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Flat bands and Z2 topological phases in a non-Abelian kagome lattice
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We introduce a non-Abelian kagome lattice model that has both time-reversal and inversion symmetries and
study the flat band physics and topological phases of this model. Due to the coexistence of both time-reversal and
inversion symmetries, the energy bands consist of three doubly degenerate bands whose energy and conditions
for the presence of flat bands could be obtained analytically, allowing us to tune the flat band with respect to
the other two dispersive bands from the top to the middle and then to the bottom of the three bands. We further
study the gapped phases of the model and show that they belong to the same phase as the band gaps only
close at discrete points of the parameter space, making any two gapped phases adiabatically connected to each
other without closing the band gap. Using the Pfaffian approach based on the time-reversal symmetry and parity
characterization from the inversion symmetry, we calculate the bulk topological invariants and demonstrate that
the unique gapped phases belong to the Z2 quantum spin Hall phase, which is further confirmed by the edge
state calculations.
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I. INTRODUCTION

Motivated by both fundamental science and technological
applications, exploring novel topological states of matter has
recently become one of the most exciting areas of research in
the condensed-matter community [1]. In particular, topologi-
cal insulators [2–7] have attracted a great deal of attention due
to their appealing features; for example, like a conventional in-
sulator, these insulators have an insulating bulk band gap, but
host gapless conducting states at the system edge. The edge
states are topologically protected by the time-reversal symme-
try and thus are robust against any disorder and perturbations
that do not destroy the bulk energy gap. This remarkable phase
is classified based on a Z2 invariant [8,9], which could be re-
lated to the parity of the number of gapless edge states within
the bulk gap. Any even number of edge states can be shown to
be adiabatically connected to a phase with no gapless edge
states, and thus is topologically trivial. In contrast, an odd
number of edge states cannot be connected to a trivial state
as long as the band gap is not closed, and thus is topologically
nontrivial.

As the helical edge states of topological insulators are
protected by the time-reversal symmetry, external magnetic
fields are not allowed, which otherwise would break the
time-reversal symmetry. In this case, the intrinsically allowed
spin-orbit coupling plays a crucial role in driving the system
into the topological phases. For example, in the original Kane-
Mele model [10], spin-orbit coupling between next-nearest
neighbors is essential to achieve the quantum spin Hall phase.
Up to now, topological insulators have been studied in a range
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of two-dimensional lattice models such as honeycomb lattices
[10], edge-centered honeycomb lattices [11], decorated hon-
eycomb lattices [12], Lieb [13–15] or extended Lieb lattices
[16], kagome lattices [17–19], ruby lattices [20], and square-
octagon lattices [21].

In contrast, recent advances in engineered quantum sys-
tems, especially cold quantum gases, allow for the creation of
more complicated lattices, e.g., non-Abelian optical lattices,
where the hopping of a multicomponent atomic gas trapped
in the lattice could be tailored by a special laser configuration
such that the behavior of the gas mimics particles subjected
to a non-Abelian gauge potential [22–24]. For example, non-
Abelian lattice models have been studied in square lattices
[25–27], honeycomb lattices [28,29], and square-octagon lat-
tices [21], where very rich topological phases and phase
transitions have been identified. Here we study the kagome
lattice, which has hexagonal lattice symmetry and whose unit
cell contains three sublattice sites, and its topological proper-
ties are studied in the non-Abelian framework. For an SU(2)
non-Abelian gauge potential, the generators of the Lie group,
i.e., the three Pauli matrices, can naturally be associated with
the three hopping directions of the kagome lattice; thus it
would be interesting to see what physics one can get for such
a non-Abelian generalization of the kagome lattice.

In this paper we introduce and study a non-Abelian
kagome lattice model that has both time-reversal and inver-
sion symmetries. The model shows interesting flat bands and
topological phases. Flat bands have attracted a great deal of
attention recently due to a variety of interesting phenomena
they can provide [30–42] and have been studied experimen-
tally in the kagome magnet Co3Sn2S2 [43] and the kagome
metal CoSn [44–46]. In our model, the energy bands and
conditions for the presence of flat bands could be obtained
analytically, allowing an apparent understanding about the
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flat band physics. Moreover, the gapped phases of our model
all connect to each other due to the closure of a band gap
occurring only at discrete points of the parameter space, i.e.,
they belong to the same phase. Using different techniques, we
demonstrate that this unique gapped phase is a Z2 topological
phase.

We would like to note that flat bands and topologi-
cal phases have been studied previously in kagome lattices
[17–19,31]. However, the main mechanism to induce topo-
logical phases in these works is spin-orbit coupling, which
appears in certain solid-state materials. In the present work
the mechanism we consider is a non-Abelian gauge potential,
which does not exist naturally in solid-state materials, but
could be created in engineered quantum systems, such as cold
atomic gases trapped in optical lattices. This setup results in
analytically solvable energy band structures and interesting
physics, e.g., the existence of a unique topological gapped
phase in the whole parameter space.

The paper is organized as follows. In Sec. II we present
the model and discuss its symmetry properties. Flat band
physics is then studied in Sec. III. In Sec. IV we investigate
the topological features of the gapped phases. In Sec. V we
summarize and provide an outlook for future work.

II. MODEL

We consider a non-Abelian kagome lattice (see Fig. 1),
where the nearest-neighbor hopping terms of pseudospin- 1

2
particles trapped in the lattice are modified according to the
underlying non-Abelian gauge potential. The Hamiltonian of
this system can be written as [21,25,26]

H = t
∑

〈iτ, jτ ′〉
[Ui j]ττ ′c†

iτ c jτ ′ + H.c., (1)

where the unitary matrices U1, U2, and U3 encode the infor-
mation of the non-Abelian gauge potential that the kagome
lattice is subjected to. For pseudospin- 1

2 particles, a natural
choice for U1, U2, and U3 would be the two-dimensional
representation of the SU(2) Lie group

U1 = eiασ1 , U2 = eiβσ2 , U3 = eiγ σ3 , (2)

where σ1, σ2, and σ3 are the Pauli matrices and α, β, and γ are
parameters related to the gauge fluxes. In a real experimental
implementation, e.g., cold atoms trapped in an optical lattice,
the gauge flux parameters α, β, and γ could be tuned by the
amplitudes and phases of the dressing lasers that create the
artificial gauge potential in the manifold of the atomic internal
states (for details, see [14,26,47]). The Hamiltonian (1) in the
momentum space after a Fourier transform can be written in
the form

H (�k) = t
∑

�k
(c†

1k c†
2k c†

3k )h(�k)

⎛
⎝c1k

c2k

c3k

⎞
⎠, (3)

where cik ≡ (cik↑, cik↓) with i ∈ {1, 2, 3}, i.e., the three sub-
lattice sites in each unit cell (see Fig. 1), and the 6 × 6 Bloch

FIG. 1. (a) Non-Abelian kagome lattice considered in this work.
Each unit cell consists of three sublattice sites, marked as sites 1–3.
The nearest-neighbor hopping terms in the internal space are denoted
by U1, U2, and U3, respectively. Note that this hopping pattern pre-
serves the inversion symmetry of the system. Here �e1, �e2, and �e3

denote the hopping vectors among the three sublattice sites within
the unit cell, from which one can define the two lattice vectors as 2�e1

and −2�e2. (b) First Brillouin zone of the kagome lattice, which is a
hexagon with the length of its side equal to 2π/3a. Here K± mark the
two inequivalent vertices and �1, �2, �3, and �4 are the time-reversal
invariant momenta.

Hamiltonian h(�k) is given by

h(�k) =
⎛
⎝ 0 U †

2 + U †
2 eik2 U1 + U1e−ik1

U2 + U2e−ik2 0 U †
3 + U †

3 e−ik3

U †
1 + U †

1 eik1 U3 + U3eik3 0

⎞
⎠,

(4)
where kα ≡ �k · 2�eα , with α = 1, 2, and 3, and �e1 =
a(1/2,

√
3/2), �e2 = a(−1, 0), and �e3 = a(−1/2,

√
3/2), as is

shown in Fig. 1(a). In the following, we set t = 1 and a = 1
2

for simplicity.
Our system enjoys both the time-reversal and inversion

symmetries [48], characterized by

T −1h(�k)T = h(−�k), (5)

P−1h(�k)P = h(−�k), (6)

where T = UK is the time-reversal operator with K the com-
plex conjugate operator which takes any complex number into
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its complex conjugate and

U = I3 ⊗ iσ2, (7)

with I3 the 3 × 3 identity matrix. Meanwhile, the inversion
operator P (taking site 1 of the unit cell as the inversion
center) is given by

P =
⎛
⎝1 0 0

0 exp(−ik2) 0
0 0 exp(ik1)

⎞
⎠ ⊗

(
1 0
0 1

)
. (8)

Note that while the time-reversal operation flips the direction
of the spin, the spin is unchanged by the inversion as the
spin is a pseudovector. Furthermore, in the presence of both
time-reversal and inversion symmetries, Bloch states form
Kramers doublets at every k point in the Brillouin zone, i.e.,
the energy bands of the Bloch Hamiltonian (4) form three
doubly degenerate bands.

III. FLAT BANDS

The non-Abelian kagome lattice model hosts a rich phe-
nomenon of flat bands, whose conditions of existence could
be obtained analytically. Moreover, we will show that the
location of the flat band could be tuned from the top to the
middle and further to the bottom of the three bands.

A. Conditions for the existence of flat bands

The energy bands and corresponding eigenstates of our
model could be determined by the equation h(�k)|	i〉 =
Ei(�k)|	i〉, i = 1, 2, . . . , 6. For the Bloch Hamiltonian (4), the
energy bands can be solved analytically. It is straightforward
to show that the characteristic equation for the energy E could
be obtained as

(E3 − 4AE − 16B)2 = 0, (9)

where A = cos2 k1 + cos2 k2 + cos2 k3 and B = 
(α, β, γ )D,
with D = cos k1 cos k2 cos k3 and 
(α, β, γ ) =
cos α cos β cos γ − sin α sin β sin γ . It is now apparent
that the energy bands indeed form three degenerate pairs due
to the coexistence of time-reversal and inversion symmetries
of the model as we described above. The three energy bands
are determined by a cubic equation, whose solutions could
then be obtained analytically.

The conditions for the existence of flat bands could be
derived as follows. First, using the definitions of k1, k2, and
k3, i.e.,

k1 = �k · 2�e1 = 1

2
kx +

√
3

2
ky,

k2 = �k · 2�e2 = −kx, (10)

k3 = �k · 2�e3 = −1

2
kx +

√
3

2
ky,

it is straightforward to show that

A = 1 + cos(
√

3ky) cos(kx ) + cos2(kx ),

D = 1
2 cos(

√
3ky) cos(kx ) + 1

2 cos2(kx ),
(11)

from which one can get A = 2D + 1. Then the eigenequation
for the three degenerate energy bands becomes

E3 − 4(2D + 1)E − 16D
 = 0, (12)

or recast it in another form

E3 − 4E = 8(E + 2
)D. (13)

For a flat band, whose energy does not depend on momen-
tum k, one can obtain E = −2
 as D depends on k and is
dispersive. As such one can get E3 − 4E = 0, from which
one can readily obtain the energy of the three flat bands,
i.e., E = 0 and E = ±2. Then, from the flat-band condition
E = −2
, one has 
 = 0 and 
 = ±1. These solutions are
presented in Fig. 2.

The eigenstates corresponding to the flat bands can also be
obtained. For 
 = 1 at α = β = γ = 0, one can find

ψE=−2
1 =

[
0,

1 − e−ik3

e−ik2 − 1
, 0,

e−ik3 − e−ik2

e−ik2 − 1
, 0, 1

]T

, (14)

ψE=−2
2 =

[
1 − e−ik3

e−ik2 − 1
, 0,

e−ik3 − e−ik2

e−ik2 − 1
, 0, 1, 0

]T

. (15)

For 
 = 0 at α = β = π/2 and γ = 0, one can find

ψE=0
1 =

[
1 + e−ik3

1 + e−ik2
, 0, 0,

i + ie−ik1

1 + eik2
, 0, 1

]T

, (16)

ψE=0
2 =

[
0,

1 + e−ik3

1 + e−ik2
,

i + ie−ik1

1 + eik2
, 0,−1, 0

]T

. (17)

For 
 = −1 at α = β = γ = π/2, one can find

ψE=2
1 =

[
ie−ik3 − i

e−ik2 − 1
, 0, 0,

ie−ik2 − ie−ik3

e−ik2 − 1
, 0, 1

]T

, (18)

ψE=2
2 =

[
0,

ie−ik3 − i

e−ik2 − 1
,

ie−ik3 − ie−ik2

e−ik2 − 1
, 0, 1, 0

]T

. (19)

Usually, for a completely flat band in a lattice model,
one can always find a compact localized state distribution.
The above results show that the localization happens in the
internal spin space due to the effect of the non-Abelian gauge
potential.

B. Location-tunable flat bands

The above-derived flat-band conditions 
 = 0 and ±1 also
determine the structure of the three doubly degenerate bands
given by Eq. (9), which are presented in Fig. 3. It is evident
that the location of the flat band with respect to the two
dispersive bands could be tuned from the top (E = +2) to the
middle (E = 0) and further to the bottom (E = −2). The band
structure for 
 = 1 is the same as that of the normal kagome
lattice [17]. In fact, when α = β = γ = 0, 
(α, β, γ ) = 1
could be trivially satisfied as in this case U1, U2, and U3

reduce to identity matrices and consequently the non-Abelian
kagome lattice will reduce to two uncoupled copies of the
normal kagome lattice.

It would be interesting to compare the flat bands in the
current non-Abelian kagome lattice model and other kagome
models subjected to the Abelian gauge potential [30,31,49].
For example, the authors of Ref. [31] have shown the exis-
tence of isolated flat bands and spin-1 conical bands with a
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FIG. 2. Constraint on 
(α, β, γ ) for the existence of flat bands.
(a) 
(α, β, γ ) = ±1, under which the solutions consist of discrete
points, with blue points for 
 = +1 and purple points for 
 = −1.
These discrete points correspond to the sets of gauge flux parameters
giving a flat band on top (purple points) or bottom (blue points) and
the system is in the gapless phase at these discrete points and in the
gapped phase apart from these discrete points. (b) 
(α, β, γ ) = 0,
under which the solutions form a surface. A point on this surface
corresponds to a set of gauge flux parameters giving a flat band in
the middle.

flat band located at E = 0 employing staggered flux phases
ψ+ and ψ− on the up and down triangles of the kagome
lattice. A recent work [49] considering the same flux ψ on
the up and down triangles of the kagome lattice has shown
that the flat band in the model can also be tuned from the top
to the middle and further to the bottom when changing the
flux ψ . The present results on the conditions for the existence
of flat bands and their tunability certainly will enrich the
flat-band physics in kagome lattices from the Abelian to the
non-Abelian regime.

FIG. 3. The location of the flat band can be tuned to (a) the top,
when 
(α, β, γ ) = −1, (b) the middle, when 
(α, β, γ ) = 0, and
(c) the bottom, when 
(α, β, γ ) = 1.

IV. Z2 TOPOLOGICAL PHASES

Apart from the gapless phase when the flat band is at the
top or the bottom, which corresponds to a Dirac semimetallic
phase, where the topological properties of the Dirac cones in
Fig. 3 are well known [5,17], such as the existence of the Berry
phase of ±π around the Dirac points K/K ′, our model also
hosts gapped insulating phases [see, e.g., Fig. 3(b)]; thus it is
a natural question whether such phases are topological. In the
following we first present the gap phase diagram when tuning
α, β, and γ and then we show using different techniques that
the gapped phases are Z2 topological phases.

A. Energy gaps

We begin by studying the gap phase diagrams when tuning
α, β, and γ . For simplicity, we fix γ = 0 and vary α and
β, with the sizes of the two band gaps presented in Fig. 4.
First, one can see that the two gaps have the same behavior
as functions of α and β. Second, the two gaps only close at
some discrete points in the (α, β ) plane, e.g., (0,0). Moreover,
as the gauge flux parameters α, β, and γ group into a single
parameter 
 that determines the band structure, one can easily
show from Eq. (9) that the band gap closes only at 
 = ±1.
In other words, Fig. 2(a) can be taken as the phase diagram of
our model, where the discrete points correspond to the gapless
semimetallic phases whereas other regions correspond to the
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FIG. 4. Sizes of the two band gaps as functions of α and β for
γ = 0. One can see only at some discrete points in the (α, β ) plane
that the band gap closes and consequently all the gapped phases are
adiabatically connected, i.e., they belong to the same phase.

gapped insulating phases. As a consequence, one can make a
remarkable statement that all the gapped phases in Fig. 2(a)
belong to the same phase as any two gapped phases could be
connected adiabatically by tuning α, β, and γ without closing
the band gap. In the following, we will try to demonstrate
using different techniques that this unique gapped phase is
a Z2 topological phase by focusing on α = β = π/2 and
γ = 0, whose band structure is shown in Fig. 3(b).

B. Pfaffian characterization of the gapped phases
from time-reversal symmetry

We note that the Berry curvature F (k) of the bands
of our model is zero due to the simultaneous presence of
time-reversal and inversion symmetries in our model. This
is because under time reversal, the Berry curvature is odd,
i.e., F (−k) = −F (k), and under inversion, it is even, i.e.,
F (−k) = +F (k), and as a result F (k) = 0 [50]. So to char-
acterize the topology, we first employ a method based on the
Pfaffian originally proposed by Kane and Mele [8] to classify
the gapped phase. For a system satisfying the time-reversal
symmetry, one can define a matrix mi j (�k) = 〈ui(�k)|T |u j (�k)〉,
where T is the time-reversal operator, |uα (�k)〉 is the periodic
part of the Bloch eigenstate, and i, j = 1, . . . , N , with N the
number of occupied bands. It can be proved that mi j (�k) is
skew symmetric [5], i.e., mi j (�k) = −mji(�k), and as such we

FIG. 5. Modulus of the Pfaffian [P(�k) as in Eq. (20)] with the
first Brillouin zone shown in the (kx, ky ) plane for (a) the lower band
gap and (b) the higher band gap at α = π/2, β = π/2, and γ = 0.
It can be seen that there are six zeros of the Pfaffian located at K±
and thus there is only one zero of the Pfaffian in half of the Brillouin
zone (red triangle), indicating Z2 = 1.

can define

P(�k) = Pf [〈ui(�k)|T |uj (�k)〉], (20)

where Pf[A] means the Pfaffian of a skew-symmetric matrix
A, i.e., Pf[A] = √

det(A). Then the Z2 topological invariant
can be determined by the zeros of P(�k) [8],

Z2 = 1

2π i

∮
C

d�k · �∇�k log[P(�k)]mod2, (21)

where C is the path that surrounds half of the first Brillouin
zone (i.e., the red lines) as shown in Fig. 5.

If there is only one zero of the Pfaffian in half of the
Brillouin zone, it is stable globally. The reason is that, similar
to the case of the Dirac node in graphene, the zero of the
Pfaffian has a vorticity and since P(−�k) is related to P∗(�k), the
phases of the Pfaffian close to −�k and �k have opposite order.
If there is one zero in half of the Brillouin zone, the only place
where the zeros can get annihilated is a T -invariant point.
However, one can show that the Pfaffian at the T -invariant
point has unit modulus [5]; thus it cannot be annihilated at the
T -invariant point.

The absolute values of the Pfaffian of the two gaps are
presented in Fig. 5 along with the first Brillouin zone located
in the (kx, ky) plane, where we also show the integration path
of Eq. (21) along boundaries of half the Brillouin zone (red
triangle). It can be seen that the zeros are located at K±
and inside half of the Brillouin zone, there is only one zero,
and thus Z2 = 1, indicating that the gapped phase is a Z2

topological phase. We also check that for other gapped phases
in Fig. 2(a), the Pfaffian has a similar distribution in the first
Brillouin zone, i.e., with six zeros located at K±, consistent
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TABLE I. The Z2 topological invariants of the gapped phases
at α = π/2, β = π/2, and γ = 0, which show that both of the two
energy band gaps have ν = 1, corresponding to a Z2 topological
phase.

2m ξ2m(�1) ξ2m(�2) ξ2m(�3) ξ2m(�4)
∏

i ξ2m(�i ) ν

2 +1 −1 +1 +1 −1 1
4 +1 +1 −1 −1 +1 1

with our statement that all the gapped phases belong to the
same topological phase.

C. Parity characterization of the gapped phases
from inversion symmetry

When the system has inversion symmetry, the evaluation
of the Z2 invariants could be greatly simplified. In particular,
Fu and Kane showed that the Z2 invariants in this case can be
determined from the parity of the occupied Bloch wave func-
tions at the time-reversal invariant points in the Brillouin zone
[50]. As our non-Abelian kagome lattice model preserves the
inversion symmetry, it would be interesting to see the parity
effect on the Z2 characterization of the gapped phases.

In this method, as the inversion operation commutes with
the Bloch Hamiltonian at the time-reversal invariant points,
the parity ξ2m(�i ) = ±1 of the (2m)th energy band can readily
be evaluated, from which one could define the parity effect at
one time-reversal invariant point for all the occupied bands,

δi =
N∏

m=1

ξ2m(�i ), (22)

where 2N is the number of occupied bands. Note that the
energy band is doubly degenerate at the time-reversal invariant
points due to the Kramers theorem, and here we only need to
include one, i.e., 2m, of the two degenerate partners.

From δi we can obtain the value of ν taking the parity effect
at all the time-reversal invariant points into account, which is a
Z2 quantity that distinguishes the nontrivial topological phase
from the trivial phase through

(−1)ν =
∏

i

δi. (23)

Here the value of ν can be 0, which implies the normal phase,
or 1, which implies the Z2 topological phase.

The Z2 characterization of the gapped phases is shown in
Table I, from which one can see that both gaps host ν = 1,
i.e., the gapped phases for both band gaps are Z2 topological
phases, consistent with the Pfaffian characterization described
above. We further check that this Z2 characterization is inde-
pendent of α, β, and γ as long as the gap exists.

D. Edge state characterization of the gapped phases
from bulk-edge correspondence

According to the bulk-edge correspondence principle
[5–7], when the gapped bulk phase is topological, there will
be edge states emerging within the topological band gap. Here
we will study the edge state, which is additional evidence that
the gapped phase is topological.

FIG. 6. Band structure of a finite-size non-Abelian kagome lat-
tice which is periodic in the x direction and finite in the y direction
(N = 20) at α = π/2, β = π/2, and γ = 0. The existence of spin-
momentum locking edge states within both of the two band gaps
indicates the quantum spin Hall nature of the two topological gaps.

To study the edge states, we consider a supercell which
is periodic along x but finite (N = 20) in the y direction and
present the band structure in Fig. 6. Note that, to show more
clearly how the edge states connect with each other across the
one-dimensional Brillouin zone, we show the band structure
for k ∈ {−2π, 2π}. As can be seen, apart from the bulk states
and the flat band, which already show up in Fig. 3(b), there
are additional edge states appearing inside the two band gaps,
which connect with the bulk states at the top and bottom of
the band gap. These edge states cannot be removed into the
bulk as long as the band gap exists, indicating their topolog-
ical nature. Furthermore, we can see that within each band
gap, there are four edge states, two along each open edge
in the y direction. At the same edge, one edge state has a
negative group velocity (i.e., the slope of the edge state dis-
persion curve is negative), while the other has a positive group
velocity, indicating spin-momentum locking, a hallmark for
quantum spin Hall states due to the Z2 topological invariant.
We also check that as long as the band gap persists, there will
always be edges states within the two gaps, indicating that the
gapped phases belong to the same Z2 topological phase.

V. CONCLUSION AND OUTLOOK

We have introduced a non-Abelian kagome lattice model
that hosts interesting flat bands and Z2 topological phases.
The model lattice system has both time-reversal and inversion
symmetries, resulting in three doubly degenerate bands. The
energy bands of the system and the conditions for the presence
of the flat bands have been obtained analytically, allowing for
a transparent understanding of the flat-band physics. By tun-
ing the non-Abelian gauge flux parameters, the flat band with
respect to the other two dispersive bands could be tuned from
the top to the middle and further to the bottom of the three
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bands. Furthermore, our system also hosts gapped phases. We
found that the gapped phases all connect to each other for both
of the two band gaps as the gaps only close at certain discrete
points in the parameter space; thus all the gapped phases
belong to the same phase. Using different techniques, such
as the Pfaffian approach based on time-reversal symmetry and
parity characterization from the inversion symmetry, we have
demonstrated that the bulk topological invariant is equal to Z2,
and thus the gapped phase is a Z2 topological phase. We also
studied the edge states according to the bulk-edge correspon-
dence principle and found that spin-momentum locking edge
states emerge within the two band gaps, further validating the
quantum spin Hall nature of these edge states.

The fact that the gaps host a single Z2 topological phase
certainly is appealing as this allows for easy observation in

experiments and promising applications in practice. The non-
Abelian kagome lattice model introduced in this work will
open up other interesting directions of investigation, such
as interaction effects [51], disorder physics [49], or even
non-Hermitian physics [52,53]. Furthermore, the non-Abelian
gauge potentials could be implemented in such a way that
the inversion symmetry of the model is broken, and the fate
of flat bands and the gapped phases in this scenario is also
an interesting question. One could also consider the non-
Abelian kagome lattice with higher pseudospin, such as the
SU(3) model for pseudospin-1 particles [54,55], and even
the higher-order topological phases, such as the second-order
corner states [56,57] within the present setup. Thus we believe
our work will stimulate further research topics in this lattice
model.
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[23] N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman,
Light-induced gauge fields for ultracold atoms, Rep. Prog.
Phys. 77, 126401 (2014).

[24] N. R. Cooper, J. Dalibard, and I. B. Spielman, Topological
bands for ultracold atoms, Rev. Mod. Phys. 91, 015005 (2019).

[25] N. Goldman, A. Kubasiak, A. Bermudez, P. Gaspard, M.
Lewenstein, and M. A. Martin-Delgado, Non-Abelian Optical
Lattices: Anomalous Quantum Hall Effect and Dirac Fermions,
Phys. Rev. Lett. 103, 035301 (2009).

[26] Z. Lan, N. Goldman, A. Bermudez, W. Lu, and P. Öhberg,
Dirac-Weyl fermions with arbitrary spin in two-dimensional
optical superlattices, Phys. Rev. B 84, 165115 (2011).

[27] M. Burrello, I. C. Fulga, E. Alba, L. Lepori, and A.
Trombettoni, Topological phase transitions driven by non-
Abelian gauge potentials in optical square lattices, Phys. Rev.
A 88, 053619 (2013).

[28] A. Bermudez, N. Goldman, A. Kubasiak, M. Lewenstein, and
M. A. Martin-Delgado, Topological phase transitions in the
non-Abelian honeycomb lattice, New J. Phys. 12, 033041
(2010).

[29] F. Sun, X.-L. Yu, J. Ye, H. Fan, and W.-M. Liu, Topological
quantum phase transition in synthetic non-Abelian gauge poten-
tial: Gauge invariance and experimental detections, Sci. Rep. 3,
2119 (2013).

245133-7

https://doi.org/10.1103/RevModPhys.89.041004
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.88.021004
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevB.85.155451
https://doi.org/10.1103/PhysRevB.81.205115
https://doi.org/10.1103/PhysRevB.82.085310
https://doi.org/10.1103/PhysRevA.83.063601
https://doi.org/10.1021/acs.nanolett.9b05242
https://doi.org/10.1103/PhysRevB.100.235145
https://doi.org/10.1103/PhysRevB.80.113102
https://doi.org/10.1103/PhysRevA.82.053605
https://doi.org/10.1103/PhysRevB.99.165141
https://doi.org/10.1103/PhysRevB.84.155116
https://doi.org/10.1103/PhysRevB.82.085106
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1103/RevModPhys.91.015005
https://doi.org/10.1103/PhysRevLett.103.035301
https://doi.org/10.1103/PhysRevB.84.165115
https://doi.org/10.1103/PhysRevA.88.053619
https://doi.org/10.1088/1367-2630/12/3/033041
https://doi.org/10.1038/srep02119


ZHENXIANG GAO AND ZHIHAO LAN PHYSICAL REVIEW B 102, 245133 (2020)

[30] K. Ohgushi, S. Murakami, and N. Nagaosa, Spin anisotropy
and quantum Hall effect in the kagome lattice: Chiral spin state
based on a ferromagnet, Phys. Rev. B 62, R6065(R) (2000).

[31] D. Green, L. Santos, and C. Chamon, Isolated flat bands and
spin-1 conical bands in two-dimensional lattices, Phys. Rev. B
82, 075104 (2010).

[32] E. Tang, J.-W. Mei, and X.-G. Wen, High-Temperature Frac-
tional Quantum Hall States, Phys. Rev. Lett. 106, 236802
(2011).

[33] K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Nearly Flat-
bands with Nontrivial Topology, Phys. Rev. Lett. 106, 236803
(2011).

[34] T. Neupert, L. Santos, C. Chamon, and C. Mudry, Fractional
Quantum Hall States at Zero Magnetic Field, Phys. Rev. Lett.
106, 236804 (2011).

[35] B. Pal and K. Saha, Flat bands in fractal-like geometry, Phys.
Rev. B 97, 195101 (2018).

[36] B. Pal, Nontrivial topological flat bands in a diamond-octagon
lattice geometry, Phys. Rev. B 98, 245116 (2018).

[37] G. Montambaux, L.-K. Lim, J.-N. Fuchs, and F. Piéchon, Wind-
ing Vector: How to Annihilate Two Dirac Points with the Same
Charge, Phys. Rev. Lett. 121, 256402 (2018).

[38] W. Jiang, M. Kang, H. Huang, H. Xu, T. Low, and F. Liu,
Topological band evolution between Lieb and kagome lattices,
Phys. Rev. B 99, 125131 (2019).

[39] S. Zhang, M. Kang, H. Huang, W. Jiang, X. Ni, L. Kang,
S. Zhang, H. Xu, Z. Liu, and F. Liu, Kagome bands dis-
guised in a coloring-triangle lattice, Phys. Rev. B 99, 100404(R)
(2019).

[40] T. Mizoguchi and M. Udagawa, Flat-band engineering in tight-
binding models: Beyond the nearest-neighbor hopping, Phys.
Rev. B 99, 235118 (2019).

[41] L.-K. Lim, J.-N. Fuchs, F. Piéchon, and G. Montambaux, Dirac
points emerging from flat bands in Lieb-kagome lattices, Phys.
Rev. B 101, 045131 (2020).

[42] D.-S. Ma, Y. Xu, C. S. Chiu, N. Regnault, A. A. Houck, Z. Song,
and B. A. Bernevig, Spin-orbit-induced topological flat bands in
line and split graphs of bipartite lattices, arXiv:2008.08231.

[43] J.-X. Yin, S. S. Zhang, G. Chang, Q. Wang, S. S. Tsirkin,
Z. Guguchia, B. Lian, H. Zhou, K. Jiang, I. Belopolski, N.
Shumiya, D. Multer, M. Litskevich, T. A. Cochran, H. Lin, Z.
Wang, T. Neupert, S. Jia, H. Lei, and M. Z. Hasan, Negative
flat band magnetism in a spin–orbit-coupled correlated kagome
magnet, Nat. Phys. 15, 443 (2019).

[44] Z. Liu, M. Li, Q. Wang, G. Wang, C. Wen, K. Jiang, X. Lu, S.
Yan, Y. Huang, D. Shen, J.-X. Yin, Z. Wang, Z. Yin, H. Lei, and
S. Wang, Orbital-selective Dirac fermions and extremely flat
bands in frustrated kagome-lattice metal CoSn, Nat. Commun.
11, 4002 (2020).

[45] J.-X. Yin, N. Shumiya, S. Mardanya, Q. Wang, S. S. Zhang,
H.-J. Tien, D. Multer, Y. Jiang, G. Cheng, N. Yao, S. Wu, D.
Wu, L. Deng, Z. Ye, R. He, G. Chang, Z. Liu, K. Jiang, Z.
Wang, T. Neupert, A. Agarwal, T.-R. Chang, C.-W. Chu, H.
Lei, and M. Z. Hasan, Fermion-boson many-body interplay in a
frustrated kagome paramagnet, Nat. Commun. 11, 4003 (2020).

[46] M. Kang, S. Fang, L. Ye, H. C. Po, J. Denlinger, C. Jozwiak,
A. Bostwick, E. Rotenberg, E. Kaxiras, J. G. Checkelsky, and
R. Comin, Topological flat bands in frustrated kagome lattice
CoSn, Nat. Commun. 11, 4004 (2020).

[47] L. Mazza, A. Bermudez, N. Goldman, M. Rizzi, M. A. Martin-
Delgado, and M. Lewenstein, An optical-lattice-based quantum
simulator for relativistic field theories and topological insula-
tors, New J. Phys. 14, 015007 (2012).

[48] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classifica-
tion of topological quantum matter with symmetries, Rev. Mod.
Phys. 88, 035005 (2016).

[49] C. Wei and T. A. Sedrakyan, Optical lattice platform for the
SYK model, arXiv:2005.07640.

[50] L. Fu and C. L. Kane, Topological insulators with inversion
symmetry, Phys. Rev. B 76, 045302 (2007).

[51] S. Rachel, Interacting topological insulators: A review, Rep.
Prog. Phys. 81, 116501 (2018).

[52] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional
topology of non-Hermitian systems, Rev. Mod. Phys. (to be
published).

[53] Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv.
Phys. (to be published).

[54] R. Barnett, G. R. Boyd, and V. Galitski, SU(3) Spin-Orbit
Coupling in Systems of Ultracold Atoms, Phys. Rev. Lett. 109,
235308 (2012).

[55] U. Bornheimer, C. Miniatura, and B. Grémaud, SU(3) topologi-
cal insulators in the honeycomb lattice, Phys. Rev. A 98, 043614
(2018).

[56] S. A. Parameswaran and Y. Wan, Topological insulators turn a
corner, Physics 10, 132 (2017).

[57] M. Ezawa, Higher-Order Topological Insulators and Semimet-
als on the Breathing Kagome and Pyrochlore Lattices, Phys.
Rev. Lett. 120, 026801 (2018).

245133-8

https://doi.org/10.1103/PhysRevB.62.R6065
https://doi.org/10.1103/PhysRevB.82.075104
https://doi.org/10.1103/PhysRevLett.106.236802
https://doi.org/10.1103/PhysRevLett.106.236803
https://doi.org/10.1103/PhysRevLett.106.236804
https://doi.org/10.1103/PhysRevB.97.195101
https://doi.org/10.1103/PhysRevB.98.245116
https://doi.org/10.1103/PhysRevLett.121.256402
https://doi.org/10.1103/PhysRevB.99.125131
https://doi.org/10.1103/PhysRevB.99.100404
https://doi.org/10.1103/PhysRevB.99.235118
https://doi.org/10.1103/PhysRevB.101.045131
http://arxiv.org/abs/arXiv:2008.08231
https://doi.org/10.1038/s41567-019-0426-7
https://doi.org/10.1038/s41467-020-17462-4
https://doi.org/10.1038/s41467-020-17464-2
https://doi.org/10.1038/s41467-020-17465-1
https://doi.org/10.1088/1367-2630/14/1/015007
https://doi.org/10.1103/RevModPhys.88.035005
http://arxiv.org/abs/arXiv:2005.07640
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1088/1361-6633/aad6a6
https://doi.org/10.1103/PhysRevLett.109.235308
https://doi.org/10.1103/PhysRevA.98.043614
https://doi.org/10.1103/Physics.10.132
https://doi.org/10.1103/PhysRevLett.120.026801

