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Coexistence of antiferromagnetism and topological superconductivity
on the honeycomb lattice Hubbard model
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Motivated by the recent numerical simulations for doped t-J model on the honeycomb lattice, we study
superconductivity of singlet and triplet pairing on the honeycomb lattice Hubbard model. We show that a
superconducting state with coexisting spin-singlet and spin-triplet pairings is induced by the antiferromagnetic
order near half filling. The superconducting state we obtain has a topological phase transition that separates a
topologically trivial state and a nontrivial state with Chern number two. Possible experimental realization of such
a topological superconductivity is also discussed.
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I. INTRODUCTION

Antiferromagnetism and superconductivity are two key
phenomena that appear in high temperature superconductors
such as cuprates and iron pnictides [1–12]. In these systems,
interaction creates strong magnetic correlations between elec-
trons and leads to a Mott insulator with antiferromagnetic
(AFM) order for undoped cuprates and a bad metal with spin
density wave (SDW) order for undoped iron pnictides. Upon
doping, the magnetic order disappears and superconductiv-
ity (SC) takes place. There have been many discussions on
the roles played by these two different orders in the phase
diagram. On one hand, it has been argued that magnetic
fluctuations play an essential role for the mechanism of high
temperature superconductivity, especially in a class of theory
based on the novel concept of spin-charge separation and RVB
scenario [1,2,4,13], where the metastable spin liquid state
(which has a short-range AFM order and is energetically close
to the AFM state) naturally leads to SC order upon doping.
On the other hand, the concept of quantum criticality suggests
that the AFM order or the SDW order is a competing order
that suppresses SC order [3,14–19]. Although the strongly
coupling pictures seem to be very elegant and attractive, so
far there is no controlled way to perform microscopic calcu-
lations starting from realistic models, e.g., Hubbard model
with strong repulsive interactions. Therefore, to understand
the interplay between AFM order and SC order is still an
open question and it plays a crucial role for understanding the
underlying physics in these systems.

In this paper, we propose an effective Ginzburg-Landau
theory to study the interplay between AFM order and SC order
in the honeycomb lattice Hubbard model, which has been in-
tensively studied recently. At half filling, antiferromagnetism
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in the undoped honeycomb lattice has been studied using
quantum Monte Carlo and other analytical methods [20–22].
In these studies an AFM phase is found above a critical onsite
repulsion Uc. Upon doping, SC order has been found in the
doped model using various methods [23–27], where different
pairing symmetries have been found, including spin-singlet
s-wave, d + id-wave pairing and spin-triplet p-wave, f -wave
pairing.

In a recent Grassmann tensor product state (GTPS) nu-
merical study of the honeycomb lattice t-J model [28], a
phase with coexisting AFM and SC orders has been found
at low doping levels. Particularly, the superconducting state
that coexists with AFM order has both d + id spin-singlet and
p + ip spin-triplet pairings. However, the GTPS numerical
study could not tell us whether the d + id/p + ip SC state is
topologically trivial or nontrivial, since the numerical results
cannot distinguish strong pairing and weak pairing cases. We
find that the proposed Ginzburg-Landau theory can naturally
explain such a result based on the trilinear term which nat-
urally couples AFM, d + id spin-singlet pairing, and p + ip
spin-triplet pairing. Moreover, the proposed trilinear term also
suggests a topological phase transition that separates a topo-
logically trivial state and a nontrivial state with Chern number
two. Although the microscopical origin of such a trilinear term
is still unclear, we believe that it serves as a starting point
for honeycomb lattice t-J and has the potential to reveal the
key mechanism for the emergence of SC order in honeycomb
lattice t-J and Hubbard models.

In Sec. II, we study the AFM order in the honeycomb
lattice Hubbard model using mean field theory. At half fill-
ing, the band structure has two Dirac cones, and the onsite
Coulomb repulsion favors a commensurate AFM order. Due
to the vanishing density of states of the Dirac cones, a finite
interaction strength is required to open an AFM gap on the
Dirac cones. At finite doping, the Dirac points grow into
small pocketlike Fermi surfaces. We first calculated the mag-
netic susceptibility and show that the magnetic order is still
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commensurate. We then calculated the phase diagram of the
AFM phase in mean field approximation. A highlight of the
phase diagram is that at finite doping the AFM order is
suppressed at low temperature due to the fact that the com-
mensurate order does not gap the Fermi surface, and at large
enough doping the system reenters a paramagnetic state at
low temperature while there is an AFM phase at intermediate
temperatures. In Sec. III we study the coexistence of AFM
order and SC order using Ginzburg-Landau theory. We first
show that because of the symmetry of the honeycomb lattice,
a spin-singlet pairing and a spin-triplet pairing actually has
the same lattice symmetry transformation. Consequently the
three order parameters of AFM and spin-singlet and triplet SC
can together form a trilinear coupling term in the low energy
effective Hamiltonian. Therefore when there is a coexistence
of AFM and SC orders, the pairing naturally has both spin-
singlet and spin-triplet pairings. Moreover, in the presence of
an AFM order, the trilinear term becomes a quadratic coupling
between two SC order parameters and therefore the AFM
order enhances SC order. In Sec. IV we discuss the topolog-
ical classification of the three-order coexisting state. We first
identify a possible topological phase transition point where
the quasiparticle gap vanishes on one Dirac node. Then by cal-
culating the change of Berry phase connection near the nodal
point across the phase transition, we conclude that the Chern
number of the SC state indeed changes across the transition
point and it separates two topologically different SC states,
which are topologically trivial and nontrivial, respectively.

II. ANTIFERROMAGNETIC ORDER

In this section we study the AFM order in the honeycomb
lattice Hubbard model using mean field approximation. We
start with the following model,

H = −t
∑
〈i j〉α

(c†
iαc jα + H.c.) + U

∑
i

ni↑ni↓. (1)

The first term in the above Hamiltonian can be diagonal-
ized in Fourier space as the following,

Ht = −t
∑
kα

c̄†
kα

(
0 ξ ∗

k
ξk 0

)
c̄kα, (2)

where c̄kα = (cAkα cBkα )T represents electron operators on
two sites A and B in a unit cell (see Fig. 1), and α =↑,↓ de-
notes the electron spin. The function ξk = 1 + eik1 + eik2 , and
ki = k · ai is the ith component of the momentum with respect
to the two primitive translation vector G1,2 of the triangular
lattice, as shown in Fig. 1. (Here, the superscript T denotes
matrix transpose). It is well known that this represents a band
structure with two Dirac cones located at ±K = ±( 2π

3 ,− 2π
3 )

(the momentum is given in the reciprocal basis of G1,2).
The second term provides an onsite Coulomb repulsion and
when U is much greater than t one can restrict oneself in
the single-occupied subspace and obtain a t-J model with
antiferromagnetic interaction on nearest neighbor bonds as
a low-energy effective model. Hence at large enough U the
system has an antiferromagnetic ground state.
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FIG. 1. Structure of honeycomb lattice. In the left panel the three
vectors ai show the direction of nearest neighbor bonds, and G1,2 are
two primitive vectors of the triangular Bravais lattice. In the right
panel the pairing symmetries at two Dirac points are shown, where
x = ei2π/3, and blue and green letters represent positive and negative
phases, respectively.

Here we study this AFM order in mean field approxima-
tion. We introduce the following SDW order parameter,

Mi = 〈Si〉. (3)

Plugging this into Eq. (1), the U term can be decomposed into
the following form in mean field approximation,

Uni↑ · ni↓ = U

2
ni − 2Mi · Si + M2

i

U
. (4)

Note that the first term merely shifts the chemical potential of
the system by U

2 and shall be ignored.
As discussed in Appendix, we consider a commensurate

order

Mi = (−)iM0ez, (5)

where (−)i equals to 1 on sublattice A and −1 on sublattice B.
With the mean field decomposition in Eq. (4), the Hamiltonian
can be written in momentum space as

HMFT =
∑
kα

c̄†
kα

(−μ + αM0 −tξ ∗
k−tξk −μ − αM0

)
c̄kα + N

U
M2

0 .

(6)
Using the Hamiltonian described in Eq. (6), we plot the

mean field phase diagram through numerically minimizing the
Hamiltonian with respect to the AFM order parameter Mz at
a fixed doping x. Results of Mz as a function of temperature
at different doping levels are plotted in Fig. 2, and the phase
diagram determined from this self-consistent calculation is
plotted in Fig. 3.

At zero doping, the Mz curve has a typical parabolic
shape, showing a paramagnetic high temperature phase and
an antiferromagnetic low temperature phase separated by a
continuous phase transition. At finite doping, the AFM order
is generally suppressed as the commensurate order cannot
gap the Fermi surface. The suppression is stronger at low
temperature and weaker at high temperature, since at high
temperature the Fermi surface is not quite clear when T � TF .
At doping levels x = 0.02 and x = 0.025, the magnetic order
is completely suppressed at low temperatures and the system
reenters the paramagnetic phase at a lower critical temper-
ature. For these two dopings, the antiferromagnetic phase
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FIG. 2. AFM order parameter as a function of temperature at
different doping levels. The plot was calculated with U = 3t . Both
T and Mz axes are in units of t .

only exists between two critical temperatures. At the doping
level x = 0.0256, the antiferromagnetic phase disappears as
the two critical temperatures merge. Of course, according to
the Mermin-Wagner theorem, the AFM order will be killed
by quantum fluctuation at finite temperature for strictly 2D
systems. However, for realistic material, the interlayer cou-
pling will always stabilize AFM order at finite temperature.
Therefore, the above phase diagram is still reasonable for
realistic systems and can be improved by considering both
quantum fluctuations and interlayer couplings.

III. COEXISTENCE OF THREE ORDERS

In the previous section, we see that the Hubbard model on
the honeycomb lattice develops commensurate AFM order at

AFM

0

0.1

0.2

0.3

T

0 0.01 0.02 0.03
x

PM

FIG. 3. Mean field phase diagram of the Hubbard model. The
solid line is where the AFM order parameter Mz vanishes, and it
separates the AFM phase and the paramagnetic (PM) phase. The
dashed line is where Mz = μ, and it separates the two supercon-
ducting phases with different topological classifications in the weak
coupling limit. This is discussed in Sec. IV.
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(a) Spin-singlet pairing.

(b) Spin-triplet pairing.

FIG. 4. Spin-singlet and spin-triplet pairing symmetry. The com-
plex pairing amplitudes are noted along the bonds, where x = ei2π/3.

zero and small dopings. In this section, we argue that this
AFM order will induce superconducting order with mixed
singlet and triplet pairings.

One interesting feature observed in the numerical study
of Ref. [28] is that the superconducting state has both spin-
singlet and spin-triplet pairings. In a lattice with inversion
symmetry, singlet and triplet pairing order parameters have
even and odd parity under inversion symmetry operation,
respectively, and therefore do not mix. However, the honey-
comb lattice does not have inversion symmetry and therefore
in general allows the mixing of singlet and triplet pairing
order parameters. Both the singlet and triplet pairing order
parameters found in the aforementioned numerical study have
a 120-degree spatial pattern: The phase on the bonds of the
honeycomb lattice rotates by 120 degrees around the center
of each hexagon, as shown in Fig. 4. The singlet pairing
symmetry is the same as the d + id pairing obtained in other
research [25,29].

The same spatial pattern of the two pairing symmetries
implies the mixing of spin-singlet and spin-triplet pairing in
the presence of AFM order. Since the spin-singlet and spin-
triplet pairings have the same spatial pattern, they transform
in the same way under threefold rotation. Therefore it is
easy to check that the following combination of the three
order parameters is invariant under all symmetry transforma-
tions including spin rotation, time reversal lattice symmetry
transformations, and electromagnetic U(1) gauge symmetry
transformation,

H3 = λ3M · �∗
s �t + H.c., (7)

and therefore is allowed to appear in the low-energy effective
Hamiltonian of the system. In Eq. (7) �s and �t denote
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the superconducting order parameter of spin-singlet and spin-
triplet pairing, respectively, where the latter is a spin-1 vector.
The presence of this trilinear term implies that once two of
the three order parameters become nonzero, the third one
will be automatically induced, as the symmetry that the third
order breaks has already been broken by the other two orders.
Therefore in the honeycomb lattice if there is a coexisting state
of AFM and SC, the SC order parameter naturally contains
both spin-singlet and spin-triplet components.

Moreover, the trilinear term also implies that the presence
of AFM order helps the formation of SC order. In an AFM
state, one can replace the M order parameter by its expectation
value and the trilinear term in Eq. (7) becomes a quadratic
term that couples the two SC order parameters �s and �t . The
sign of the trilinear term will determine the relative orientation
of the AFM order parameter and the d-vector of the triplet
pairing, but the resulting quadratic term always favors SC
ordering. In the rest of this section we study this effect using
a concrete model.

At mean field level, the onsite repulsive interaction in the
Hubbard model cannot be decomposed in the superconducting
channel. Therefore a naive mean field analysis of the Hubbard
model does not reveal a superconducting order. However, we
expect that in the Mott insulating phase the onsite repulsive in-
teraction introduces a nearest-neighbor Heisenberg interaction
through second-order virtual processes, and this interaction
can lead to SC order. Hence in this section we only calculate
the susceptibility of the superconducting operator from the
kinetic energy. Once the susceptibility diverges as T goes
to zero, a superconducting order will raise once we add the
appropriate interaction.

Our goal is to study the quadratic terms of the supercon-
ducting order parameter in the Hamiltonian,

Hquad = 1
2λab�a�b, (8)

where a, b = s, t stands for singlet and triplet pairings, respec-
tively. Here, we only consider the z component of the triplet
pairing, and use �t to denote �z

t , since we assume the magne-
tization is in the z direction, which only couples to �z

t through
the trilinear term in Eq. (7). To study the superconducting

order induced by antiferromagnetism, we assume that there
is an AFM order parameter calculated self-consistently from
the mean field Hamiltonian and study the coupling constant λ

in Eq. (8) diagrammatically. We use only the kinetic energy
term in Eq. (4) and add the coupling between the SC order
parameters and the electrons,

H =
∑
kα

c̄†
kα

Tkα c̄kα + 2

3
�∗

s

∑
k

c̄T
k↑�s

k c̄−k↓

+ 2

3
�∗

t

∑
k

c̄T
k↑�t

k c̄−k↓ + H.c., (9)

where c̄kα = (cAkα, cBkα )T , and the matrices Tk and �s,t are
defined as the following,

Tkα =
(−μ + αMz −tξk

−tξ ∗
k −μ − αMz

)
, �s,t

k =
(

0 γk

±γ−k 0

)
,

(10)

where γk = 1 + e−i(k1+2π/3) + e−i(k2+4π/3). We notice that
�s(−k) = �s(k)T , and �t (−k) = −�t (k)T . Thus, �s,t cou-
ples to electron pairings ck↑c−k↓ ∓ c−k↑ck↓, respectively,
consistent with the singlet and triplet pairing symmetries. As
we discussed before, here we only consider the z component
of the vector �t , which couples to electron operators in the
following general form, �t · ckαiσ y

βγ σγ δc−kδ . Therefore, the z
component of �t couples to the symmetric pairing channel
ck↑c−k↓ + c−k↑ck↓.

From this effective Hamiltonian, the coefficient λ can be
calculated as following,

λab = − 1

βV

∑
ωn

∑
k

tr

×
[

2

3
�a

k G↑(k, iωn)
2

3

(
�b

k

)†
G↓(−k,−iωn)

]
, (11)

where the Green’s function Gα (k, iωn) is derived from the first
term in Eq. (9),

Gα (k, iωn) = (iωn − Tkα )−1. (12)

Plugging Eq. (12) into Eq. (11), we get the following result
after some manipulations,

λst = −16

9
μMz 1

βV

∑
k,ωn

|γk|2[
(iωn + μ)2 − E2

k

][
(−iωn + μ)2 − E2

k

] , (13)

λss,tt = 4

9

1

βV

∑
k,ωn

(|γk|2+|γ−k|2)
(
ω2

n+μ2+(Mz )2
) ± 2γ ∗

k γ−kt2|ξk|2[
(iωn+μ)2 − E2

k

][
(iωn − μ)2 − E2

k

] , (14)

where Ek =
√

(Mz )2 + |ξk|2 is the quasiparticle energy. Now we can evaluate the frequency summation and get

λst = 16

9
μMz

∫
d2k

(2π )2
|γk|2

[
1

8μEk (Ek + μ)
(2nF (Ek + μ) − 1) − 1

8μEk (Ek − μ)
(2nF (Ek − μ) − 1)

]
, (15)

where nF (z) = (eβz + 1)−1 is the Fermi occupation number, and

λss,tt = 4

9

∫
d2k

(2π )2

[
2μEk (|γk|2 + |γ−k|2) + |ξk|2|γk ± γ−k|2

8μEk (Ek + μ)
(2nF (Ek + μ) − 1)

− −2μEk (|γk|2 + |γ−k|2) + |ξk|2|γk ± γ−k|2
8μEk (Ek − μ)

(2nF (Ek − μ) − 1)
]
. (16)
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FIG. 5. Plot of λss, λtt , and λst . The system is at doping x = 0.05.

Now we show some plots of λ calculated from Eqs. (15)
and (16). In Fig. 5 we show λss, λtt , and λst at doping x = 0.05
with and without a magnetic gap. In the plot we see that
without magnetic gap, λss and λtt (black diamonds and red
crosses) are flat at high temperatures and only diverge at
T � TF . Also without a magnetic order λst = 0 (this is not
shown in the plot, but we know this because a nonvanishing
λst in the absence of magnetic order would break spin rotation
symmetry). Hence without magnetic order, the system is go-
ing superconducting only when it is cooled down below Fermi
temperature. With magnetic gap, however, λss, λtt , and λst

(blue squares, yellow crosses, and green circles) all diverge in
a similar manner at much higher temperature, showing a ten-
dency towards SC order at temperature even higher than the
Fermi temperature. We notice that, in addition to the suscep-
tibility, the interaction strength also affects the SC transition
temperature. Here, we assume that the interaction strength,
arising from virtual antiferromagnetic spin exchanges in the
limit of U 	 t , does not have a strong dependence on doping.
Therefore, the interaction strength can be treated as a constant
across the antiferromagnetic transition point. Comparing to
the case without magnetic order, we conclude that this SC
order is induced by the AFM order.

Then we show some plots of λst calculated from Eq. (15)
with magnetic order calculated self-consistently. In Figs. 6
and 7 we plot λst as a function of temperature at certain doping
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FIG. 6. Plot of λst as a function of temperature at doping x = 0.02.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.05 0.1 0.15 0.2 0.25

T

Mz

λ

FIG. 7. Plot of λst as a function of temperature at doping
x = 0.025.

levels. The calculation is based on the mean field result of Mz

shown in Fig. 2. At x = 0.02, in the antiferromagnetic phase
λ increases as temperature drops and eventually diverges as
T goes to zero. At x = 0.025, λ also increases as temperature
drops when first entering the antiferromagnetic phase, but λ

eventually drops to zero as the magnetic order disappears at
lower temperature.

In summary, in this section we see that on the honeycomb
lattice, a trilinear term that couples the AFM order and two SC
orders of different pairing symmetries is allowed by symmetry
and in general exists in the effective Hamiltonian. This term
induces SC order in the AFM phase. This argument qualita-
tively explains the three-order coexisting phase observed in
the numerical study [28].

IV. TOPOLOGICAL PHASE TRANSITION

In this section we study the topological classification of
the coexisting order phase discussed in Sec. III. This phase
has both superconducting and AFM orders, and therefore
it has neither time reversal nor U(1) charge symmetry and
such systems in two dimensions are classified by an in-
teger topological invariant [30], which can be calculated
from the Chern number of the Bogolyubov-de Gennes (BdG)
Hamiltonian [31].

One interesting feature of the coexisting order state is that
it can be either topologically trivial or nontrivial in different
parameter ranges, and there is a topological phase transition
separating the two regimes. We start with identifying this
topological phase transition in the phase diagram. Analogous
to topological insulators, topological superconductors have
gapped fermionic quasiparticle excitations described by a
gapped BdG Hamiltonian, and it cannot be smoothly tuned
to a topologically trivial state without closing the gap of
quasiparticle excitations or the superconducting gap. Hence
a necessary condition of a topological phase transition is the
closing of the quasiparticle gap.

Without losing generality, in this section we assume the SC
pairing is in the weak coupling limit, or the SC gap is much
smaller than the AFM gap. In this limit, we first study the
AFM state using mean field theory as in Sec. II and obtain
the band structure with a AFM mean field gap Mz. Secondly,
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as discussed in Sec. III, the AFM order induces a SC order
with coexisting spin-singlet and spin-triplet pairings. Here
to discuss the topological classifications and the topological
phase transition, we only consider a weak SC pairing on top
of the mean field band structure of the AFM state and ignore
the feedback of the SC order on the AFM order parameter. For
superconductors in the weak coupling limit, their topological
classification is determined by the normal state band structure
and pairing symmetry. In our case, the topological classifi-
cation of superconducting states with coexisting spin-singlet
and spin-triplet pairing symmetries is determined by the mean
field band structure of the AFM state.

In the coexisting order phase, the quasiparticle gap indeed
closes at a particular point in the phase diagram, because the
spin-singlet and spin-triplet superconducting order parameters
have nodes at one of the two Dirac cones. From the form
of the gap function in Eq. (10) we can see that the gap
functions take the following form at the two Dirac points
k = ±K ,

�s,t
K =

(
0 0

±1 0

)
, �s,t

−K =
(

0 1
0 0

)
. (17)

This means that in both pairing symmetries, the A sublattice
state at K is paired up with the B sublattice state at −K ,
while the B sublattice state at K is not paired up with the

A sublattice state at −K . It can be simply understood from
the Bloch wave functions: As shown in Fig. 4, the AK -B−K

pairing immediately leads to the 120 degree pattern, whereas
the BK -A−k pairing leads to the −120 degree pattern. Hence
the superconducting gap function vanishes at the latter point
if we take the 120 degree pairing pattern. When the SC or-
der coexists with the AFM order, the total quasiparticle gap
is the sum of the SC gap and AFM gap. Consequently the
quasiparticle gap vanishes if the AFM gap vanishes at the
Dirac nodes, which happens when the Fermi level touches
the bottom of the band in the AFM state, or μ = Mz as shown
in Eq. (6).

Next, we argue that the superconducting state indeed goes
through a topological phase transition when the gap opens
a node at μ = Mz. At the transition point, the gap function
vanishes for pairing between the A sublattice state at K and
B sublattice state at −K , while other states remain gapped.
Hence across the transition point the change in the Chern
number comes from the change of the Berry curvature of the
A sublattice states near K and B sublattice states at −K . To
calculate this change we can use a simplified model of these
states. Considering only the spin-up states of the A sublattice
near K and spin-down states of B sublattice near −K , we
can expand the mean field Hamiltonian in Eq. (9) and get the
following effective two-band BdG Hamiltonian,

Heff = (c†
δkA↑ cδkB↓)

( −μ + Mz + tδk2 (�s + �t )(δkx + iδky)

(�s + �t )(δkx − iδky) μ − Mz − tδk2

)(
cδkA↑

c†
δkB↓

)
, (18)

where δk = k − K is the momentum measured from the Dirac
point K , and δkx and δky are two orthogonal components of δk.
The Chern number of this simplified BdG Hamiltonian is cal-
culated in Ref. [31], and it is topologically trivial if μ < Mz,
and it has a nontrivial Chern number of two if μ > Mz. From
this simplified model we conclude that at the transition point
of μ = Mz, the total Chern number of the system changes by
two, and therefore it is indeed a topological phase transition
separating two different superconducting states with different
topological classifications. The change in Chern number can
be obtained from an effective model near the nodal point,
but the total Chern number of the complete BdG Hamiltonian
can only be determined by integrating over the full Brillouin
zone and summing over all bands. However, using a simple
argument we can see that the state of μ < Mz is indeed topo-
logically trivial with Chern number zero, because one can
smoothly connect this state to vacuum state but sending Mz

to infinite without closing the quasiparticle gap. Therefore the
superconducting state at the other side of the transition, with
μ > Mz, must be a topologically nontrivial state with Chern
number equal to two. This result can be checked by calculat-
ing the Chern number using the full mean field Hamiltonian
in Eq. (9).

In the weak coupling limit, the sign of μ − Mz can be
calculated self-consistently using the mean field theory de-
scribed in Sec. II as we ignore the feedback of SC order on
the AFM order. The phase boundary of the aforementioned
topological phase transition is plotted in Fig. 3 by a dashed

line. The region enclosed by the dashed line has μ < Mz and
the SC state is topologically trivial, and the region between
the dashed line and the solid line has μ > Mz and the SC state
is topologically nontrivial.

V. CONCLUSIONS

In this work we study the AFM and SC orders in the doped
Hubbard model on the honeycomb lattice. A phase diagram
of the AFM order is obtained by self-consistent mean field
calculation, and a commensurate AFM order is found at low
temperature and small dopings. Using symmetry analysis, we
show that a trilinear term that couples together AFM order and
both spin-singlet/spin-triplet SC orders is allowed by sym-
metry, and such a term implies that the AFM order induces
the two SC orders and gives rise to a phase with coexisting
AFM and SC orders with both pairing symmetries. At last, we
show that the three-order coexisting phase is separated by a
topological phase transition to a topologically trivial SC phase
and a topologically nontrivial SC phase with Chern number
equals to two.

Of course, it will be of great interest to examine the
proposed effective field theory in experiment. The re-
cently discovered spin 1/2 honeycomb lattice Mott-insulator
InV1/3Cu2/3O3 [32] would be an appealing candidate if it
could be doped experimentally. The recent ultracold Fermi gas
in the honeycomb optical lattice [33] is another way to realize
the honeycomb lattice t-J model.
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(a) Intersublattice susceptibility |χzz
AB |.

(b) Intrasublattice susceptibility χzz
AB .

FIG. 8. Inter- and intrasublattice susceptibility. The conducting-
band contribution shown by red curves is scaled differently from the
other curves: The former uses the scale on the right and the latter
uses the scale on the left.
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APPENDIX: COMMENSURABILITY
OF THE AFM ORDER

Here we study the commensurability of the antiferromag-
netic order in the system. In the large-U limit, superexchange
processes create an antiferromagnetic interaction between
nearest-neighbor spins. At half filling, the ground state of the
Heisenberg model with nearest-neighbor interaction is a com-
mensurate Néel order with antiparallel spins on two sublat-
tices. After doping, the AFM order may become incommen-
surate, as it does on a square lattice. In this section we study
this possibility through evaluating the spin susceptibility.
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FIG. 9. Total susceptibility |χ zz
AB| + χ zz

AB.

The peak momentum of the susceptibility will point out the
commensurability of the order.

We consider the following static spin susceptibility at a
finite wave vector Q, which is defined as

χ
i j
ab(Q, ω = 0) =

∫
dτ

∑
kk′

c̄†
k+Q(τ )σ i

⊗ μac̄k (τ )c̄†
k′−Q(0)σ j ⊗ μbc̄k′ (0), (A1)

where a, b = A or B denotes the two sublattices, and the
matrices μa are defined as

μA =
(

1 0
0 0

)
, μB =

(
0 0
0 1

)
. (A2)

Without losing generality, we consider χ zz, which can be
evaluated using Green’s function as following

χ zz
ab(Q) = 1

β

∑
ωn

∑
k

tr(Ḡ(k + Q,ωn)σ z ⊗ μaḠ(k,ωn)σ z ⊗ μb),

(A3)

where G is derived from the kinetic energy in Eq. (1),

Ḡ−1(k, ωn) = iωn −
( −μ −tξ ∗

k−tξk −μ

)
. (A4)
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FIG. 10. Quadratic term in |χ zz
AB|.
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First, we study the spin susceptibility between two sublat-
tices χ zz

AB. At zero temperature and assuming μ � 0, Eq. (A3)
becomes

χ zz
AB(Q)

= −
∑

k

ξ ∗
k+Qξk

2|ξk||ξk+Q|(|ξk| + |ξk+Q|)

−
∑

k

ξ ∗
k+Qξk[|ξk+Q|θ (μ − |ξk|) − |ξk|θ (μ − |ξk+Q|)]

2|ξk||ξk+Q|(|ξk| + |ξk+Q|)(|ξk| − |ξk+Q|) .

(A5)

Similarly for the susceptibility of the same sublattice, we get

χ zz
AA(Q) =

∑
k

1

2(|ξk| + |ξk+Q|)

+
∑

k

|ξk|θ (μ − |ξk|) − |ξk+Q|θ (μ − |ξk+Q|)
2(|ξk| + |ξk+Q|)(|ξk| − |ξk+Q|) .

(A6)

The susceptibility obtained in Eqs. (A5) and (A6) can
be separated into two terms: The first two terms in the two
equations come from the filled valence band, and the second
two terms come from the conducting band in which the Fermi
level sits. The contribution from the valence band does not
depend on doping and has a maximum at commensurate wave
vector, while the contribution from the conducting band has
a maximum at incommensurate wave vector which connects
the two sides of the Fermi surface. The intersublattice and
intrasublattice susceptibilities are plotted as a function of Q
in Fig. 8. As discussed before, the contribution from va-
lence band and conducting band has maxima at commensurate
and incommensurate wave vectors, respectively, but the total
susceptibility peaks at (0,0) for the intersublattice case, and
the intrasublattice susceptibility is almost level near (0,0)
but it is slightly higher at incommensurate position. When
added together, the total susceptibility favors commensurate
susceptibility, as shown in Fig. 9. In fact, this behavior is
observed at different values of μ, as Fig. 10 shows that χ zz

AB
has a maximum at Q = 0 for all values of μ. Because of
this result, we only consider commensurate AFM order in the
main text.
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