. Numerical calculation

Here we use the above framework for performing numeri-
cal calculations, and see the influence of the reservoir on the
tunneling electrons. We calculate the carrier density n+(t ) as
a transient occupation of a single electron on the upper band,

n+(t ) = 〈ψ̂†
+,k (t )ψ̂+,k (t )〉 = Im[G<(t, t )]++, (25)

which can be translated into the momentum distribution of
the excited electrons of the whole system. The carrier density
n+(t ) can be regarded as a counterpart of the (transient) tun-
neling probability in the case of isolated systems.

As a typical example, we consider the Landau-Zener model

H (k) =
(−vk δ

δ vk

)
, (26)

whose time evolution (6) is known to be exactly solvable
[2,53]. Let us discuss the properties of the isolated case first.
The tunneling probability of the isolated case P(t ) = |a+(t )|2
in the t → ∞ limit is given as

P(t → ∞) = e−Eth/E = exp

(
−πδ2

vE

)
, (27)

which can also be exactly reproduced by the DDP method.
The transient dynamics is also important for characterizing the

FIG. 2. Tunneling probability P(t ) = |a+(t )|2 of the isolated
system as a function of time t , for the Landau-Zener model.
Eth = πδ2/v.

tunneling process. We plot the tunneling probability P(t ) =
|a+(t )|2 as a function of t in Fig. 2, where we set k(t = 0) = 0.
It shows that the tunneling mainly occurs when the electron
passes through the gap minimum (t = 0). In particular, the
tunneling probability approaches to the step function �(t )
asymptotically in the strong field limit. On the other hand, in
the intermediate regime, the tunneling probability undergoes
an overshoot behavior within the timescale of ∼1/

√
vE , be-

fore converging to the final value.
Now, let us see how the carrier density (tunneling proba-

bility) is modified in the presence of the fermionic reservoir.
We plot the numerically calculated transient occupation of a
single electron on the upper band in the open system n+(t ) =
Im[G<(t, t )]++ in Fig. 3. Here, we set the temperature of the
fermionic reservoir as kBT = 0.5δ, which is relatively high,
and � = 0.2δ. We can find two qualitatively different regimes.
One is the low-field regime, where the tunneling amplitude
in the isolated case is negligible compared with the thermal
excitation. In this regime, the system should be well described
by the perturbative treatment using the Boltzmann equation,
where the distribution of the electron follows the equilibrium
one with a drift of the momentum. On the other hand, as
one increases the field strength, the nonperturbative tunneling
process becomes dominant, and a jump in the carrier density
evolves at t = 0. This generated carrier at the gap minimum
gradually relaxes due to the coupling to the fermionic reser-
voir (see also Fig. 1).

FIG. 3. Carrier density n+(t ) = Im[G<(t, t )]++ of the open
system as a function of time t , for the Landau-Zener model.
Eth = πδ2/v.

245141-4



CURRENT RESPONSE OF NONEQUILIBRIUM STEADY … PHYSICAL REVIEW B 102, 245141 (2020)

These features in the open system are expected to be
universal in generic gapped systems, and to be captured
qualitatively by analytic formulas using appropriate approx-
imations, which we discuss in the next section.

III. ASYMPTOTIC EVALUATION

A. Overview

In this section, we evaluate the nonequilibrium Green’s
function (20) derived in the previous section, in an analytic
manner using various approximations. Let us begin with a
brief overview of our derivation of Green’s functions, be-
fore going into the details of calculations presented in the
next subsections. First, as a general remark, we note that
the approximations we adopt are mainly based on asymptotic
expansions, as in the DDP method in isolated systems. In
contrast to usual Taylor series that has a finite convergence
radius, these approximations are not necessarily improved by
including the higher-order correction. Thus, we have to be
careful on the condition when the approximation is justified.

We first consider the adiabatic limit and try to reproduce
the low-field regime. Since the dynamics of the isolated
system is trivial there, the central issue here is how to ap-
proximate τ, τ ′, and ω integrals in Eqs. (20) and (21). As
we are considering the adiabatic limit, where the timescale
associated with the change of the parameter is slow enough,
we assume that it is also slower than the decay time ∼1/�.
We can perform the τ, τ ′ integrals in a form of an asymptotic
series, which can be truncated in a low order if the above
assumption holds. This corresponds to the gradient expansion
known in the quantum kinetic theory [43], which is em-
ployed for deriving the quantum Boltzmann equation. Indeed,
by performing ω integral in terms of the residue integral,
we obtain

[G<
ad(t, t )]±± � i fD(ε±(t )) + i f ′

D(ε±(t ))∂kε±(t )
E

2�
(28)

at the leading order, which coincides with the result of
the Boltzmann equation with the relaxation-time approxima-
tion. This is discussed in Sec. III B. We also show that the
above approximation quantitatively deviates from the numer-
ical result in an insulating system due to the nonperturbative
contribution.

Next, we consider the tunneling contribution by extending
the above result. As we need to construct the Green’s function
GR

0 , we have to calculate a+(t ) at generic time t as opposed
to the conventional tunneling problem where one considers
only the t → ∞ limit. According to the Lefschetz thimble ap-
proach recently proposed for the tunneling problem [54], the
asymptotic form for the nonperturbative component should be
given as

a+(t ) � √
P0�(t ), (29)

where P0 is the tunneling probability of the isolated system
in the t → ∞ limit. While the discontinuity due to the step
function is not present in the actual solution, this approximates
the rapid increase at t = 0 that appeared in Fig. 2. With this
correction we can approximate the nonequilibrium Green’s

function as

G<(t, t ) � G<
ad(t, t ) + i

(
P0

√
P0√

P0 −P0

)

× [ fD(ε−(0)) − fD(ε+(0))]e−2�t�(t ), (30)

where the second term describes the decay of the tunnel elec-
tron seen in Fig. 3. This is the key result of this study, which
we discuss in Sec. III C.

B. Adiabatic limit

Let us consider a situation where the electric field is so
weak that the nonperturbative contribution to the Green’s
function can be neglected. We consider the adiabatic limit
E → 0, where the isolated Green’s function becomes trivial
since a+(t ) = 0, a−(t ) = 1, and U (t ) = I2×2. In this limit,
the lesser Green’s function reads as

[
G<

ad(t, t ′)
]
αβ

= i2�

∫
dω

2π
fD(ω)e−iω(t−t ′ )

× 〈Lωψα (t )|Lωψβ (t ′)〉, (31)

whereLω represents the Laplace transform (from τ to � + iω)

|Lωψα (t )〉 :=
∫ ∞

0
dτ |ψα,k (t − τ )〉e−(�+iω)τ . (32)

In this section we try to construct an adiabatic perturbation
expansion of the nonequilibrium Green’s function. This can be
done when the relaxation time 1/(2�) is sufficiently shorter
than the typical timescale of adiabatic parameter change
(∝1/E ). In such a case, the Laplace transform (32) can be
evaluated in an asymptotic series form as follows.

A straightforward and elementary approach to obtain an
asymptotic expansion is successive use of integration by parts
based on the relation

e−(�+iω)τ−i
∫ t−τ

t0
dt ′εα = −∂τ (e−(�+iω)τ−i

∫ t−τ

t0
dt ′εα )

� + iω − iεα (t − τ )
, (33)

where we have introduced a shorthand notation εα (t − τ ) =
εα (k − E (t − τ )). Instead, here we use a more systematic
approach in the following.

Since the integrand decays in the timescale of 1/�, one
can Taylor expand the slowly changing part of the integrand
around τ = 0 and perform the termwise Laplace transform,
which yields the asymptotic series solution. However, as
can be seen in the definition (4), the integrand |ψα,k (t − τ )〉
has two different timescales. One is the adiabatic timescale
appearing via k(t ) = k − Et , while another is the time de-
pendence due to the dynamical phase factor −i

∫ t
t0

dt ′εα . The
latter should be separately treated in performing the Taylor
expansion (at least at the leading order). To this end, we
introduce the slow component at time t as

|ψα,k (t, τ )〉 = |ψα,k (t − τ )〉e−iεα (t )τ , (34)

where the additional phase factor cancels the dynamical phase
around τ = 0. One can easily check that ∂τ |ψα,k (t, τ )〉 =
O(E ). Now, by expanding the slow component |ψα,k (t, τ )〉,
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we obtain

|Lωψα (t )〉 =
∫ ∞

0
dτ |ψα,k (t, τ )〉e−[�+iω−iεα (t )]τ (35)

=
∞∑

n=0

1

n!

∂n

∂τ n
|ψα,k (t, τ )〉

∣∣∣∣
τ=0

×
∫ ∞

0
dτ τ ne−[�+iω−iεα (t )]τ (36)

=
∞∑

n=0

∂n

∂τ n

|ψα,k (t, τ )〉
[� + iω − iεα (t )]n+1

∣∣∣∣
τ=0

(37)

= exp

[
− ∂

∂s

∂

∂τ

] |ψα,k (t, τ )〉
s + iω

∣∣∣∣
s=�−iεα (t ),τ=0

.

(38)

Equation (31) then reads as

[G<
ad(t, t ′)]αβ = i2� exp

[
− ∂

∂s

∂

∂τ
− ∂

∂s′
∂

∂τ ′

]
I (s, s′)〈ψα,k (t, τ )|ψβ,k (t ′, τ ′)〉

∣∣∣∣
s=�+iεα (t ),s′=�−iεβ (t ′ ),τ=τ ′=0

, (39)

where

I (s, s′) =
∫

dω

2π

fD(ω)e−iω(t−t ′ )

(s − iω)(s′ + iω)
. (40)

Let us evaluate the ω integral I (s, s′). In this section, let
us focus on the case t = t ′. The integration can be performed
using the residue integral as

I (s, s′) = 1

s + s′ f� (Ims,−Ims′), (41)

by using Res = Res′ = � > 0. Here, f� (ε1, ε2) is given by

f� (ε1, ε2) = 1

2
− 1

2π i

[
�

(
1

2
+ � + iε1

2πkBT

)

− �

(
1

2
+ � − iε2

2πkBT

)]
, (42)

with � being the digamma function, which can be regarded
as a “modified distribution function” reflecting the presence
of the fermionic reservoir. We note that

Re f� (ε1, ε2) = 1

2
[ f� (ε1, ε1) + f� (ε2, ε2)], (43)

and f� (ε, ε) → fD(ε) as �/kBT → 0. Namely, the present
bath behaves as an ideal bath when � � kBT .

Having completed three integrations, we can obtain the
expression for the lesser Green’s function by evaluating
exp[−∂s∂τ − ∂s′∂τ ′]. While the s derivative of Eq. (41) consists
of that of the distribution f� and that of the denominator
(s + s′)−1, the former should be smaller since it is higher
order in �/kBT . Thus, we truncate the former series at the
first order:

e−∂s∂τ −∂s′ ∂τ ′ I (s, s′) = ei∂ε1 ∂τ −i∂ε2 ∂τ ′ f�e−∂s (∂τ +∂τ ′ )(s + s′)−1 (44)

� [ f� + i(∂ε1 f�∂τ − ∂ε2 f�∂τ ′ )]

× e−∂s (∂τ +∂τ ′ )(s + s′)−1, (45)

which leads to

[G<
ad(t, t )]αβ � i f� (εα (t ), εα (t ))δαβ

− 2�(∂εα
+ ∂εβ

) f� (εα (t ), εβ (t ))

× e−∂�∂τ /2 〈ψα,k (t, τ )|i∂τ |ψβ,k (t, τ )〉
εα (t ) − εβ (t ) − i2�

∣∣∣∣∣
τ=0

.

(46)

The remaining τ derivative can be evaluated using

〈ψα,k (t, τ )|i∂τ |ψα,k (t, τ )〉 = εα (t ) − εα (t − τ ), (47)

〈ψ+,k (t, τ )|i∂τ |ψ−,k (t, τ )〉 = W (t − τ )ei(ε+(t )−ε−(t ))τ , (48)

which results in, for the diagonal part,

[G<
ad(t, t )]±± � i fD(ε±(t )) + i f ′

D(ε±(t ))∂kε±(t )
E

2�
(49)

at the leading order, which reproduces the well-known result
of the Boltzmann equation with the relaxation-time approxi-
mation. One can neglect the off-diagonal part

[G<
ad(t, t )]+− � −2�(∂ε+ + ∂ε− ) f� (ε+(t ), ε−(t ))

ε+(t ) − ε−(t ) − i2�
W (t ),

(50)

which can be shown to be canceled with the perturbative
correction to U (t ).

We examine the obtained formula by calculating the carrier
density n+(t ) = Im[G<(t, t )]++ in Fig. 4, where we set � =
0.4δ, kBT = δ, and E = 0.2(πδ2/v) for the Landau-Zener
model. As can be seen in the numerical result plotted in
Fig. 4(a), the results for the full expression of G<, Eq. (20),
and G<

ad given by Eq. (31) agree well, which implies that
the thermal excitation is the dominant mechanism for the
carrier generation in this parameter regime. We plot the re-
sult using the asymptotic expansion (46) truncated at zeroth,
first, and second derivatives with respect to τ . The first-order
formula reproduces the numerical result semiquantitatively.
The second-order correction makes the result worse, which
is characteristic to the asymptotic expansion with vanishing
convergent radius. One can also notice the overestimation of
the height of the peak. This deviation is related to a non-
perturbative effect peculiar to insulating systems, with which
the agreement is substantially improved as can be seen in
the green curve obtained with the saddle-point method. We
discuss details of this effect in Appendix B.

C. Tunneling contribution

As one decreases the temperature or increases the field
strength, the dominant mechanism for the carrier generation
should switch from the thermal excitation to the quantum
tunneling, which is not taken into account in the previous
section. In this section, we consider the nonperturbative
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FIG. 4. Carrier density n+(t ) = Im[G<(t, t )]++ of the Landau-
Zener model as a function of time. � = 0.4δ, kBT = δ, and E =
0.2(πδ2/v). (a) Numerical calculation based on the full Green’s
function (20) (red) and based on the adiabatic component (31) (gray).
(b) Comparison of the adiabatic component with the asymptotic ex-
pression (46). The Taylor expansion of e−∂�∂τ /2 is truncated at the nth
order. The green line is the result of the saddle-point approximation
(see Appendix B).

tunneling contribution. Since the Green’s function includes
such nonperturbative contribution in the time evolution of
the isolated system a±(t ), here we consider the first-order
correction (8) in terms of the adiabatic perturbation.

The central issue here is that we have to compute a+(t ) as
a function of t , which is in contrast to the conventional tunnel-
ing problem discussing the t → ∞ limit. We first discuss this
using the Lefschetz thimble approach [54]. Then, we construct
GR

0 (t, t ′) with the tunneling correction and derive the formula
for G<(t, t ′).

1. Thimble decomposition

As is also known in the DDP method, it is essential to
regard the t1 integral in Eq. (8) as a contour integral of
a complexified variable (k − Et1 → z1 here), in capturing
the nonperturbative nature of the tunneling probability. The
Lefschetz thimble method is a powerful tool in computing
contour integral, which provides a systematic decomposition
of the contour of integration C0 [with a+(t ) = ∫

C0
dz1e f (z1 )]

into a deformed contour C composed of the steepest descents
of Re f (z1) that extend from saddle points (and the end point
of C0). See Refs. [54,55] and Appendix C for details. Because
the steepest descent of Re f (z1) coincides with the isopleth of
Im f (z1) due to the Cauchy-Riemann relations, the integrand
along the deformed contour has no oscillation (as opposed to
the original one) and is easier to evaluate.

The saddle point is a special point where the steepest de-
scent and ascent join, whose position is obtained by solving

∂z1 f (z1) = 0. In the present case, this equation reads as

∂

∂z1
ln Ã+− − i

�

E
− iR = 0, (51)

where Ã+−(z1) is the analytic continuation of the dipole ma-
trix element |A+−(k − Et1)|, R = A++ − A−− − ∂k arg A+−
the shift vector, and � = ε+ − ε−. As we show in
Appendix C, when E is small enough, the solution z1 = ks can
be found in the vicinity of the gap-closing point z1 = kc with
�(kc) = 0 (i.e., where the second term vanishes). This can
be seen in the plot of Re f (z1) for the Landau-Zener model
(E > 0) (Fig. 5), where the gap-closing points and saddle
points are marked with black and red points, respectively.

According to the Lefschetz thimble method, the steepest
descent attached to a given saddle point belongs to the de-
formed contour C, if its steepest ascent has an intersection
with the original contour C0, as exemplified in Figs. 5(a) and
5(b): The saddle point in the lower half-plane (marked with
red dot) has a steepest ascent parallel to the imaginary axis
(red dashed line), which crosses the real axis at z = k − Etg
[the gap minimum point ∂k� = 0, represented by the blue dot
in Fig. 5(b)]. As the original contour C0 (blue line) runs from
+∞ to k − Et , the steepest descent has a contribution when
t > tg. Indeed, the deformed contour C drawn by red curves is
composed of two pieces in Fig. 5(b) with t > tg, in contrast to
Fig. 5(a) with t < tg. While there are also two saddle points in
the upper half-plane (and more on another Riemann surface),
they always have no contribution as their steepest ascents do
not intersect with the real axis.

The saddle-point contribution present in t > tg can be eval-
uated approximately using Laplace’s method, which results in

a+(t ) � √
P0�(t ) = eIm

∫ kc
0 dk[�/|E |+sgn(E )R]�(t ). (52)

Here, for simplicity, we have set tg = 0 by shifting the origin
of time, and set arg A+−(k = 0) such that the tunneling ampli-
tude becomes real [see Eq. (C23)]. We keep only the leading
order in E for the prefactor. See Appendix C for details.

The discontinuous behavior �(t ) roughly approximates
the time profile shown in Fig. 2 if we neglect the overshoot
behavior in 0 < t � 1/

√
vE . The overshoot behavior is re-

lated to the last segment of the deformed contour C (steepest
ascent toward the terminal point z1 = k − Et), although we
neglect it in this study. When E is small enough, perturbative
evaluation of the last segment yields an O(E

√
P0) term to the

Green’s function, which reproduces the overshoot behavior,
although it cannot capture the suppression in the strong E
regime. We note that its contribution to the electric current is
higher order than the interband component (we derive below)
with O(

√
P0).

2. Green’s function

Let us evaluate the influence of the tunneling contribution
(52) on the nonequilibrium Green’s function. With this con-
tribution, the retarded Green’s function of the isolated system
reads as

GR
0 (t, t ′) � −i�(t − t ′)I2×2 + i

(
P0/2 −√

P0√
P0 P0/2

)
�(t )�(−t ′),

(53)
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FIG. 5. Re f (z1) for a+(t ) = ∫
C0

dz1e f (z1 ) [see Eqs. (8) and (C1)]
in the complexified momentum plane (z1 = k − Et1). Gray lines are
the steepest descents. The gap-closing points z1 = kc, k∗

c are indi-
cated by black dots, from which the branch cut drawn by the black
thick lines extends. The saddle points z1 = ks are marked with red
dots, while red dashed lines are associated steepest ascents. The
original contour of integration C0 indicated by blue line is deformed
into C composed of the steepest descents attached to saddle points
(and the terminal point of the C0), drawn as red solid lines. tg is
defined via the crossing point z1 = k − Etg between the real axis and
the red dashed line (steepest ascent). t ≷ tg (whether z1 = k − Etg

intersects with C0 or not) determines whether the steepest descent
attached to the saddle point (z1 = ks) belongs to C or not.

where the diagonal entries in the second term arise from the
correction to a−(t ) that keeps the norm conservation |a+|2 +
|a−|2 = 1 up to O(P0).

Since the tunneling process is approximated to be in-
stantaneous and represented by the step function within the
present approximation, the second term can be rewritten
in terms of GR

0,ad(0, t ′) = −i�(0 − t ′)I2×2. Then, GR(t, t ′) =
GR

0 (t, t ′)e−�(t−t ′ ) reads as

GR(t, t ′) = GR
ad(t, t ′) + M(t )�(t )GR

ad(0, t ′), (54)

where

M(t ) = −
(

P0/2 −√
P0√

P0 P0/2

)
e−�t (55)

and GR
ad(t, t ′) = GR

0,ad(t, t ′)e−�(t−t ′ ).
By substituting this and GA(t, t ′) = [GR(t ′, t )]† into

Eq. (20), G< = GR ∗ �< ∗ GA, we obtain G< with the tun-
neling correction, in terms of G<

ad = GR
ad ∗ �< ∗ GA

ad (here the
asterisk denotes convolution in time and matrix product in
the band index). Namely, we can summarize the (equal-time)
expression into

G<(t, t ) = G<
ad(t, t ) + G<

LZ(t, t )�(t ) (56)

with

G<
LZ(t, t ) = M(t )G<

ad(0, 0)M†(t )

+ M(t )G<
ad(0, t ) + G<

ad(t, 0)M†(t ). (57)

In particular, the diagonal component of the correction term
G<

LZ(t, t ) reads as

[G<
LZ(t, t )]±± = [G<

ad(0, 0)]∓∓P0e−2�t

− i Im[G<
ad(t, 0)]±±P0e−�t

± 2i Im[G<
ad(t, 0)]±∓

√
P0e−�t . (58)

Since we have evaluated the equal-time expression
G<

ad(t, t ) in the previous section, we have to evaluate the
adiabatic Green’s function G<

ad(t, t ′) with t > t ′ = 0 here. If
we evaluate Eq. (40) with t > t ′, we obtain

I (s, s′) = fD(−is)e−s(t−t ′ )

s + s′ +
∞∑

n=0

ikBTe−ωn (t−t ′ )

(s − ωn)(s′ + ωn)
, (59)

where ωn = (2n + 1)πkBT is the Matsubara frequency. Since
we are considering kBT � � = Res, the second term is neg-
ligible for t − t ′ �= 0. In addition to the s derivative of the
distribution fD and the denominator (s + s′)−1, we have
that of e−s(t−t ′ ) in the evaluation of e−∂s∂τ −∂s′ ∂τ ′ I (s, s′) in the
present case. This contribution is problematic when t − t ′ is
large since

e−∂s∂τ e−s(t−t ′ ) = e−s(t−t ′ )e−∂s∂τ e(t−t ′ )∂τ (60)

acts as a time-translation operator for τ . This leads to the
breakdown of the assumption that τ is small, which is nec-
essary for performing the gradient expansion (38). To cancel
this time translation effect, we need to choose the slow
component as

|ψα,k (t − τ )〉 = |ψα,k (t ′, τ − (t − t ′))〉eiεα (t ′ )[τ−(t−t ′ )]. (61)

For details, see Appendix D. Then, as the remaining factors in
I (s, s′) are the same as in the previous calculation, we arrive
at a similar expression as Eq. (46):

[G<
ad(t, t ′)]αβ � i fD(εα (t ′) − i�)e−�(t−t ′ )δαβ

− 2� f ′
D(εα (t ′) − i�)e−�(t−t ′ )

× e−∂�∂τ /2 〈ψα,k (t ′, τ )|i∂τ |ψβ,k (t ′, τ )〉
εα (t ′) − εβ (t ′) − 2i�

∣∣∣∣∣
τ=0

.

(62)

245141-8



CURRENT RESPONSE OF NONEQUILIBRIUM STEADY … PHYSICAL REVIEW B 102, 245141 (2020)

As the drift correction ∝ f ′
D is less relevant when E is

increased (correction may make the asymptotic expansion
worse), let us consider only the first term. The correction to
the nonequilibrium Green’s function reads as

[G<
LZ(t, t )]±±�(t )

= ±i[ fD(ε−(0)) − fD(ε+(0))]P0e−2�t�(t ). (63)

The physical meaning of this expression is apparent. The
tunneling occurs at t = 0 with probability P0, which is instan-
taneous and governed by the quasiequilibrium distribution at
t = 0 (although this is an approximation). This contribution
decays in the timescale of 1/(2�), as the excited electrons are
relaxed due to the dissipation to the heat bath. This picture is
schematically summarized in Fig. 1.

In the same way, one can calculate the off-diagonal part as

[G<
LZ(t, t )]+− � (

[G<
ad(0, t )]−− − [G<

ad(t, 0)]++
)√

P0e−�t

(64)

� i[ fD(ε−(0)) − fD(ε+(0))]
√

P0e−2�t , (65)

where we have droppedO(EP0). It is worth noting that the off-
diagonal component has a halved nonperturbative exponent,
which implies that the interband current may be crucial for
the transport property. We compare intraband and interband
contributions for the electric current in Sec. IV A.

IV. APPLICATIONS

A. Nonperturbative electric transport in band insulators

We have derived a formula for the nonequilibrium Green’s
function with the nonperturbative correction in the previous
section. The original motivation to calculate this is to obtain
the nonequilibrium distribution of the electron and calculate
physical observables, such as the electric current. Here, let
us evaluate the nonperturbative electric current of the band
insulators as an application of the present framework. The
velocity operator in the snapshot basis is expressed as

v̂ =
∑
σσ ′

〈σ |∂kH (k − Et )|σ ′〉ĉ†
kσ

(t )ĉkσ ′ (t ) (66)

=
(

ψ̂+,k (t )

ψ̂−,k (t )

)†

v(k − Et )

(
ψ̂+,k (t )

ψ̂−,k (t )

)
(67)

:=
(

ψ̂+,k (t )

ψ̂−,k (t )

)†(
∂kε+ i�W/E

−i�W ∗/E ∂kε−

)(
ψ̂+,k (t )

ψ̂−,k (t )

)
, (68)

where � = ε+ − ε−. Note that this expression is exact for
an arbitrary E (i.e., it contains all the nonlinear terms with
respect to the vector potential). We also note that argW (t )
depends on arg A+−(k = 0), which has been fixed such that
the asymptotic form of a+(t ) becomes real [see Eq. (C25)].
As we have mentioned in the end of Sec. II B, physical observ-
ables are given as a momentum average of the single-electron
expectation value calculated with the nonequilibrium Green’s
function (and are thus time independent). In the adiabatic
limit, the electric current is given as

Jad = −i
∫

dk

2π
Tr[−vG<

ad] (69)

= − E

2�

∫
dk

2π

∑
α=±

(∂kεα )2 f ′
D(εα )

−E
∫

dk

2π

2��2|A+−|2
�2 + 4�2

∑
α=±

f ′
D(εα ), (70)

which vanishes in the insulating system at the low tem-
perature, as f ′

D becomes zero. On the other hand, the
nonperturbative correction has a temperature dependence as

J = (
J (1)

LZ + J (2)
LZ

)
[ fD(ε−(0)) − fD(ε+(0))]. (71)

Here, the zero-temperature expressions J (1)
LZ , J (2)

LZ are the intra-
band and interband currents given as

J (1)
LZ = ∓P0

∫ 0

∓	

dk

2π
∂k�e2�k/E , (72)

J (2)
LZ = 2

√
P0Re

∫ 0

∓	

dk

2π
|A+−|�e−iRe

∫ k
kc

dk′(�/E+R)+2�k/E ,

(73)

where ± = sgn(E ).2 Here, 	 is a cutoff momentum, which
should be replaced by 2π divided by the lattice constant in the
case of lattice systems (see Sec. IV C). J (1)

LZ is asymptotically
evaluated as

J (1)
LZ ∼ ± P0

2π

[
− E

2�

∂�

∂k
+ E2

4�2

∂2�

∂k2
− · · ·

]
k=0

(74)

which survives since fD(ε−(0)) − fD(ε+(0)) ∼ 1. When the
first derivative of � vanishes as in the Landau-Zener model,
the intraband tunneling current turns out to be proportional to
E2P0. One can evaluate the interband current J (2)

LZ by the
similar asymptotic series expansion. The leading-order term
reads as

J (2)
LZ ∼

√
P0

π

[
E |A+−|2��

�2 + 4�2

]
k=0

, (75)

where we have assumed Re
∫ kc

0 dk′(�/E + R) = 0 for sim-
plicity. While J (2)

LZ has a smaller power E
√

P0 compared with
J (1)

LZ , the Lorentz factor makes the value small when � � �.
Thus, whether the intraband or interband effect is dominant
depends on the strength of the dissipation.

We plot J (1)
LZ /J (2)

LZ and J (1)
LZ + J (2)

LZ for the Landau-Zener
model in Figs. 6(a) and 6(b), respectively, as functions of
E and �. Here, we have numerically integrated Eqs. (72)

2While the present formula is justified only if the decay time 1/2�

is shorter than the adiabatic timescale, its � → 0 limit partially
reproduces the result in the ballistic limit as follows. The � → 0
expression for the intraband current is given as J (1)

LZ → P0[�(	) −
�(0)]/2π . Here �(	) can be regarded as the applied voltage in the
Landauer picture, when two leads are sandwiching the system and
the cutoff momentum is determined by the chemical potential of the
leads. In this picture, we obtain the electric conductance as P0 (e2/h),
if we drop the small contribution from �(0). Also, when � → 0, the
integral in the interband current (73) has no perturbative expression
with respect to E . One can show by the saddle-point method that J (2)

LZ

is higher order than J (1)
LZ in this limit.
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FIG. 6. Electric current response of the nonequilibrium steady
state for the Landau-Zener model attached to a fermionic reservoir.
(a) Ratio of the intraband and interband currents J (1)

LZ /J (2)
LZ as a func-

tion of the electric field E and the dissipation �. Dashed line indicates
J (1)

LZ = J (2)
LZ . (b) J (1)

LZ + J (2)
LZ as a function of the electric field E and the

dissipation �.

and (73). We find that the interband current is dominant in
a wide region of the parameter space. The intraband current
is dominant only when � � 0.1δ, where one has a crossover
from the interband-dominant to intraband-dominant regime as
increasing the field strength.

Such dominance of interband contribution to the current
response cannot be captured by conventional analyses of
tunneling processes that only focus on tunneling probabil-
ity. Namely, the intraband contribution to the current can be
deduced from the tunneling probability and group velocity.
In contrast, the interband contribution, which turns out to
be dominant in a wide parameter range, requires analysis
of phase coherence of tunneling electrons, and cannot be
captured only by looking at the tunneling probability. Thus,
our Green’s function approach has an advantage in describing
tunneling current response with an ability to incorporate the
intraband and interband contributions on an equal footing.

B. Nonreciprocal transport

1. Nonreciprocal charge transport

As we have revealed in the previous study [18], the tunnel-
ing probability P0 has a geometric factor that involves the shift
vector R. In particular, for noncentrosymmetric systems, this
factor exhibits nonreciprocity (depends on the sign of E ):

γP := P0(+|E |)
P0(−|E |) = e2 Im

∫ kc
0 dk(�/|E |+R)

e2 Im
∫ kc

0 dk(�/|E |−R)
= exp

[
2 Im

∫ kc

k∗
c

dk R

]
.

(76)
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FIG. 7. Nonreciprocity ratio γ = J (+E )/J (−E ) in the steady
state for a two-band model of noncentrosymmetric insulator with a
nonzero shift vector, Eq. (77). Nonreciprocity is enhanced for larger
electric field E and is suppressed for stronger dissipation �.

The shift vector R is an odd function of k when the system is
inversion symmetric, and does not lead to nonreciprocity. In
contrast, noncentrosymmetric systems can host nonreciproc-
ity arising from the geometric factor.

When the tunneling process is the main mechanism to
generate carriers, the nonreciprocity ratio γ = J (+E )/J (−E )
for the electric current should also be characterized by that for
tunneling probability γP. However, since the intraband and
interband currents (J (1)

LZ and J (2)
LZ in the previous section) are

respectively proportional to P0 and
√

P0, the nonreciprocity
ratio γ for the electric current should undergo a crossover
from

√
γP to γP when the dominant contribution is switched

from the interband to intraband current, e.g., by sweeping the
strength of the field.3

To demonstrate the crossover, we introduce a model for a
noncentrosymmetric insulator

H (k) = δσx + m
√

1 + ck2σy + vkσz, (77)

where the parameter m controls the strength of inversion
breaking [σxH (k)σx �= H (−k)] which yields a nonzero shift
vector. Note that this model is time-reversal symmetric,
σxH∗(k)σx = H (−k), which prohibits nonreciprocal response
that arises from asymmetric band structures such as magne-
tochiral anisotropy [6]. We show the nonreciprocity ratio γ in
Fig. 7 as a function of the electric field E and the dissipation
strength �. We choose m = 0.5δ and c = 0.5v2/δ2, which
leads to γP = 2.62,

√
γP = 1.62. We note that γP has no de-

pendence on E and �. We can see that the nonreciprocity ratio
changes from ∼√

γP to ∼γP as the field strength is increased,
which clearly captures the change of the dominant mechanism
for the electric current from the interband to intraband effect.
Namely, for the weak electric field regime, the interband effect
is dominant since the phase coherence between the two bands
is important for the current response with a small number

3In a paper by two of the present authors [56], the section on
“Absence of dc nonreciprocal current in noninteracting systems”
contains an incorrect argument around Eq. (14). Namely, the non-
reciprocal current proportional to E 2 may exist in time-reversal
symmetric noninteracting systems in general. Such nonreciprocal
current ∝E 2 can be studied based on the Keldysh Green’s function
method developed in this paper, which would be an interesting future
problem.
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of excited electrons. For the strong electric field regime, in
contrast, the intraband effect becomes dominant which means
that there appear many tunnel electrons which carry current
according to their group velocity. In addition, Fig. 7 shows that
strong dissipation � suppresses nonreciprocity. In particular,
we find that nonreciprocity in the crossover regime is quickly
suppressed by the dissipation.

2. Nonreciprocal spin transport

It is interesting to investigate a different type of nonrecip-
rocal transport that is not characterized by the nonreciprocity
of the tunneling probability. The momentum distribution of
the excited electrons due to the tunneling process is highly
asymmetric around the gap minimum (only left or right is
occupied according to the sign of the electric field), which is
a peculiar property absent in metallic systems.

We can exploit this feature to obtain a nonreciprocal spin
transport when the band dispersion has a skew around the
gap minimum. Under the time-reversal symmetry, however,
the gap minimum with an opposite skew exists at −k, so
that the asymmetry in the electric current should vanish if
contributions from this pair of gap minima is added up. The
nonreciprocal transport due to this asymmetry may survive
when we consider the spin current. We here consider an in-
sulating model with a Rashba spin-orbit coupling

H (k) = (vk + λsz )σx + (δ − γ k2)σz, (78)

where sz is the (real) spin of the electron. This model is time-
reversal symmetric since σzsyH∗(k)syσz = H (−k), while it
lacks the inversion symmetry as σzH (k)σz �= H (−k). We plot
the energy dispersion of this Hamiltonian in Fig. 8(a). Due to
the Rashba spin splitting, the time-reversal partner at −k has
the opposite spin polarization. Thus, the tunneling current for
the spin up and down differs due to the skewed dispersion,
as shown in Fig. 8(b). The spin current due to this difference,
shown in Fig. 8(c), does not change when the electric field is
inverted, i.e., the spin current exhibits nonreciprocity. This is a
different type of nonreciprocal transport which is absent in the
metallic transport with the shift of the Fermi surface. Note that
there are two pairs of saddle points for each spin sector of this
model, and we have neglected the pair with larger threshold
field, for simplicity. We also have neglected a (E -dependent)
slight deviation of the crossing point z1 = k − Etg from the
gap minimum.

Recently, spin-dependent transport has been found in DNA
molecules [51], and spin transport in chiral materials [chiral-
induced spin selectivity (CISS)] is attracting growing interests
[52]. In CISS, photoexcited electrons propagate through in-
sulating DNA molecules and show spin accumulation due to
spin-dependent decay rates. Similarly, the above-mentioned
spin transport in the tunneling process indicates a spin
rectification effect, and can induce spin accumulation in
noncentrosymmetric and chiral semiconductors with applica-
tion of electric fields. While the present mechanism of spin
accumulation applies for tunneling electrons and not for pho-
toexcited electrons in CISS, these two effects could be related
with each other in that both induce spin accumulation via
electron propagation through an insulator. In particular, the
spin current in tunneling problem implies that application of
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FIG. 8. Nonreciprocal spin current in the nonequilibrium steady
state of a Rashba-splitted insulator, Eq. (78). λ = 0.4δ, γ =
1.25v2/δ. (a) Energy dispersion. (b) Spin-resolved current as a func-
tion of electric field E for � = 0.1δ. (c) Nonreciprocal spin current
J↑ − J↓ against electric field E and dissipation �. J↑(−E ) = −J↓(E )
leads to directionality J↑(E ) − J↓(E ) = J↑(−E ) − J↓(−E ).

strong DC electric fields to chiral molecules including DNAs
can induce spin current generation and spin accumulation.

C. Extension to lattice systems

So far, we have considered models in a continuous limit,
such as the Landau-Zener model. Here, we briefly introduce
an extension of the formalism to lattice systems with a Bril-
louin zone. In isolated lattice systems, the electron passes
through the gap minimum periodically, with the period of the
Bloch oscillation TB = 2π/|E |a0 (a0 is the lattice constant).
Thus, the asymptotic form of the tunneling amplitude a+(t ) is
modified from Eq. (52) to

a+(t ) ∼ √
P0

∞∑
n=−N

ein
∫ TB

0 dt (�+ER)�(t − nTB). (79)

Here, N → ∞ should be taken after the calculation of Green’s
functions for the open system, to avoid the divergence of
the sum. The n summation appears due to the contribution
from the multiple saddle points, which has a phase difference
originating from the dynamical phase factor [W (t + TB) =
W (t )ei

∫ TB
0 dt (�+ER)].
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FIG. 9. The interference factor (1 + e−2�TB )/|1 −
e−2�TB−i

∫ TB
0 dt �|2 for various values of the momentum average

of the energy gap �av := a0

∫ 2π/a0
0 dk/(2π ) × (ε+ − ε−), where

TB = 2π/|E |a0.

By repeating the derivation in the previous sections with
Eq. (79) instead of Eq. (52), one can show that the correction
to the nonequilibrium Green’s function is modified as

[G<
LZ(t, t )]±± → (1 + e−2�TB )[G<

LZ(t, t )]±±
|1 − e−2�TB−i

∫ TB
0 dt (�+ER)|2

, (80)

[G<
LZ(t, t )]+− → [G<

LZ(t, t )]+−
1 − e−2�TB−i

∫ TB
0 dt (�+ER)

, (81)

for t ∈ [0, TB). The expression for an arbitrary time can
be obtained by employing the periodicity [G<

LZ(t + TB, t +
TB)]±± = [G<

LZ(t, t )]±± and [G<
LZ(t + TB, t + TB)]+− =

[G<
LZ(t, t )]+−ei

∫ TB
0 dt (�+ER).

The additional factor characterized by the dynamical phase
and �TB = 2π�/Ea0 describes the interference between tun-
neling processes with different times. The electron excited
at t = nTB acquires the dynamical phase i

∫ TB

0 dt (� + ER)
relative to the electron excited at t = (n + 1)TB. The interfer-
ence becomes significant when the electric field is so large
that the relaxation time 1/� leading to the decay of the
amplitude is comparable to the period of the tunneling pro-
cesses TB. We plot the interference factor (1 + e−2�TB )/|1 −
e−2�TB−i

∫ TB
0 dt�|2 in Fig. 9.

V. CONCLUSION

In this paper, we studied the nonequilibrium steady state
of the insulating systems with the nonperturbative correction
derived from the quantum tunneling. We established a frame-
work for the nonequilibrium Green’s function in the tunneling
problem, where the Green’s function in the snapshot basis
is represented by the solution to the time evolution of the
isolated system that the conventional approaches are based on.
We perform an asymptotic evaluation of the nonequilibrium
Green’s function in the snapshot basis, which reproduces the
result of the Boltzmann equation with the relaxation-time
approximation in the adiabatic limit. By combining the Lef-
schetz thimble method, we also obtain the nonperturbative
correction to the nonequilibrium Green’s function, and discuss
the electric current in the nonequilibrium steady state. We also
discuss the nonreciprocal transport associated with the tunnel-
ing current, and propose the crossover of the nonreciprocity

ratio in the nonmagnetic noncentrosymmetric insulators, and a
nonreciprocal spin current derived from the asymmetric band
dispersion in spin-splitted insulators.

The application of the present formalism in the strong-
field regime turned out to be unexpectedly successful for the
Landau-Zener model. This should be attributed to the fact
that the asymptotic evaluation of the tunneling probability
coincides with the exact solution. Such feature is absent in
generic models (in particular for lattice models with an energy
cutoff), and we have to substantially improve the asymptotic
method adopted in this study, e.g., by a more sophisticated
treatment of the Lefshetz thimble. Extension of the present
formalism to many-body systems [24,26] is also an important
open problem.
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APPENDIX A: DERIVATION OF THE NONEQUILIBRIUM
GREEN’S FUNCTIONS IN THE SNAPSHOT BASIS

Here, we derive the expressions for the nonequilibrium
Green’s function in the snapshot basis. Let us begin with the
Heisenberg equation of the annihilation operators,

i ˙̂ckσ (t ) =
∑
σ ′

〈σ |H (k − Et )|σ ′〉ĉkσ ′ (t ) +
∑

p

V ∗
p b̂kσ p(t ),

(A1)

i ˙̂bkσ p(t ) = ωpb̂kσ p(t ) + Vpĉkσ (t ). (A2)

The latter one can be solved with respect to b̂ as

b̂kσ p(t ) = b̂kσ p(ti)e
−iωp(t−ti ) − iVp

∫ t

ti

dt ′ĉkσ (t ′)e−iωp(t−t ′ ),

(A3)
where ti = −∞ is the initial time where the system is in
equilibrium. By substituting this into the former equation of
motion, we obtain

i ˙̂ckσ (t ) =
∑
σ ′

〈σ |H (k − Et )|σ ′〉ĉkσ ′ (t ) +
∑

p

V ∗
p b̂kσ p(ti )

× e−iωp(t−ti ) − i
∑

p

|Vp|2
∫ t

ti

dt ′ĉkσ (t ′)e−iωp(t−t ′ ).

(A4)

The memory effect described by the last term vanishes (i.e.,
dynamics becomes Markovian) when the fermionic reservoir
satisfies the broadband condition (13): The last term is shown
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to be instantaneous as∑
p

|Vp|2
∫ t

ti

dt ′ĉkσ (t ′)e−iωp(t−t ′ )

=
∫

dω
∑

p

|Vp|2δ(ω − ωp)
∫ t

ti

dt ′ĉkσ (t ′)e−iω(t−t ′ ) (A5)

=
∫

dω

2π
2�

∫ t

ti

dt ′ĉkσ (t ′)e−iω(t−t ′ ) = �ĉkσ (t ). (A6)

Namely, we obtain

i ˙̂ckσ (t ) =
∑
σ ′

〈σ |H (k − Et )|σ ′〉ĉkσ ′ (t ) − i�ĉkσ (t )

+
∑

p

V ∗
p b̂kσ p(ti)e

−iωp(t−ti ). (A7)

Then, by performing the unitary transformation (14), we ob-
tain

i
d

dt

(
ψ̂+,k (t )

ψ̂−,k (t )

)
=

( −i� W (t )

W ∗(t ) −i�

)(
ψ̂+,k (t )

ψ̂−,k (t )

)

+
∑
pσ

V ∗
p

(〈ψ+,k (t )|σ 〉
〈ψ−,k (t )|σ 〉

)
b̂kσ p(ti )e

−iωp(t−ti ).

(A8)

In order to solve this differential equation, we introduce
the unitary matrix U (t ) defined as Eq. (22). By replacing the
off-diagonal matrix in the right-hand side as(

0 W (t )

W ∗(t ) 0

)
= iU̇ (t )U †(t ), (A9)

we can deform Eq. (A8) into

i
d

dt

[
U †(t )

(
ψ̂+,k (t )

ψ̂−,k (t )

)
e�t

]

=
∑
pσ

V ∗
p U †(t )

(〈ψ+,k (t )|σ 〉
〈ψ−,k (t )|σ 〉

)
b̂kσ p(ti )e

−iωp(t−ti )+�t , (A10)

which we can solve just by integrating on [ti, t]. Especially,
when � = Vp = 0 (i.e., the case of the isolated system),
we obtain (

ψ̂+,k (t )

ψ̂−,k (t )

)
= U (t )U †(ti )

(
ψ̂+,k (ti )

ψ̂−,k (ti )

)
, (A11)

by which the expression for [GR
0 (t, t ′)]αβ = −i〈{ψ̂α,k (t ),

ψ
†
β,k (t ′)}〉0�(t − t ′), Eq. (24), immediately follows. When

� �= 0, Vp �= 0, we arrive at(
ψ̂+,k (t )

ψ̂−,k (t )

)
= iGR

0 (t, ti )

(
ψ̂+,k (ti )

ψ̂−,k (ti )

)
e−�(t−ti )

+
∫ ∞

−∞
dτ

∑
pσ

V ∗
p GR

0 (t, τ )

(〈ψ+,k (τ )|σ 〉
〈ψ−,k (τ )|σ 〉

)

× b̂kσ p(ti )e
−iωp(τ−ti )−�(t−τ ), (A12)

where the first term vanishes in ti → −∞. Now, the field
operator ψ̂ is expressed by the bath operator b̂ at the infinite
past. As the bath fermions are in equilibrium at the infinite
past, we can evaluate the Green’s functions of ψ̂ by using

{b̂†
kσ p(ti ), b̂kσ ′q(ti )} = δσσ ′δpq, (A13)

〈b̂†
kσ p(ti )b̂kσ ′q(ti )〉 = δσσ ′δpq fD(ωp). (A14)

For the retarded Green’s function, one can derive Eq. (17) as

GR(t, t ′) = 2�

∫ t ′

−∞
dτ GR

0 (t, t ′)e−�(t+t ′−2τ ) (A15)

= GR
0 (t, t ′)e−�(t−t ′ ) (A16)

by using
∑

p |Vp|2e−iωp(τ−τ ′ )=2�δ(τ − τ ′) [see Eq. (A6)],∑
σ 〈ψα,k (τ )|σ 〉〈σ |ψβ,k (τ )〉=δαβ , and GR

0 (t, τ )[GR
0 (t ′, τ )]† =

iGR
0 (t, t ′)�(t ′ − τ ) for t > t ′. The expression for the lesser

component, Eqs. (20) and (21), can also be derived using∑
p

|Vp|2〈b̂†
kσ p(ti)b̂kσ p(ti )〉e−iωp(τ−τ ′ )

= 2�

∫
dω

2π
fD(ω)e−iω(τ−τ ′ ). (A17)

APPENDIX B: NONPERTURBATIVE CONTRIBUTION TO
THE DRIFT EFFECT

As can be seen in Fig. 4(b), the drift effect described
by the relaxation-time approximation (49) overestimates the
height of the peak. This is due to the nonperturbative effect
non-negligible around the band top.

The failure of the approximation is derived from the
order-by-order evaluation of the gradient expansion, for-
mally expressed by the exponential operator exp(−∂�∂τ /2) in
Eq. (46). The exact result is recovered by replacement of the
expression

e−∂�∂τ /2 ε(t − τ ) − ε(t )

2�

∣∣∣∣
τ=0

→
∫ ∞

0
dτ e−2�τ [ε(t − τ ) − ε(t )]. (B1)

Let us consider to apply the saddle-point (thimble) method
to the τ integral. The saddle point must satisfy

−2� + ∂tε(t − τ )

ε(t ) − ε(t − τ )
= 0. (B2)

When τ is so small that we can approximate the denomina-
tor by τ∂tε(t − τ ), we obtain τ = 1/2�, which recovers the
result of the gradient expansion at the first order.

On the other hand, when ε(t ) = ε(−t ) holds, τ = 2t +
1/2� is also an approximate solution:

∂tε(t − (2t + 1/2�))
ε(t ) − ε(t − (2t + 1/2�))

= −∂tε(t + 1/2�)

ε(t ) − ε(t + 1/2�)
� 2�.

(B3)
While the contribution from this saddle point is negligible for
large t due to the factor of e−4�t , it can be relevant when t is
small, i.e., when the tunneling process occurs.

Let us see this contribution from the additional saddle point
using a specific example. For the Landau-Zener model, ε(t ) =
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FIG. 10. The position of the saddle point τs,± (red for + and blue
for −) as a function of t . Dashed lines are τ = 1/2�, 2t + 1/2�.

√
(vEt )2 + δ2, Eq. (B2) reads as

(t − τ )2 + t − τ

�
− t2 + 1

4�2

(t − τ )2

(t − τ )2 + (δ/vE )2
= 0.

(B4)
While this is a quartic equation, the last term can be neglected
regardless of the value of t − τ , if the adiabatic condition
1/� � δ/vE is satisfied. We obtain

τs,± � t + 1

2�
±

√
t2 + 1

4�2
(B5)

for the approximate position of the saddle point. As we show
in Fig. 10, τs,± is significantly deviated from τ = 1/2�, 2t +
1/2� around the gap minimum t = 0, in addition to the fact
that both of the two saddle points are relevant here. By apply-
ing the saddle-point method, we obtain

2�

∫ ∞

0
dτ e−2�τ [ε(t − τ ) − ε(t )] � E

2�
[v+(t ) + v−(t )�(t )],

(B6)
where

v±(t ) =
√

2π

e

∂ε

∂k

(√
(
√

4�2t2 + 1 ± 1)3

(2�)2
√

4�2t2 + 1

)
e−(2�t±√

4�2t2+1).

(B7)

We plot this result by a green line in Fig. 4, which accurately
follows the numerical result.

APPENDIX C: TUNNELING AMPLITUDE EVALUATED BY
THE LEFSCHETZ THIMBLE METHOD

In this Appendix, we explain how to calculate the asymp-
totic form of the tunneling amplitude a+(t ), Eq. (8), using the
Lefschetz thimble method [54].

1. Analytic continuation

First, we perform the analytic continuation of the integrand
to rewrite Eq. (8) as a contour integral in the complex plane.
We here introduce a complexified momentum k − Et1 → z1 ∈
C (and k − Et ′ → z′ ∈ C in the phase factor) as the variable
of integration.

We note that, in analytic continuation, we have to be careful
on the treatment of the Berry connection difference A++ −
A−− in the phase factor of Eq. (7), which is not gauge invariant

and not necessarily analytic. It is convenient to employ the
alternative expression (10) for the integrand W (t ) with the
shift vector R = A++ − A−− − ∂k arg A+− to circumvent this
problem. This expression is analytic with respect to k − Et1
in generic cases.

To avoid confusion, let us introduce Ã+−(z1) and R̃(z1) as
an analytic continuation of |A+−(k − Et1)| and R(k − Et1),
respectively. Then, Eq. (8) reads as

a+(t ) = iei arg A+−(0)
∫

C0

dz1Ã+−(z1)e−i
∫ z1

0 dz′(�/E+R̃), (C1)

where � := ε+ − ε−. C0 denotes the half-line on the real axis
z1 = x ∈ R, x : sgn(E ) × ∞ → k − Et .

There are exceptional cases where |A+−(k − Et1)| and
R(k − Et1) cannot be analytically continued. Such a sit-
uation happens when there exists a gauge choice such
that A++(k) = A−−(k) and A+−(k) ∈ R with A+−(∃ka) = 0
hold because the shift vector becomes R(k) = π

∑
ka

δ(k −
ka) (mod 2π ). Still, in such cases, the combined quantity

|A+−(k − Et1)|e−i
∫ k−Et1

0 dk′R = ±A+−(k − Et1) is analytic and
does not depend on a gauge choice (up to the phase factor
ei arg A+−(0)). Thus, as an exceptional treatment, we introduce
Ã+−(z1) as an analytic continuation of A+−(k − Et1) in the
above-mentioned gauge instead, and set R̃(z1) = 0.

2. Analytic property of 2 × 2 Hamiltonian

When the system is described by a 2 × 2 Hamiltonian, one
can express the Hamiltonian using a pseudospin σ as

H (k) = d0(k)I2×2 + d(k) · σ, (C2)

with σ being the Pauli matrices. We assume that d is an ana-
lytic function of k. Then, the analytically continued variables
are expressed as [18]

�(z1) = 2
√

d2, (C3)

Ã+−(z1) =
√

(d × ∂kd )2

2d2 , (C4)

R̃(z1) = (d × ∂kd ) · ∂2
k d

(d × ∂kd )2

√
d2. (C5)

Note that this expression includes the exceptional cases men-
tioned in the previous subsection, which correspond to the
situation where (d × ∂kd ) · ∂2

k d ≡ 0. Because R̃ is indetermi-
nate at k = ka with (d × ∂kd )2|k=ka = 0, R̃ can be a singular
function when the branch of

√
(d × ∂kd )2 for Ã+− is not

appropriately chosen.
As the gap-closing point z1 = kc with �(kc) = 0 plays a

key role below, let us see properties of the above variables
in the vicinity of z1 = kc. The gap-closing points appear in a
pairwise manner [i.e., �(kc) = �(k∗

c ) = 0] because d(z∗
1 ) =

[d(z1)]∗ holds for Hermitian Hamiltonian d(k ∈ R) ∈ R3.
For future convenience, we label the gap-closing points as
k(±1)

c , k(±2)
c , . . . with k(−n)

c := (k(n)
c )∗.

Since d2 is analytic, d2 should be expanded as d2 =
α

(n)
1 (z1 − k(n)

c ) + α
(n)
2 (z1 − k(n)

c )2 + · · · , with α
(n)
1 �= 0 for

generic cases. Namely, the gap-closing point behaves as a
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square-root branch point

�(z1) ∼ 2
√

α
(n)
1 (z1 − k(n)

c ). (C6)

In a similar way, we assume that (∂kd )2 = β
(n)
0 + β

(n)
1 (z1 −

k(n)
c ) + · · · and (d × ∂kd ) · ∂2

k d = η
(n)
0 + η

(n)
1 (z1 − k(n)

c ) + · · ·
with η

(n)
0 �= 0. Then, we obtain

(d × ∂kd )2 = d2(∂kd )2 − 1

4
(∂kd2)2 (C7)

= −1

4
α

(n)2
1 + α

(n)
1

(
β

(n)
0 − α

(n)
2

)(
z1 − k(n)

c

) + · · · ,

(C8)

which leads to

Ã+−(z1) ∼ ζnsgn(Imk(n)
c )

4i(z1 − k(n)
c )

, (C9)

R̃(z1) ∼ − 4η
(n)
0

α
(n)3/2
1

√
z1 − k(n)

c (C10)

as leading-order expressions. ζn = ζ−n = ±1 arises from the
multivaluedness of

√
(d × ∂kd )2.

3. Saddle points

In order to apply the Lefschetz thimble method to the
evaluation of Eq. (C1), we need to identify the position of the
saddle point of f (z1) with a+(t ) = iei arg A+−(0)

∫
C0

dz1e f (z1 ).

The saddle point is given as the solution of ∂z1 f (z1) = 0, i.e.,
it satisfies [see Eq. (C1)]

∂

∂z1
ln Ã+−(z1) − i

�(z1)

E
− iR̃(z1) = 0. (C11)

For simplicity, we focus on R̃ = 0 cases here. Results for R̃ �=
0 can be recovered by replacing � by � + ER̃ in the final
expression (see Ref. [18] for details).

For now, we consider E > 0. Since the second term di-
verges in E → 0, the saddle-point approach the gap-closing
point kc. However, the first term also diverges in this
limit since

∂

∂z1
ln Ã+−(z1) ∼ − ∂

∂z1
ln(z1 − kc) = − 1

z1 − kc
(C12)

follows from Eq. (C9). Combined with Eq. (C6), the solutions
of Eq. (C11), z1 = ks, at the leading order of E are given as

k(n,m)
s − k(n)

c ∼
(

E2

4α
(n)
1

)1/3

e−π i+4π im/3 (C13)

with m = 0, 1, 2. Due to the branch point, arg(k(n,m)
s − k(n)

c )
is mod 4π here. We note that, in contrast to the gap-closing
point, z1 = (k(n,m)

s )∗ is not the saddle point.
Let us evaluate the integral along the thimble (steepest

descent) Jn,m associated with the saddle point z1 = k(n,m)
s .

Since f (z1) − f (k(n,m)
s ) ∈ R (z1 ∈ Jn,m) takes the maximal

value at z1 = k(n,m)
s , the integral can be approximated as∫

Jn,m

dz1e f (z1 ) ∼
∫
Jn,m

dz1e f (k(n,m)
s )+ f ′′(k(n,m)

s )(z1−k(n,m)
s )2/2 (C14)

known as Laplace’s method. Using

f ′′(k(n,m)
s ) ∼ 3

(
2α

(n)2
1

E4

)1/3

e−2π im/3, (C15)

we can parametrize the steepest descent around z1 = k(n,m)
s

as z1 − k(n,m)
s = (α(n)

1 )−1/3xe−iπ/2+4π im/3 with x ∈ R. Here,
the direction of the contour around the saddle point k(n,m)

s
is counterclockwise seen from the gap-closing point k(n)

c .
Combined with

e f (k(n,m)
s ) ∼ iζnsgn(Imk(n)

c )

(
e2α

(n)
1

16E2

)1/3

e−4π im/3e−i
∫ k(n)

c
0 dz′�/E ,

(C16)

we obtain the asymptotic form of the integral as∫
Jn,m

dz1e f (z1 ) ∼ ζnsgn(Imk(n)
c )

√
π

3

e2/3

2
e−i

∫ k(n)
c

0 dz′�/E .

(C17)

According to the exact result obtained by the DDP method
[30], the prefactor

√
π/3e2/3/2 = 0.9965 . . . should be re-

placed by unity when the higher-order terms of the adiabatic
perturbation theory are taken into account. Hereafter, we drop
this prefactor.

When E < 0, the position of the saddle point around k(n)
c

reads as

k(n,m)
s − k(n)

c ∼
( |E |2

4α
(n)
1

)1/3

eπ i−4π im/3, (C18)

which corresponds to (k(−n,m)
s )∗ in the E > 0 case. The ex-

pression for the integral coincides with Eq. (C17) (note that E
in the exponent becomes negative).

4. Tunneling amplitude

Let us apply the Lefschetz thimble method. Using
Cauchy’s integral theorem, we can deform the contour of the
integral C0 to a set of steepest descents [54,55]

C =
∑
n,m

Nn,mJn,m − �(t ), (C19)

where the sum of the contour is defined as
∫
�1±�2

:= ∫
�1

± ∫
�2

.
Here, �(t ) represents the steepest descent extending from
the end point of the original contour C0, i.e., z1 = k − Et .
The Morse index Nn,m = 〈C0,Kn,m〉 ∈ {−1, 0, 1} counts the
(oriented) number of intersection between the original contour
C0 and the steepest ascent Kn,m associated with k(n,m)

s . The
orientation is defined as 〈Jn,m,Kn′,m′ 〉 = δn,n′δm,m′ . Namely, if
we neglect the contribution from �(t ), we can rewrite Eq. (C1)
as a sum of Eq. (C17):

a+(t ) ∼ i
∑
n,m

Nn,mζnsgn(Imk(n)
c )e−i

∫ k(n)
c

0 dz′�/E+i arg A+−(k).

(C20)

The remaining task is to identify the Morse index Nn,m. As
the extension to the case of the multiple pairs of gap-closing
points is straightforward, here let us assume that Nn,m =
δn,1δm,0N1,0 holds for E > 0, and the thimble J1,0 passes
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through z1 = k − Et (1)
g , i.e., the momentum at t1 = t (1)

g . With-
out calculating the steepest descent directly, whether the latter
assumption is consistent can be verified by Re f (k(1,0)

s ) <

Re f (k − Et (1)
g ), which must hold since they are on the same

steepest ascent K1,0. The position of z1 = k − Et (1)
g can also

be identified by comparing Im f . Note that, while z1 = k −
Et (1)

g coincides with the gap minimum for the Landau-Zener
model, it is not necessarily the case for generic models [e.g.,
Eq. (78)]. In particular, tg can be a function of E .

As the steepest ascent K1,0 has an intersection with C0

when t > t (1)
g (as z1 = x ∈ [k − Et,+∞) for z1 ∈ C0), the

Morse index is given as

N1,0 = −sgn
(
Imk(1)

c

)
�

(
t − t (1)

g

)
. (C21)

Here, the sign factor arises because C0 is clockwise (counter-
clockwise) seen from the gap-closing point k(1)

c in the upper
(lower) half-plane.

When E < 0, Nn,m = δn,−1δm,0N−1,0 should hold since

−i
∫ k(−n)

c

0 dz′�/E = [−i
∫ k(n)

c

0 dz′�/|E |]∗. Now, the original
contour is C0 = (−∞, k − Et], and is counterclockwise
(clockwise) seen from k(−1)

c on the upper (lower) half-plane.
Namely,

N−1,0 = sgn
(
Imk(−1)

c

)
�

(
t − t (1)

g

)
. (C22)

We can summarize the above results as

a+(t ) ∼ −iζ1sgn(E )
√

P0�
(
t − t (1)

g

)
× e−iRe

∫ k(1)
c

0 dz′(�/E+R̃)+i arg A+−(0), (C23)

where

P0 = e2Im
∫ k(1)

c
0 dz′[�/|E |+sgn(E )R̃] (C24)

is the tunneling probability.
When there is only one pair of the gap-closing points (z =

k(±1)
c ), we can set t (1)

g = 0 by choosing k and A+−(0) such
that the asymptotic form of the tunneling amplitude is real:
a+(t ) ∼ √

P0�(t ). This expression is used in the main text

for simplicity. We note that in such a case the interband matrix
element W (t ) reads as

W (t ) = iζ1|E ||A+−(k − Et )|e−i Re
∫ k−Et

k(1)
c

dz′(�/E+R̃)
, (C25)

which is used for the evaluation of the electric current in
Sec. IV A (ζ1 = 1 is assumed in the main text).

APPENDIX D: EVALUATION OF THE TIME-DIFFERENCE
FACTOR IN THE GRADIENT EXPANSION

In the evaluation of e−∂s∂τ −∂s′ ∂τ ′ I (s, s′) with t > t ′, we have
to deal with 〈T (t, t ′)| := e−∂s∂τ e−s(t−t ′ )〈ψα,k (t, τ )|F (s) with
s = � + iεα (t ), τ = 0, and an arbitrary function F (s). As we
have mentioned in the main text, e−s(t−t ′ ) acts as a time-
translation operator as

〈T (t, t ′)| = e−s(t−t ′ )e−∂s∂τ e(t−t ′ )∂τ 〈ψα,k (t, τ )|F (s) (D1)

= e−s(t−t ′ )e−∂s∂τ 〈ψα,k (t, τ + t − t ′)|F (s). (D2)

As τ + t − t ′ is no longer small, we need to shift the origin
time of the slow component. Using the definition of the slow
component (34), we obtain

〈T (t, t ′)| = e−s(t−t ′ )e−∂s∂τ eiεα (t )(τ+t−t ′ )−iεα (t ′ )τ 〈ψα,k (t ′, τ )|F (s)

(D3)

= e−�(t−t ′ )e−∂s∂τ e−i[εα (t )−εα (t ′ )]∂s〈ψα,k (t ′, τ )|F (s), (D4)

which can be rewritten as 〈T (t, t ′)| = e−∂s∂τ

e−�(t−t ′ )〈ψα,k (t ′, τ )|F (s) with s = � + iεα (t ′), τ = 0. Using
this expression, we obtain [G<

ad(t, t ′)]αβ as

[G<
ad(t, t ′)]αβ = i2�e−�(t−t ′ )e−∂s∂τ −∂s′ ∂τ ′

× fD(−is)

s + s′ 〈ψα,k (t ′, τ )|ψβ,k (t ′, τ ′)〉, (D5)

evaluated at s = � + iεα (t ′), s′ = � − iεβ (t ′), τ = τ ′ = 0.
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