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Bloch-waves scattering theory is applied to photoemission from Mg(0001) up to photon energies of 320 eV.
The quality of various approximations to the photoemission final state is analyzed based on the Fourier
decomposition of the ab initio time-reversed scattering states. The relative importance of bulk and surface
photoeffect in a one-dimensional pseudopotential model and in a real crystal is studied. The crucial role of
the lateral umklapp scattering at high energies is revealed, and its implications for the stationary as well as
for the attosecond time-resolved photoemission are discussed. The fine structure of the photoemission intensity
distribution at high energies observed in earlier experiments is reproduced and explained.
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I. INTRODUCTION

Recent progress in soft x-ray angle-resolved photoemission
[1–4] has stimulated interest in the structure of photoelec-
tron final states at kinetic energies of several hundred eV.
An important experimental advantage of high energies is
the increased photoelectron mean free path [3,5], which has
the consequence that the reciprocal-space structure of the
outgoing wave normal to the surface becomes better pro-
nounced. Furthermore, with increasing energy the kinetic
energy starts dominating the Hamiltonian, and it is believed
that at sufficiently high energies the photoelectron motion
can be considered free-electron like [1,2,5–10]. At the same
time, illuminating evidence of non-free-electron-like behavior
of soft x-ray photoelectrons from Al(100) was presented by
Strocov [11]. Modern multiple-scattering theory is capable of
describing the outgoing photoelectron wave without resorting
to any simplifying assumptions about the high-energy wave
function. A comprehensive account of the state of the art in the
relativistic multiple-scattering theory of photoemission from
solids is given in the review articles [12,13] including the dis-
cussion of pump-probe excitations and effects of temperature
and disorder. The general conclusion is that whereas in the
low-energy regime below about 200 eV the electron dynamics
is dominated by strong multiple scattering, “with increasing
photon energy the final states tend to be more and more
free-electron like” [13]. However, clarity is still lacking as
to at which energies the transition to the free-electron regime
occurs for a given material and how to quantify the closeness
of the photoelectron final state to the plane wave.

A precise understanding of this issue is especially impor-
tant in the emerging field of attosecond spectroscopy [14],
where the subfemtosecond duration of the pump pulse implies
extreme ultraviolet frequencies. Owing to the overwhelm-
ing complexity of the transient photoemission, common

theoretical approaches either neglect the interaction of the
photoelectron with atomic cores or treat it with a weak
one-dimensional (1D) pseudopotential [15–17]. Although
limitations of this approximation for energies below 100 eV
are well understood, the question of how the structure of the
outgoing wave varies on a wide energy scale has not been
properly considered so far.

The present paper is an attempt to observe the evolution of
the photoelectron wave function in a real system over a wide
energy range of 320 eV and see whether it approaches a plane
wave. (In terms of angular momentum, this implies the signif-
icance of orbitals up to, at least, l = 10 in the wave-function
expansion in a sphere of 2-a.u. radius.) Magnesium is chosen
for this case study as an important object of the attosecond
streaking experiments [16–19] (owing to the efficient screen-
ing of the laser field in Mg). In addition, the recently measured
high-resolution stationary photoemission from Mg(0001) up
to h̄ω = 500 eV [19] presents a perfect example to analyze
from the point of view of plane-wave likeness and provides an
important verification of the theoretical conclusions.

The best way to assess the validity of an approximation is
to compare it with an exact calculation. The present analysis
is based on the ab initio one-step theory of photoemission
[20] implemented via augmented plane waves [21,22]. This
computational method employs a straightforward basis-set ex-
pansion of the scattering wave function, so the computational
cost scales rather unfavorably with energy, which has limited
this paper to h̄ω = 320 eV. However, it provides the unique
opportunity to consider the entire interval within the same
approach and to clearly see the trends. Owing to a relatively
weak atomic potential of Mg, the transfer to a quasifree mo-
tion is expected to occur at lower energies than for heavier
atoms, so the considered energy interval is representative of a
much wider range in other materials. Furthermore, Mg(0001)
is an excellent case to assess the performance of the 1D
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FIG. 1. Crystal potential profile V (z) of the Mg(0001) surface
(black lines with shading): (a) 1DCP [23] and (b) ab initio potential.
Energies of the valence-band (VB) minimum and of the surface state
are shown by the ticks on the alternative axes. The blue lines are the
density profile ρ(z) of the surface state. The ticks on the top edge
indicate the onset of the optical potential z = 0.

models: We will take advantage of the 1D Chulkov pseudopo-
tential (1DCP) [23], Fig. 1(a), which perfectly reproduces
the occupied A�A bands of Mg. Here, the one-step theory
is comparatively applied to a real crystal with a density-
functional-derived potential and to the 1DCP with the aim to
understand the role of atomic core scattering. The observed
behavior is traced to the Fourier expansion of the all-electron
wave functions of the scattering states and is discussed in
terms of the quality of the relevant observables.

The present results confirm that the assumption of a free-
electron motion at high energies is a reasonable starting point,
in the sense that a leading plane wave can be identified in
the Fourier expansion of the final state. At the same time, the
lattice scattering will be shown to be not negligible over the
whole energy range. It manifests itself in a deviation of the
k vector of the leading wave from the strictly free-electron
(SFE) dispersion and in the strong lateral-scattering effect on
the outgoing wave: �∗

LEED(r‖) �= const where LEED stands for
low-energy electron diffraction. The latter significantly modi-
fies the fine structure of the photoelectron spectra, and—what
is most important for the photoemission timing—it dramati-
cally affects the phases of the transition matrix elements.

The paper is organized as follows: Sec. II gives a brief
account of the computational methodology and setup. In
Sec. III, the high-energy band structure is discussed. A one-
step-theoretical analysis of resonant and nonresonant dipole
excitations are presented in Sec. IV. The plane-wave likeness
of the scattering states in Mg is discussed in Sec. V. The
implication of the wave function composition for the photo-
electron escape time are considered in Sec. VI followed by a
brief discussion in Sec. VII.

II. THEORY AND COMPUTATIONAL SETUP

Following the one-step theory [20], photoemission is
considered as a transition from the initial state ψ to a time-
reversed LEED state �∗

LEED. In the dipole approximation the
photocurrent is

I (E , h̄ω) =
√

E + h̄ω − EVAC|〈�∗
LEED|e · p|ψ〉|2, (1)

where E is the initial-state energy and p is the momentum
operator. We will consider only the special case when the
electric-field vector e is along the surface normal, so the
transition operator reduces to −ih̄d/dz, and the matrix ele-
ment is the scalar product of �∗

LEED(r) and ψ ′
z(r). The LEED

wave-function �LEED is a scattering solution for a plane wave
incident from +∞, and in the crystal half-space where the
potential can be considered periodic, it is a superposition of
Bloch eigenfunctions φ(k, r) with (generally) complex sur-
face normal projections k of the Bloch vectors. The latter are
referred to as the complex band structure (CBS) of the semi-
infinite bulk crystal, which here is obtained with the inverse
linear augmented plane-waves (LAPW)-k · p method [24].
The inelastic scattering of the outgoing electron is described
by the imaginary potential −iVi added to the Hamiltonian
in the crystal half-space z < 0, see Fig. 1. At sufficiently
high energies the surface potential can be approximated by
a steplike potential barrier, i.e., the periodic bulk potential is
assumed to hold right to the vacuum onset. Then the calcula-
tion of �LEED consists in matching its bulk φ(k, r) expansion
to a plane-wave expansion in the vacuum half-space [21]. At
lower energies this approximation becomes too rough, and the
actual shape of the potential at the surface should be taken
into account. In this case scattering wave function is obtained
with the variational embedding technique [22], in which the
surface barrier is constructed as the potential at the surface
of a repeated slab. Thereby, a realistic all-electron potential is
employed both in the bulk and at the surface. Exactly the same
method is applied to the 1DCP model (only pure plane waves
are used as basis functions instead of APWs).

In the LAPW method the space is divided into muffin-tin
(MT) spheres and interstitial, and the higher the energy, the
higher angular momenta l in the spheres must be considered.
By reducing the MT radii the l series can be cut off at a lower
lmax at the expense of increasing the number of APWs. For
the all-electron potential of Mg, to describe the energy range
from the VB to 320 eV the optimal radius was found to be
R = 2 a.u., which for the bulk crystal results in 833 APWs
for the hcp unit cell (RGmax = 11) and requires the extension
of the radial basis set [25] for orbitals up to l = 10. Finally,
the basis set comprised 1577 functions per two atoms.

The huge basis set makes the embedding method [22]
rather time consuming at high energies, so here it is used
only below 160 eV (a fragment of an eight-layer slab is
embedded). At higher energies, the simplified procedure that
assumes a steplike potential barrier between bulk and vacuum
is employed [21].

In the ab initio calculation, both for the initial and for the
final states of photoemission a self-consistent crystal potential
in the local density approximation (LDA) is used. The ini-
tial states are eigenfunctions of a finite slab: 197-a.u.-thick
supercell (32-layer slab) for the true crystal and 246-a.u.-
thick supercell for the 1DCP model. The respective potential
profiles are shown in Fig. 1. Both slabs are thick enough to
provide a reasonable approximation for the surface states, but
to accurately determine the decay length one must use the
true semi-infinite geometry. This is achieved with the em-
bedding technique [22] (for the application to surface states,
see Ref. [26]). The imaginary part of the wave vector for the
true crystal was found to be κ = 0.0086 a.u.−1, density decay
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length (2κ )−1 = 58 a.u. For 1DCP it was κ = 0.0178 a.u.−1

and (2κ )−1 = 27 a.u., see the blue curves in Fig. 1.
The present all-electron calculation is in good agreement

with the ab initio pseudopotential calculation of Ref. [27].
In particular, for the surface states, the density distribution
parallel to the surface is virtually isotropic. Also the VB wave
functions have quasi-1D character: in the Laue representation
ψ (r) = ∑

G‖ ψG‖ (z) exp(iG‖r‖) in terms of the surface recip-
rocal lattice vectors G‖ the G‖ = 0 component constitutes,
at least, 90%. However, as we will see in Sec. V, this does
not mean that the G‖ �= 0 components can be neglected in
photoemission: Indeed, in the Fourier decomposition of the
function ψ ′

z(r) the weight of the G‖ �= 0 contribution ranges
from 35% at the Fermi level to 90% at the VB bottom.

III. FOURIER ANALYSIS OF EIGENSTATES

Our aim is to understand what features of the true scattering
state that distinguish it from a free electron are most relevant
to the stationary photoemission, and how fast they disappear
at high energies.

In the crystal half-space the final state reads

�∗
LEED(r) =

∑

k∈CBS

∑

G‖g

�k
G‖g exp[i(k + g)z + iG‖r‖]. (2)

Here g = 2πn/c are the surface normal wave numbers. The
scattering wave function is a superposition of a discrete set
of the CBS partial waves φ(k, r), which are solutions of the
Schrödinger equation with a complex potential VB(r) − iVi

for a given (real) energy, where VB is the three-dimensional
(3D)-periodic potential of the bulk crystal and −iVi is the
spatially constant absorbing potential. In Fig. 2(a) CBS is
shown as the dispersion Re k(E ) for Vi = 0.5 eV. The partial
flux carried by a given wave [28,29] is indicated by the symbol
size. The strongest contributing waves are seen to be located
along the line E (k) = (h̄k)2/2m + V0, with m being the true
electron mass and the inner potential V0 = −9 eV [red circles
in Fig. 2(a)]. (All energies are relative to the Fermi level,
unless stated otherwise.) The deviation of the actual Bloch
vector k from the SFE value kSFE = √

2m(E − V0) is shown
in Fig. 2(b) for Vi = 0.5, 2, and 5 eV: For a weakly absorb-
ing potential the variations are on the order of ±0.1 a.u.−1.
They become smoother with increasing Vi, and the deviation
from the parabola stabilizes, but does not vanish, keeping
the signature of the elastic multiple scattering. For example,
around 300 eV the group velocity dE/dkSFE derived from
the parabolic fit is some 10% larger than the local dE/dk
(in accord with the observation of Ref. [30] for WSe2 where
below 90 eV the free-electron fit was found to systematically
overestimate the group velocity by 30%).

Alternatively to the complex-wave-vectors representation
(2), each G‖ term of �∗

LEED can be written as a Fourier inte-
gral

∫
FG‖ (q) exp(iqz)dq, where q is the wave number in the

surface normal direction. This provides a descriptive picture
of dipole transitions since −ih̄d/dz is diagonal in the q basis.
In Mg(0001), over the whole energy interval the q spectrum
is dominated by a single peak, see Fig. 2(c), with a nearly
free-electron dispersion shown in Fig. 2(b). The importance
of the resonant transitions (alias direct or vertical) depends
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FIG. 2. (a) Conducting CBS Re k(E ) of Mg(0001): The size of a
blue circle is proportional to the partial flux carried by the respective
Bloch wave. The red dotted line is a parabolic fit to the dispersion of
the leading Bloch wave. (b) Deviation of the true dispersion of the
leading Bloch wave from the parabolic fit. In graphs (a) and (b) ar-
rows indicate the final states responsible for the spectral structures in
Fig. 5(b). (c) Fourier spectra of the G‖ = 0 component of �∗

LEED for
E = 119.5 eV (black) and 247.0 eV (red). (d) Fourier spectrum of
the G‖ = 0 component of the slab eigenfunction at E = −3.14 eV:
real crystal (blue) and 1DCP (red). The difference is highlighted by
shading. The inset shows a magnified spectrum around k+ + 2g. (e)
Occupied bulk band structure of Mg along A�A: ab initio calculation
(black lines) and 1DCP model (red dashed lines).

on the strength of the higher g harmonics of the final and the
initial state.

In a simple metal, the initial-state wave function suffi-
ciently far from the surface is a superposition of a Bloch-wave
k+ incident onto the surface and k− reflected into the interior
of the crystal, see Fig. 2(e). Apart from that, at the surface,
there is a contribution from an infinite number of the evanes-
cent waves, which become important for a sufficiently small
mean free path. Here, the initial states are represented by
slab eigenfunctions. Figure 2(d) compares a Fourier spectrum
of the state at k‖ = 0 and E = −3.14 eV by the ab initio
all-electron potential and by the 1DCP [23]. (To avoid the
ambiguity of representing the discrete spectrum on a dense set
of the supercell g numbers, the spectra are convoluted with a
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Lorentzian of 0.02 a.u.−1 FWHM). Because we are interested
in dipole transitions, shown are the spectra of the function
ψ ′

z. Although the dispersion of the lower VB along A�A in
the 1DCP and in the ab initio calculations are identical, see
Fig. 2(e), the higher harmonics of the pseudowave function are
an order of magnitude weaker, so at high energies the direct
transitions rapidly vanish. This was realized by the authors
of Ref. [16], who added repulsive spikes to the 1DCP of
Mg(0001) in order to enhance the higher harmonics.

IV. VOLUME AND SURFACE PHOTOEFFECT

Let us now apply the one-step theory of photoemission
to the 1D and 3D crystals and compare the normal emission
spectra in the extreme-ultraviolet range. The dependence of
the intensity on the photon energy h̄ω and initial energy E
is shown in Fig. 3(a) for the 1DCP and in Fig. 3(b) for the
real Mg(0001). For 1DCP the optical potential is Vi = 1 eV
(a typical value around 25 eV), and in the 3D calculation it is
Vi = 3 eV (an estimated average value in this energy interval).
In 1DCP, the parabolic dispersion of the direct-transition peak
persists up to h̄ω ≈ 50 eV, above which the resonant transi-
tions get exhausted, and the EDCs become structureless. The
ab initio I (E , ω) is qualitatively different with rich structure
and irregular dispersion—note the non-free-electron branch ξ

and the intensity drop α (their origin will be discussed in detail
in the next section, Fig. 5).

An important aspect, especially in the time-resolved spec-
troscopy, is how far from the surface the photoelectron
originates. This depends on the photoelectron escape depth
(eventually, on the inelastic-scattering rate expressed by the
optical potential Vi) and on the shape of the exciting field.
Let us exclude the latter factor and consider a homogeneous
electric field normal to the surface, so the perturbation op-
erator is −ih̄d/dz. It may be recast as the potential gradient
(i/ω)h̄V ′

z (r), which is a particularly transparent form for a

FIG. 3. Photocurrent distribution I (E , h̄ω) in the 1DCP model
(a) and in the full �∗

LEED calculation (b). Circles are experimental
energy distribution curve (EDC) maxima [31]. (EDCs are cross-
sections ω = const.)

0.0

1.0

J(
ω

) (
ar

b.
 u

ni
ts

)

0

2

4

6

20 30 40 50 60 70 80
photon energy (eV)

0

0.1

0.2

J(
ω

) (
ar

b.
 u

ni
ts

)

20 40 60 80 100 120 140 160
photon energy (eV)

0

2

4

6

Vi = 1 eV
Vi = 2 eV
Vi = 5 eV

VB 1D

(b) surface state 3D

)c(D3 BV

(d)

(a)

surface
state 1D

FIG. 4. Photoyield for three values of optical potential: Vi = 1,
2, and 5 eV, given by black, red, and blue lines, respectively. (a) and
(b): 1DCP [23]. (c) and (d): ab initio potential. (a) and (c): lower VB.
(b) and (d): surface state. Arrows in graph (c) indicate the energies at
which resonant transitions accidentally vanish.

semi-infinite jellium, where the only contribution to the matrix
element comes from the surface barrier. Historically [32], this
representation has been often drawn on to discriminate be-
tween the volume and the surface photoeffect [20,33]. (Not to
be confused with the surface photoeffect due to the dielectric
response [34], which is beyond the dipole approximation.) For
a realistic crystal potential, the most natural way to assess the
relative bulk and surface contributions to the photocurrent is to
consider the dependence of the photocurrent on the absorbing
potential Vi: A strong dependence on Vi implies a bulk origin,
and a weak one is a signature of the surface photoeffect. This
objective and transparent criterion was applied in Ref. [33] to
a Kronig-Penney model. Let us compare from this point of
view the real crystal and the 1DCP model.

Consider the photoyield J (ω) from the lower VB, i.e.,
the photocurrent summed over all the initial states. The J (ω)
spectrum is especially instructive because its fine structure is
not related to the direct-transition resonances: The k vectors
of the initial states span the whole surface-perpendicular 1D
Brillouin zone (BZ), so direct transitions occur at every ω.
(The VB-integrated emission is relevant to attosecond spec-
troscopies, where the spectral width of the exciting pulse is
comparable to the VB width.) Figures 4(a) and 4(c) show
the VB J (ω) for the 1D and 3D cases, respectively. For the
1DCP, below h̄ω = 45 eV J (ω) decreases with Vi as is typical
of direct transitions, and above 45 eV it becomes independent
of Vi because the direct transitions are exhausted due to the
deficiency of the higher g harmonics in the initial states [also
reflected in the structure of the intensity map in Fig. 3(a)]. By
contrast, in the 3D potential, the direct transitions dominate
over the whole spectral range, and on average they do not
weaken with increasing energy. In addition, the resonance
character (quantified by the sensitivity to Vi) varies non-
monotonically with energy, and at certain energies the bulk
contribution may accidentally vanish so that there only remain
transitions to rapidly decaying evanescent states. Naturally
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FIG. 5. Photocurrent distribution I (E , h̄ω) in Mg(0001) for Vi =
1 eV. (a) Strictly free-electron final state. Circles are experimental
EDC maxima [31]. (b) Single-plane-wave approximation with the
actual dispersion k(E ). (c) Final state as a full G‖ = 0 projected
�∗

LEED(r). (d) Full �∗
LEED(r). (e) Experimental spectrogram [19]. Cir-

cles are the same as in graph (a). Arrows indicate the structures due
to lattice scattering.

they correspond to intensity minima, indicated by arrows in
Fig. 4(c).

Figures 4(b) and 4(d) illustrate the different behavior of
the surface-state emission in the two models: In both systems
there are no direct transitions below the resonance energy
(46 eV for the 1DCP and 42 eV for the real crystal), but in
the 1DCP the nonresonant excitations are much stronger than
the resonant peak, whereas in the realistic model it is the other
way around. Furthermore, the width of the resonance has dif-
ferent origin in the two models. In the 1DCP it is determined
by the momentum broadening κ in the initial state. In the real

crystal, κ is two times smaller, but the emission resonance is
much wider, and it has a pronouncedly non-Lorentzian shape.
This is because its width is determined by the structure of
the final states (see also the discussion of the surface-state
emission from Al(100) in Ref. [26]).

Thus, the 1DCP considerably overestimates the role of the
nonresonant transitions in comparison to the realistic poten-
tial. To a certain extent this can be improved by using a harder
1D pseudopotential [16], however, the irregular oscillations
of the yield and of the surface sensitivity are related to the 3D
character of the final state as we will see in the next section.

V. APPROXIMATIONS TO THE FINAL STATE

In order to trace the fine structure of the intensity map
in Fig. 3(b) to the composition of the initial and final states
and to understand how detailed our knowledge of �∗

LEED(r)
needs to be, let us consider the following steps of successive
refinement of the final state: (i) a strictly free-electron solution
exp(ikSFEz) of the Hamiltonian p2/2m + V0, (ii) a single plane
wave exp(ikz) with the actual dispersion k(E ), (iii) a full
G‖ = 0 component of �∗

LEED(r), and finally (iv) the full 3D
�∗

LEED(r). To see if there is a trend towards simplification of
the scattering functions with energy, we will now consider a
wide region up to 320 eV, see Fig. 5.

The exp(ikSFEz) approximation is shown in Fig. 5(a). It is
physically similar to the 1DCP spectrogram in Fig. 3(a) in
that it gives a plain Fourier image of the G‖ = 0 component
of the initial states [11]—SFE is characterized by the absence
of a fine structure. In contrast to the 1DCP model, in real
Mg(0001) the resonant transitions to SFE states persist up
to high energies, reflecting the Fourier structure of the ini-
tial states. Note that while the lowermost ascending branch
perfectly agrees with the experiment [35], the next parabola
is considerably wider than the measured one, the descending
branch of the latter being much steeper than the ascending
branch.

For the SFE final states, the imaginary part of the
wave-vector k = k′ + ik′′ varies smoothly with energy: k′′ ≈
mVi/(h̄2k′). This is not the case for the Bloch vector(s) of
the true final state, which carr(y)ies the imprints of the band
gaps and irregularities, see Fig. 2(b). Combining the single-
plane-wave approximation with ab initio wave-numbers k(E )
already results in a rich fine structure in the spectrogram, see
Fig. 5(b). Most significant features are the opening of a gap
at h̄ω = 115 eV (denoted α) and the splitting of the surface
state peak at 264 eV. [The relevant final states are indicated
with arrows in Figs. 2(a) and 2(b).] Interestingly, using the
full 1D function instead of the leading wave only slightly
affects the spectrogram, see Fig. 5(c). Ultimately, the true 3D
�∗

LEED dramatically changes the spectrogram: High intensity
appears over the interval 140 to 190 eV, and a wide void
δ occurs around 240 eV, both features being in accord with
the experiment, Fig. 5(e). Note that from 140 to 190 eV the
photocurrent is due exclusively to the G‖ �= 0 harmonics, so
any 1D model will fail.

In addition, the lateral scattering gives rise to the steeply
dispersing structure ξ and to the intensity oscillations β and
γ . Also the h̄ω dependence of the surface-state emission de-
pends on the 3D structure of �∗

LEED: The third surface-state
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FIG. 6. Lateral Fourier analysis of the final-state wave function.
(a) Energy dependence of the G‖ �= 0 fraction of the absorbed flux
for Vi = 1, 3, and 5 eV. (b) Photon-energy dependence of the normal-
emission photoyield from the lower VB, see Fig. 2(e). (c) Photoyield
from the surface state. In graphs (b) and (c) the dotted curves show
the full photoyield, and the red lines show the G‖ = 0 contribution.

resonance moves from h̄ω = 264 eV (free-electron predic-
tion) to 255 eV and two weaker maxima appear at 177 and
199 eV.

The dramatic difference between the 1D approximation
[Fig. 5(c)] and the full 3D calculation [Fig. 5(d)] raises the
question of whether the lateral scattering weakens with in-
creasing the energy. Figure 6(a) shows the G‖ �= 0 fraction of
the transmitted (absorbed) flux, which is expressed by the in-
tegral over the crystal half-space T = (2Vi/h̄)

∫ |�∗
LEED(r)|2dr

[28,29]. At high energies, the G‖ �= 0 fraction shows neither
an increasing nor a decreasing trend and oscillates around
a constant level, which is the lower the larger the inelastic-
scattering rate Vi. The latter is known to grow increasingly
slower at high energies [30], so the 3D character of the final
state is expected to remain important over hundreds of eV. The
implications for the photoemission intensities are illustrated
in Figs. 6(b) and 6(c) by the photon energy dependence of
the photo-yield J (ω), i.e., the photocurrent integrated over
an initial-state band. For example, between 140 and 190 eV
the G‖ = 0 contribution to the matrix elements almost van-
ishes [cf. Figs. 5(c) and 5(d)], so the in-plane scattering is

TABLE I. Energies h̄ω (eV) of the surface-state emission reso-
nances in the experiments of Refs. [31]a and [19]b compared with
the SFE model and with the ab initio calculations for Vi = 1 and
3 eV. The Vi = 1 eV values correspond to Figs. 5(a) (SFE) and 5(d)
[full �∗

LEED(r)]. The values in the parentheses are the (more accurate)
embedding calculation, see Figs. 3(b). In the full-�∗

LEED(r) calcula-
tions the resonances are strongly asymmetric and several eV wide,
see Fig. 4(d). Because reported are maxima rather than centers of
gravity the variations of about 1 eV depending on Vi are insignificant.
However, the differences of about 10 eV are significant.

Experiment 43.0a 134.0b 262.0b

Vi = 1 eV full �∗
LEED 41.8 (41.6) 126.5 (126.5) 254.5

Vi = 3 eV full �∗
LEED 43.6 (42.2) 127.7 (128.0) 255.5

Vi = 1 eV SFE 43.1 130.8 264.0
Vi = 3 eV SFE 43.9 130.8 264.0

responsible for the entire intensity. It is equally important for
the emission from the surface state [Fig. 6(c)]: although on
a coarse scale the quasi-1D approximation gives the location
of the J (ω) resonances with an accuracy of several eV, it
does not correctly describe the width and the shape of the
peaks.

In concluding this section, it should be mentioned that the
pronounced spectral features caused by the lattice scattering
are well documented experimentally: The non-free-electron
branch ξ around h̄ω = 70 eV was experimentally observed
in Ref. [31], and the intensity dips around h̄ω = 115, 200,
and 240 eV (α, β, and δ) are well seen in the experimental
spectrogram in Fig. 1(b) of Ref. [19]. Also the two weaker
surface-state resonances at 177 and 199 eV have their distinct
counterparts in the measurements of Ref. [19], at 183 and
206 eV, see Fig. 5(e). The precise knowledge of the energy lo-
cation and the shape of the surface resonances and pronounced
intensity dips is indispensable in order to correctly extract the
real part of the quasiparticle self-energy in this region, which
is still little known about theoretically. These features prove
to be sensitive to the details of the final-state wave function,
see Table I; in particular, the free-electron approximation is
seen to be especially inaccurate at the higher energies, where
it makes an error of 10 eV in the location of the surface-
state resonance. Note that the SFE values are closer to the
experiment, which may produce a misleading impression that
the free-electron model agrees with the experiment. In fact,
the discrepancy between the experiment and the ab initio
calculation is due to the deficiency of the LDA potential being
used instead of an accurate self-energy (empirically, the error
grows approximately as 0.04(E − EF) [36,37]). In this regard,
it should be mentioned that the perfect agreement between
theory and experiment in the dispersion of the lowermost
parabola [Figs. 3(b) and 5(a)] is somewhat deceiving: In the
LDA, the VB of Mg is some 0.6 eV wider than in the ex-
periment, and upon correcting for this discrepancy one would
reveal a self-energy shift of the LDA final states.

To summarize, the free-electron final state can be relied
upon in giving a rough picture of the dispersion of the in-
tensity distribution over a range of hundreds of eV, but this
approximation is not sufficient on a finer scale of several eV.
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VI. FINAL STATES AND WIGNER DELAY

In the previous sections we discussed the stationary pho-
tocurrent, which is given by the square modulus of the matrix
element. In that case the spatial aspect of the excitations is
limited to the effect of a finite mean free path on the EDCs.
Complementary information about the spatial localization of
the excitation is contained in phase η of the matrix element,
whose energy derivative is relevant to the photoelectron es-
cape time τ , i.e., the time it takes the photoelectron to move
away from the surface to a certain distance into vacuum after
the excitation. The escape time can, in principle, be inferred
from a streaking experiment [14,18,19,36,38,39]. For a suf-
ficiently spectrally narrow perturbation, τ can be calculated
by the Wigner delay formula τ = dη/dE [36]. If the refer-
ence plane (at which τ is measured) is chosen to coincide
with the onset of the optical potential, see Fig. 1, for the
bulk-continuum states the average escape depth is just the
photoelectron mean free path λ. In a semiclassical picture, λ is
a product of the group velocity and the electron lifetime h̄/2Vi,
so the escape time simply equals the lifetime [39]. Figure 7
shows the calculated escape time τ averaged over the lower
VB and separately for the surface state (τ is given in attosec-
onds, 1 as = 10−18 s). The calculations are for the 1DCP and
for the 3D potential (including the true surface barrier [22]).
In the 1D model, both for the VB and for the surface state,
the onset of the purely indirect transitions is clearly seen at
50 eV, see Figs. 7(a) and 7(b): The nonresonant excitations
are characterized by a very short and energy-independent τ ,
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FIG. 7. Wigner delay τ as a function of the photon energy for the
(a) and (b) 1DCP model, and for the (c) and (d) 3D potential. Graphs
(a) and (c) show τ averaged over the lower VB, and graphs (b) and
(d) show τ for the surface state. The curves are for three values of
Vi: 1 (black), 2 (red), and 5 eV (blue). The respective h̄/2Vi values
are shown by the thicker ticks in graphs (a) and (c). The size of the
symbols is proportional to the photoyield, see Fig. 4.
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indicating their surface origin. By contrast, for the resonant
transitions at the lower energies, τ decreases with Vi similar
to the 3D result and roughly in accord with the semiclassical
expectations [the h̄/2Vi values are shown in Figs. 7(a) and
7(c)]. For the 3D potential, τ everywhere decreases with Vi as
expected in view of the dominant role of the bulk transitions
over the whole range, in accord with the previous section.
Regarding the surface-state emission, both calculations agree
in that it has the bulk origin, which is not surprising since the
decay length of the surface state (27 a.u. in the 1D model and
58 a.u. in the real crystal) is larger than the mean free path at
E = 40 eV: For Vi = 2 eV it is λ = 12 a.u.

Let us now turn to the true 3D initial states and analyze the
ab initio τ (E ) curves from the point of view of the composi-
tion of the final states, considering the same approximations
as in Fig. 5, see Sec. V. Figure 8(a) shows τ (E ) for the strictly
free-electron final states. It reveals the Fourier structure of the
G‖ = 0 component of the initial states, which is seen to cause
long-range variations of τ of a magnitude of about 100 as
(for Vi = 3 eV). Also note that the sharp minimum at 134 eV
occurs very close to the minimum in the respective curve in
a modified 1D model of Mg(0001) [16], Fig. 3(b) in that
work. There a harder 1D pseudopotential was used, which
strengthens the higher-g harmonics in the initials states but
apparently leaves the final states practically identical to plane
waves.

The further refinement of the single-G‖ approximation,
namely, by taking into account the correct dispersion k(E ) and
then including the higher-g components, does not change the
long-range behavior but introduces short-range variations on
the scale of several eV, Fig. 8(b). However, the inclusion of the
G‖ �= 0 components dramatically changes the picture over the
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whole range, Fig. 8(c): Even the long-range structure of the
τ (ω) curve bears no resemblance to that of the approximate
curves. This means that 1D models are genuinely insufficient
to describe the temporal aspects of photoemission even for a
simple metal.

VII. DISCUSSION AND CONCLUSIONS

The above analysis clarifies the notion of a nearly free-
electron motion in application to photoemission. A careful
look at the composition of the outgoing wave reveals the
essential distinction between the strictly free-electron and
realistic free-electron-like wave function. The two behave
similarly on a rough energy scale of hundreds of eV, so the
experimental dispersion of the EDC peaks measured over an
interval of 500 eV gives a realistic estimate of the surface-
perpendicular BZ. However, this should not create the illusion
that a single-plane-wave approximation may be reliable lo-
cally, on a scale of several eV. Indeed, the lattice scattering
leads to strong irregular oscillations of the photoemission
intensity (Fig. 5), the spectral structures being of two kinds:
Some features are caused by sharp deviations of the lead-
ing wave from a parabolic dispersion [Fig. 2(b)], whereas
the origin of the other ones is hidden in the structure of
the wave functions. In the present calculation one structure
of the first kind is unambiguously identified: The intensity
dip at h̄ω = 115 eV [Fig. 3(b)], which is confirmed by the
experiment [19]. Such structures are ubiquitous at lower ener-
gies, and they are known to manifest themselves in electron
transmission spectra [40]. However, it follows from simple
perturbational reasoning that at sufficiently high energies the
deviations from the parabolic dispersion become less and less
important, furthermore, at high energies they are more easily
blurred by correlated lattice vibrations [41].

More important turns out to be the effect of the in-plane
scattering, i.e., the G‖ �= 0 contribution to the wave function.
It is responsible for the rich fine structure of the spectrogram
up to the highest energy studied [Fig. 5(d)], and there is no
reason to expect that this factor would become less significant

at the higher energies. The in-plane scattering is found to
especially strongly influence the photoelectron dynamics. The
key quantity here is the Wigner delay, for which the neglect
of the G‖ �= 0 components leads to a qualitatively different
dependence τ (ω) even on a coarse scale (Fig. 8). This sheds
some doubt on the general applicability of 1D models to a
material-specific simulation of the photoelectron transport, in
particular, in the context of the laser streaking spectroscopy.
Apart from giving rather unreliable τ (ω) values, the 1D mod-
els that employ a shallow potential strongly overestimate the
role of the surface photoeffect in comparison to the real crys-
tals whereby the photoelectron transport in the 1D models
proceeds very differently from that in a 3D singular potential.

The present paper is limited to the lower part of the soft x-
ray spectrum because of the brute-force Bloch-waves method
used to compute the LEED states. An advantage of this pro-
cedure is that it yields the results with the accuracy of the
underlying high-energy band structure (which can be verified
by alternative band-structure methods) and provides a bench-
mark for various approximations to the outgoing wave, such
as the single-scatterer approach [42] often used in multiple-
scattering theories. Furthermore, it gives a clear indication
of the importance of the intralayer scattering also at much
higher energies, especially for heavier atoms. Being unaware
of the importance of the wave function details would make it
puzzling to interpret soft x-ray spectra as the main structures
expected from resonant transitions may appear missing or
shifted by several eV.
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