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We study the classical Heisenberg model on the geometrically frustrated Shastry-Sutherland (SS) lattice with
additional Dzyaloshinskii-Moriya (DM) interaction in the presence of an external magnetic field. We show that
several noncollinear and noncoplanar magnetic phases, such as the flux, all-in/all-out, 3-in–1-out/3-out–1-in,
and canted-flux phases are stabilized over wide ranges of parameters in the presence of the DM interaction.
We discuss the role of DM interaction in stabilizing these complex magnetic phases. When coupled to these
noncoplanar magnetic phases, itinerant electrons experience a finite Berry phase, which manifests in the form of
topological Hall effect, whereby a nonzero transverse conductivity is observed even in the absence of a magnetic
field. We study this anomalous magnetotransport by calculating the electron band structure and transverse
conductivity for a wide range of parameter values, and demonstrate the existence of topological Hall effect
in the SS lattice. We explore the role of the strength of itinerant electron-local moment coupling on electron
transport and show that the topological Hall features evolve significantly from strong to intermediate values of
the coupling strength, and are accompanied by the appearance of a finite spin Hall conductivity.
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I. INTRODUCTION

The interplay of charge and spin degrees of freedom man-
ifests in novel phases in strongly correlated electron systems
[1–4]. One of the basic models that describes this interplay
is the Kondo lattice model or the double-exchange (DE)
model, in which localized magnetic moments are coupled to
itinerant electrons [5–9]. In these systems the conduction elec-
trons and localized spins affect each other in a self-consistent
way. On the one hand, the mobile electrons mediate effec-
tive interactions between the localized spins, and dictate the
magnetic behavior. On the other hand, the scattering of the
mobile electrons from these localized moments decides the
resulting electronic and transport properties of the system.
This interplay becomes more interesting when the localized
moments are arranged on a geometrically frustrated lattice
[10–13]. In these frustrated systems, the ground state has a
large degeneracy, leaving them strongly susceptible to even
small perturbations like longer-range exchange interactions
mediated by conduction electrons coupled to the localized
moments. In some cases, the resulting effect of the spin-
charge coupling leads to unconventional magnetic phases
[14–18].

Among these phases, some of the most interesting are those
with noncoplanar spin orderings, with nonzero scalar spin chi-
rality [19–21]. The chiral nature of these states breaks both the
parity and time-reversal symmetries. When an electron moves
through a background of noncoplanar spin texture, it picks
up a Berry phase, which gives rise to many interesting trans-
port phenomena such as the geometric or topological Hall
effect (THE) and unconventional magnetoresistive behavior

[14,22–24]. In THE, a transverse Hall current is observed even
in the absence of any external applied magnetic field, driven
solely by the cumulative Berry phase acquired by the elec-
trons. The acquired Berry phase is equivalent to the coupling
of electron orbital moment to a fictitious magnetic field.

THE has been observed in the ferromagnetic pyrocholre
compounds Pr2Ir2O7 and Nd2Mo2O7 [14,25–27]. The chiral
spin ordering has been studied theoretically in the context of
Kondo lattice model on frustrated lattices such as triangular
[28,29], kagome [21,30–33], pyrocholre [34], face-centered-
cubic lattice [35], and checkerboard lattice [36]. Our plan is
to extend this study to the geometrically frustrated Shastry-
Sutherland (SS) lattice, which is a prototypical model of
several materials like the rare-earth tetraborides [37–42].
These materials have rare-earth elements with large mag-
netic moments that can be treated as classical spins. This, in
turn, renders the theoretical modeling of such systems more
tractable. For classical spins, the Kondo lattice and double-
exchange models can be mapped on to one another, as the
eigenstates corresponding to opposite signs of the Kondo cou-
pling are related by a global gauge transformation.

The SS lattice has several competing interactions in play
owing to its unique lattice symmetry. The competition be-
tween the axial and diagonal exchange interactions usually
results in a collinear or coplanar ordered phase [43–45]. How-
ever, a rich variety of phases, including noncoplanar phases,
are expected when the symmetry-allowed Dzyaloshinskii-
Moriya (DM) interaction is taken into account. Further, the
use of an external Zeeman field enhances the possibility of
having noncoplanar phases significantly. Previously, we have
shown that the Kondo lattice model on the SS lattice exhibits
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noncoplanar and noncollinear ground states over a wide range
of parameters [46–48]. In this work, we aim to thoroughly
study the effect of all the competing interactions in stabilizing
the noncoplanar phases and investigate the transport proper-
ties of itinerant electrons on this lattice. The ability to realize
multiple noncollinear and noncoplanar magnetic orderings by
tuning different interactions for realistic values of model pa-
rameters make the SS lattice an ideal case for studying THE.

In this work, we demonstrate that multiple noncollinear
and noncoplanar magnetic ground-state phases are stabilized
in the SS lattice for different ranges of Hamiltonian pa-
rameters. The behavior of itinerant electrons is significantly
modified by the coupling to the underlying spin textures. In
particular, for noncoplanar magnetic orderings, this is mani-
fested in the form of finite THE.

This paper is organized as follows. Following the Intro-
duction in Sec. I, we discuss the models used in this study in
Sec. II. In Sec. III we describe the method and the observables
that we calculate to characterize the magnetic and the trans-
port properties. We present the results of our work in Sec. IV,
followed by the summary in Sec. V.

II. MODEL

We study the Hamiltonian

Ĥc =
∑

〈i j〉
Ji jSi · S j +

∑

〈i j〉
Di j · Si × S j − B

∑

i

Sz
i (1)

on the SS lattice, where 〈i j〉 refers to nearest-neighbor axial
bonds on each plaquette, and next-nearest-neighbor diagonal
bonds on alternate plaquettes. The first term represents the
Heisenberg exchange interaction, with Ji j = J (J ′) denoting
the strength of antiferromagnetic exchange on the axial (di-
agonal) bonds. The second term is the antisymmetric DM
interaction with Di j representing the DM vectors on SS bonds.
The exact values and directions of these vectors are deter-
mined by the crystal structure, subject to the Moriya rules
and the constraints imposed by the geometry of the lattice. In
Fig. 1, the unit cell of the SS lattice together with the choice
of all DM vectors on each bond is shown. We parametrize the
DM vectors via their parallel (D‖,s, D‖,ns, D′) and perpendicu-
lar (D⊥) components. Further details on different components
of the DM vectors are described in Fig. 1. The last term is
the Zeeman coupling between localized spins and an external
applied magnetic field.

We treat the localized spins as classical vectors (true for
f -electron systems with large magnetic moments) with unit
length (|Si| = 1). We use the spherical polar coordinates Si =
(sin θi cos φi, sin θi sin φi, cos θi ) to denote the state of the lo-
calized spin. Henceforth, interactions on the diagonal bonds
are represented with prime parameters while those on axial
bonds with unprimed ones.

In order to study transport properties of itinerant electrons
coupled to localized spin textures, we use the Kondo lattice
model

Ĥe = −
∑

〈i j〉,σ
ti j (c

†
i,σ c j,σ + H.c.) + JK

∑

i

Si · si, (2)

where ti j represents the hopping matrix elements of con-
duction electrons on the SS lattice bonds, and JK > 0 is

FIG. 1. The geometry of the SS lattice used in our study. Solid
black lines represent the axial bonds while dotted black lines repre-
sent the diagonal bonds on alternate plaquette. The direction of the
arrows on these bonds indicates the order of cross product Si × S j

in DM term for these bonds. The in-plane component of DM vector
on axial bonds is divided into staggered D‖,s and nonstaggered D‖,ns

components, and represented by red and purple arrows, respectively.
The in-plane component of DM vector on diagonal bonds D′ is in-
dicated by blue arrows. The perpendicular component of DM vector
D⊥ on axial bonds has out-of-plane and into-plane components. The
directions of all these DM vectors are obtained using Moriya rules
and crystal structure of the SS lattice.

the coupling strength of on-site Kondo term between classi-
cal spin Si and the spin of itinerant electron si = c†

iασαβciβ .
JK/t �= 0 lifts the spin degeneracy of conduction electron
states. In the limit of JK � t , the electron bands form two
blocks separated by a gap ∼JK corresponding to electron spins
aligned parallel and antiparallel to the localized moments,
with the spin-antiparallel states occupying the lower-energy
bands compared to the spin-parallel states. In this limit,
Hamiltonian (2) reduces to an effective tight-binding model
[49] for the lower energy bands, given by

Ĥe = −
∑

〈i, j〉,σ
t eff
i j (d†

i d j + H.c.), (3)

where

t eff
i j = ti je

iai j cos
θi j

2
(4)

is the effective hopping matrix elements for the spin-parallel
electrons between sites i and j. The phase factor, related to
spin chirality, is calculated as

ai j = arctan
− sin(φi − φ j )

cos(φi − φ j ) + cot θi
2 cot θ j

2

(5)

and θi j is the angle difference between the localized spins Si

and S j :

cos θi j = cos θi cos θ j + sin θi sin θ j cos(φi − φ j ). (6)

III. METHOD AND OBSERVABLES

To investigate the model in (1), we use a Markov chain
Monte Carlo (MC) to perform an importance sampling of
the spin configurations, based on the Metropolis algorithm.
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The simulations are performed on lattices of dimension L × L
with L = 16–48 over a wide range of Hamiltonian parame-
ters. We use a simulated annealing procedure to prevent the
freezing of the localized moments which may happen at low
temperatures. In this approach, we start the simulations with
a random spin configuration at a high temperature (T ≈ J),
and equilibrate the system at this temperature. Next, we de-
crease the temperature by �T and use the equilibrated spin
configuration from previous T as an initial configuration for
equilibration at the new temperature. We repeat this process
until we reach T = 0.001J , where measurements are made
to calculate the thermal averages of the physical observables.
100 000 MC steps are used at each T value as equilibration
steps and further 50 000 MC steps are used to perform the
measurements of the observables. We carried out the anneal-
ing procedure from a sufficiently high temperature so that the
system can explore the whole phase space instead of getting
stuck at a local minimum. Also, our lowest temperature in the
simulation is lower than the finite-size gaps in the systems,
thereby leading us to believe the calculated physical quantities
with appropriate finite-size scaling yields an accurate estimate
for the actual ground-state values.

In order to identify the magnetic order of localized spins,
we calculate the static spin structure factor given by the
Fourier transform of spin-spin correlation function

S(Q) = 1

N2

∑

i, j

〈Si · S j〉 exp[iQ · ri j], (7)

where ri j = r j − ri denotes the position vector from the ith
to jth site, and 〈·〉 represents the average over different MC
configurations. Further, to distinguish between the coplanar
and noncoplanar magnetic orders, we calculate scalar spin
chirality as a measure of noncoplanarity of spin textures. On
a triangular plaquette, the scalar spin chirality is defined as

χ� = Si · (S j × Sk ). (8)

The total chirality χ is calculated by χ= 1
Nu

∑
� χ�, where Nu

is the number of SS unit cells. For collinear order (ferromag-
netic and antiferromagnetic) and coplanar order (such as flux
states), χ = 0, whereas noncoplanar magnetic ordered phases
such as canted-flux, all-in/all-out and 3-in–1-out/3-out–1-in
phases are characterized by nonzero values of χ .

We use the Kubo formula to calculate the electronic trans-
port on the magnetic ordered backgrounds on the SS lattice. In
the limit JK/t → ∞, we can use the translational invariance
of the effective tight-binding Hamiltonian (3) to calculate the
momentum space Hamiltonian and obtain the energy spec-
trum of itinerant electrons moving on a background ordered
phase. We calculate the transverse conductivity in k-space as

σxy = ie2h̄

N

∑

m,n �=m,k

[ f (Emk) − f (Enk)]

× 〈mk| vx |nk〉 〈nk| vy |mk〉
(Emk − Enk)2 + η2

, (9)

where m and n represent the band indices and f (Em(n)k ) is the
Fermi-Dirac distribution function for energy Em(n)k . |mk〉 and
|nk〉 are eigenstates in k-space corresponding to energies Emk

and Enk, respectively. N = Lx × Ly represents the size of the

FIG. 2. Different magnetic ordered phases obtained in our sim-
ulation with varying J ′/J and the DM vector components D⊥/J
(a) and D||,ns/J (b). The other components of the DM vector D′/J
or D‖,s/J do not stabilize any additional new phases.

sample and η is the scattering rate. vx and vy are the velocity
operators in kx and ky directions and can be expressed as

vμ = ∂Ĥe

∂kμ̂

, μ = x, y. (10)

For finite values of the Kondo coupling, we diagonalize
Hamiltonian (2) for finite system sizes to obtain the en-
ergy spectrum of itinerant electrons moving on a background
ordered phase. In this case, we calculate the transverse con-
ductivity in r-space as

σxy = ie2h̄

N

∑

m,n �=m

[ f (Em) − f (En)]
〈m| vx |n〉 〈n| vy |m〉
(Em − En)2 + η2

,

(11)

where |m〉, |n〉 are single-particle eigenstates corresponding to
energies Em and En, and vx and vy are calculated as

vμ = i

h̄

∑

j,σ

(t j, j+μ̂c†
j,σ c j+μ̂,σ − H.c.), μ = x, y. (12)

In addition to the transverse charge conductivity, we also
calculate the transverse spin conductivity, given by an analo-
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FIG. 3. The snapshots of real-space spin configurations of localized spins {Si}, for different magnetic ordered phases on the SS lattice as
seen in our MC simulations. The xy components of spins are represented by arrows in the xy plane, while the z component is represented
by the color scale. Hamiltonian parameters used to obtain the different phase are (a) Neél state at J ′/J = 0.8, (b) spiral state at J ′/J = 2.0,
(c) flux state at J ′/J = 0.8 and D⊥/J = 0.8, (d) canted-flux state at J ′/J = 0.8, D⊥/J = 0.8, and B/J = 5.2, (e) AIAO state at J ′/J = 0.8,
D⊥/J = 0.8, and D‖,ns/J = 0.7, and (f) 3-in–1-out/3-out–1-in state at J ′/J = 0.8, D⊥/J = 0.8, D‖,ns/J = 0.2, and B/J = 4.0.

gous Kubo formula that involves the spin current as

σ S
xy = ie

4πN

∑

m,n �=m

[ f (Em) − f (En)]
〈m| Jx |n〉 〈n| vy |m〉
(Em − En)2 + η2

,

(13)

where Jx = 1
2 {vx, diag(S1 · σ, . . . , SN · σ )} is the spin current

operator. As we shall discuss later, for JK ∼ O(t ), the spin
Hall conductivity exhibits characteristic features very differ-
ent from the charge Hall conductivity.

IV. RESULTS

A. Magnetic properties

Hamiltonian (1) exhibits a wide range of magnetic order-
ings in the ground state with varying parameters. We observe
both collinear and noncollinear, coplanar and noncoplanar
magnetic orderings for different sets of Hamiltonian param-
eters. The occurrence of a wide variety of ordered phases
provides the motivation to study the motion of itinerant elec-
trons on these backgrounds with the SS lattice geometry,
thereby exploring the novel electronic properties on a SS
lattice system.

We begin our study by tuning the frustration parameter
J ′/J , and different components of the DM vectors on the SS
lattice (as shown in Fig. 1), in a systematic manner to identify
the magnetic phase diagram in the parameter space spanned
by J ′/J and the parallel and perpendicular components of the
DM vector. Figure 2 summarizes the results of our simula-

tions. In Fig. 3, we show the representative spin configurations
of the principal ordered phases observed in our simulation in
different parameter regimes.

In the absence of DM interaction, the ground state is a
Néel antiferromagnet for J ′/J � 1, and evolves to a spiral
phase for J ′/J � 1 (Fig. 2). For this spiral phase, the an-
gle difference between NN spins is θ = π ± cos−1(J/J ′) for
J ′/J > 1 [43–45]. This can be understood as a consequence of
the destabilization of the antiferromagnetic Néel state due to
increasing frustration on the SS lattice. With the introduction
of DM component D⊥/J , there is a further competition to
lower the energy of the spin configuration by perpendicular
alignment of neighboring spins favored by the DM interaction
term. Our results show that the spiral phase and the Néel
phases are replaced by a coplanar “flux” phase with increasing
D⊥/J [Fig. 2(a)] [46,47,50,51]. Upon the inclusion of D‖,ns/J ,
a noncoplanar all-in/all-out (AIAO) phase is observed in
the ground state for intermediate to strong values of D‖,ns/J
[Fig. 2(b)]. The other components of the DM vector, D′/J or
D‖,s/J , do not stabilize any additional phases. The boundaries
between the different phases can be obtained from the level
crossing of the ground-state energy with the variation of the
parameters in the Hamiltonian.

Next, we explore the effect of an external magnetic field
on these ordered phases on the SS lattice. While it is tempting
to map out the details of the evolution of all these candi-
date phases in the presence of an external magnetic field,
we restrict ourselves to the regime J ′/J = 0.8 (mainly due
to the large parameter space of our model). The choice
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FIG. 4. Spin structure factor S(Q) showing sharp peaks for different magnetic ordered phases on the SS lattice as shown in Fig 3. S(Q) is
calculated for Qx , Qy ∈ [−π, π ] and the weight is represented by the color scales. We characterize the ordered phases based on their peak
locations. We observe S(Q) peaks at (a) Q = (π, π ) for the Néel state, (b) Q = (2π/3, 0) and (2π/3, π ) for the spiral phase, (c) Q = (0, π )
and (π, 0) for the flux phase, (d) Q = (0, 0), (0, π ), and (π, 0) for the canted-flux phase, (e) Q = (0, π ), (π, 0), and (π, π ) for the AIAO
state, and (f) Q = (0, 0), (0, π ), (π, 0), and (π, π ) for the 3-in–1-out/3-out–1-in phase.

of this frustration parameter is motivated by experimental
observation of nearly equal bond lengths in rare-earth com-
pounds [37–39,52]. We characterize various ordered phases
and study their evolution in the presence of an external mag-
netic field by focusing on observables such as spin structure
factor and the scalar spin chirality.

Structure factor: A detailed understanding of the multiple
magnetic states is provided by the magnetic structure factor,
which quantifies the long-range magnetic order in terms of
prominent peaks in the momentum space. In Fig. 4, we show
the structure factor of different magnetic ordered phases ob-
served in our simulation in different parameter regimes. We
use the extended Brillouin zone (BZ) for the spin structure
factor calculation. We can identify different ordered phases by
the location and number of peaks observed in the spin struc-
ture factor. Since there is no spontaneous symmetry breaking
in finite-size systems, we have examined the individual com-
ponents of the structure factor [〈Sμ

i Sμ
j 〉, μ = x, y, z], and the

real-space spin configuration obtained from the snapshots of
the MC simulation to complement the total spin structure fac-
tor and to determine the multi-Q ordered phases. We observe
the following features.

(i) In the absence of DM interaction and Zeeman field,
the ground state shows an antiferromagnetic Néel ordering
[see Fig. 3(a)]. This can be verified from Fig. 4(a) where the
peak in spin structure factor appears at Q = (π, π ). With in-
creasing D⊥/J , the ground state remains Néel antiferromagnet
(AFM) until we reach a critical value Dc

⊥/J ≈ 0.62, where
we observe a phase transition marked by the sharp increase
in the magnitude of the peak at (0, π ). The true nature of
this ground state is revealed by the static spin structure factor

shown in Fig. 4(c), that exhibits two equal magnitude peaks
at Q = (0, π ) and (π, 0) indicating a 2Q state. This is a non-
collinear, coplanar flux state [see Fig. 3(c)]. Thus, the system
undergoes a phase transition from 1Q phase (Néel state) to a
2Q phase (flux state) with increasing D⊥/J .

(ii) Next, the evolution of the magnetic ordering for the
flux state in the presence of an external magnetic field B/J
is investigated for an illustrative value of D⊥/J (>0.62).1

Introduction of a magnetic field leads to the canting of lo-
calized spins along the direction of B field [see Fig. 3(d)], for
any nonzero B/J , which results in a 3Q magnetic ordering
exhibiting three peaks (five peaks in the extended BZ) in
S(Q) at Q = (π, 0), (0, π ), and (0,0). We designate this as
the canted-flux state. In Fig. 5(a), we show the behavior of the
structure factor peak at Q = (0, 0) as a function B/J for differ-
ent values of D⊥/J . It can be seen that S(Q = (0, 0)) increases
monotonically with increasing magnetic field strength. For
very large B/J , the localized moments are aligned fully in the
direction of B field, and ground state becomes a field polarized
ferromagnetic state.

(iii) The introduction of the parallel components of DM
vector either on axial or on diagonal bonds also results in
the canting of localized spins. Figure 6 shows the effect of
parallel component of DM vector on flux state. There is an

1A large D⊥/J is chosen as it amplifies the response of the magnetic
field. While this is unrealistically large compared to the intrinsic DM
strength in many real magnets, recent experiments have shown that
a large DM interaction can be induced in magnetic thin films by
forming interfaces with heavy metals.
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additional peak in S(Q) at (π, π ) and its weight increases with
the increase of strength of parallel component. Qualitatively,
the effect is the same for all three parallel components of
DM vectors, namely, D‖,s/J , D‖,ns/J , and D′/J . The ground
state has 3Q magnetic ordering with peaks in S(Q) at Q =
(0, π ), (π, 0), and (π, π ) as shown in Fig. 4(d). This phase
corresponds to an AIAO state, where the orientation of four
neighboring spins on the SS lattice plaquettes with diagonal
bonds pointing in different directions can be mapped to the
four radially inward and outward pointing vectors from the
vertices of a regular tetrahedron [see Fig. 3(e)]. The transfor-
mation of the flux state to an AIAO state occurs for nonzero
values of D‖,ns/J (or, alternatively, D‖,s/J or D′/J) that in-
creases monotonically with D⊥/J .

(iv) Next, we apply magnetic field in the presence of
both in-plane and perpendicular components of DM vector.
In the absence of magnetic field as mentioned in the previous
paragraph, the magnetic ordering is that of an AIAO type.
With the introduction of an external magnetic field, the lo-
calized moments reorient in the direction of the B field and
we get an additional out-of-plane canting of these moments
[see Fig. 3(f)]. The peak in spin structure factor at Q = (0, 0)
grows with increasing magnetic field as shown in Fig. 7(a).
The ground state now has 4Q ordering with peaks in S(Q)
located at Q = (0, 0), (0, π ), (π, 0), and (π, π ) as shown
in Fig. 4(f). This is a 3-in–1-out/3-out–1-in state with three
spins pointing in and one spin pointing out from the center
of tetrahedron. Further increase in magnetic field results in
all localized spins pointing in the direction of B field, a fully
polarized ferromagnetic state.

Spin chirality: As seen above, multiple magnetic ordered
phases are stabilized in the current model due to the inter-
play of the antiferromagnetic exchange interaction, the DM
interaction, and the external magnetic field. To quantify the
noncoplanarity of these spin textures we look into the scalar
spin chirality χ [Eq. (8)]. Our calculation of χ gives the
following results.

The Néel state being a collinear state has zero spin chi-
rality. Further, the chirality also vanishes in the spiral phase.
The chirality of flux state is zero as it is a 2Q noncollinear,
but coplanar state. With increasing magnetic field on this flux
state, the canting of the local moments in the direction of
B field increases continuously until the local moments are
fully polarized. The chirality for canted-flux state is nonzero
as it is a noncoplanar state with 3Q magnetic ordering. As
shown in Fig. 5(b), the chirality increases monotonically up to
an intermediate value of the applied field and then decreases
continuously to zero at saturation.

Introduction of any of the parallel components of DM
vectors causes the flux state to have an out-of-plane canting
of the localized spins. For such states, S(Q) shows additional
peaks at Q = (π, π ). The weight of this peak increases with
the increase of any of the in-plane components of DM vectors.
This 3Q state is an AIAO state with nonzero spin chirality.
Applying the magnetic field changes the AIAO state to a 3-in–
1-out/3-out–1-in state. For this state, S(Q) shows one more
peak at Q = (0, 0). The enlarged out-of-plane component of
the spins contributes to an increase in noncoplanarity of the
ground state. The magnitude of the spin chirality increases
with increasing magnetic field strength. The 3-in–1-out/3-

FIG. 5. (a) Variation of the structure factor peak height at Q =
(0, 0) on the flux ground state with varying external magnetic field
B/J for fixed values of DM vector component D⊥/J . S(0, 0) is finite
for finite B/J values, and it increases monotonically with increasing
B/J and eventually saturating for B/J ∼ 10. (b) Behavior of the
scalar spin chirality χ , with varying B/J for fixed values of D⊥/J .
χ = 0 refers to a collinear/coplanar phase whereas χ �= 0 denotes a
noncoplanar phase. χ increases rapidly with increasing B/J , reach-
ing a maximum for B/J ≈ 5, and then reduces gradually with further
increase in B/J .

out–1-in state is a 4Q state with a nonzero chirality as shown
in Fig. 7(b).

B. Electronic properties

Band structure: Coupling to the local moments modifies
the transport properties of itinerant electrons dramatically. For
simplicity, we consider a single band of s electrons interacting
with the magnetic ordering via a Kondo coupling between
the electron spin and the local moments, as given by the
Hamiltonian (2). The dynamics of the electrons is fast com-
pared to that of the localized classical spins. Consequently,
at short timescales, the electrons effectively move in a static,
but spatially varying magnetic field. Each local moment Si

acts as a local magnetic field whose action on the spin mag-

FIG. 6. Variation of S(Q) peak height at Q = (π, π ) as a func-
tion of DM vector component D′/J for fixed values of D⊥/J . S(π, π )
increases monotonically with increasing D′/J values. The rise of
S(π, π ) with D′/J is rapid for lower values of D⊥/J as compared
to larger values of D⊥/J . (b) Behavior of the scalar spin chirality
χ at fixed D⊥/J with varying D′/J . χ increases monotonically with
increasing D′/J . However, it rises rapidly and reaches the maximum
quickly for lower values of D⊥/J .
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FIG. 7. (a) Behavior of the structure factor peak weight at Q =
(0, 0) on the AIAO ground state as a function of external magnetic
field B/J and the DM vector component D‖,ns/J . S(0, 0) is finite for
finite B/J values, and it increases monotonically with increasing B/J
and eventually saturating for B/J ∼ 10. (b) Variation of scalar spin
chirality with increasing B/J at fixed values of D‖,ns/J . For D‖,ns/J =
0, with increasing B/J , χ increases rapidly, reaches a maximum, and
then reduces gradually reaching zero for B/J ∼ 10. For D‖,ns/J �= 0,
χ is finite in the B/J = 0 limit. χ shows a nonmonotonic behavior
with increasing B/J and vanishes in the limit B/J ≈ 10.

netic moment of the itinerant electrons si is described by a
Kondo-type interaction JK Si · si. In comparison, the Zeeman
energy due the external magnetic field coupled to the spin of
the electron is small and shall be neglected. In the following,
the hopping amplitude along the axial bonds t is chosen to
be unity (t = 1.0). For diagonal bonds the hopping matrix
element is fixed at t ′/t = 0.8.

In the absence of an external field, the electron band struc-
ture of SS lattice consists of four bands with twofold spin
degeneracy as the SS lattice has four-site unit cell. One of
the bands is flat along the diagonal of BZ which gives rise to
strong van Hove singularity, where any interaction effects are
maximized. A coupling to the spin texture increases the size of
the unit cell in accordance with the periodicity of the magnetic
ordering. The BZ is proportionately reduced and the bands
are folded into the first BZ. JK > 0 lifts the spin degeneracy
and the energy bands for electrons with spins antiparallel
and parallel to the local moments are shifted downward and
upward, respectively. For sufficiently strong Kondo coupling,
i.e., JK � ti j , the spin-parallel and -antiparallel bands are
completely separated by a gap 2JK , and we end up with an
effective tight-binding model as discussed in Sec. II. In this
limit, the effective magnetic field produced by the spin tex-
ture couples directly to the charge degrees of freedom of the
itinerant electrons, analogous to quantum Hall systems. The
electron energy bands are modified depending on the nature
of the underlying magnetic order.

In Fig. 8, we show the electronic band structure along a
high-symmetry path in the first BZ, for the four magnetic
ordered phases which are stabilized in the SS lattice. The
high-symmetry points of BZ taken in the calculations are
� = (0, 0), M = (π/2, 0), and K = (π/2, π/2). We observe
the following key features.

(i) Flux state: The magnetic unit cell of the SS lattice
remains as four sites for flux-type ordering of the localized
spins. The band structure consists of eight bands and for

FIG. 8. The band structure for itinerant electrons plotted along a
high-symmetric path in the BZ for different magnetic orderings of
localized spins: (a) flux state, (b) canted-flux state, (c) AIAO state,
and (d) 3-in–1-out/3-out–1-in state. The ratio of hopping matrix on
diagonal and axial bond is set to t ′/t = 0.8.

large JK these split into four bands each for spin-parallel and
-antiparallel alignment of itinerant electrons with the localized
moments. We show the dispersion of itinerant electrons when
they move on the background of flux phase in Fig. 8(a). The
four spin-anti-parallel bands are doubly degenerate and touch
each other at the K point of BZ.

(ii) Canted-flux state: For this magnetic state, the disper-
sion of conduction electrons is plotted in Fig. 8(b). It consists
of four bands with degeneracy of the bands partially lifted.
There is a gap opening between the upper and lower pair of
bands. The noncoplanar canted-flux state not only lifts the
degeneracy, but also opens up a direct band gap at the K point.

(iii) AIAO state: For this state, the magnetic unit cell is
also four sites. The band structure comprises of four bands as
shown in Fig. 8(c). The degeneracy of the bands is lifted and
we observe an indirect gap between upper and lower pair of
bands at the K point. Interestingly, the middle two bands touch
each other at a point close to the K point.

(iv) 3-in–1-out/3-out–1-in state: The size of the magnetic
unit cell remains same as the SS lattice for this magnetic
ordering. The degeneracy of all four bands is fully lifted and
we observe direct as well as indirect band gaps between the
bands as shown in Fig. 8(d). We calculate the Chern number of
the bands in this state and found that two bands have nonzero
Chern numbers [see Fig. 8(d)].

Hall conductivity at infinite Kondo coupling: The coupling
to local moments modifies the transport properties of itinerant
electrons significantly in metallic magnets. The effect is most
dramatic in the transverse conductivity, especially when the
underlying spin arrangement is noncoplanar. In a magnetic
metal, the Hall resistivity consists of three contributions,

ρxy = ρNHE
xy + ρAHE

xy + ρTHE
xy ,
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FIG. 9. Topological Hall conductivity of conduction electrons
in the JK � t limit, as a function of Fermi energy, when they
move in the background of different magnetic phases: (a) flux state,
(b) canted-flux state, (c) AIAO state, and (d) 3-in–1-out/3-out–1-in
state. We use t ′/t = 0.8.

where NHE, AHE, and THE refer to normal, anomalous, and
topological Hall effects, respectively. The AHE appears in
metals with a net magnetization due to spin-orbit coupling.
On the other hand, THE arises due to the Berry phase ac-
quired by an electron moving in a noncoplanar spin texture.
The phenomenon is best understood within the framework
of the effective Hamiltonian (3) in the strong coupling limit
(JK � t). In this limit, the Berry phase acquired by an electron
moving around a closed plaquette results in an effective flux
threading each such plaquette that acts as a fictitious magnetic
field and gives rise to a Hall effect, whose origin is purely
geometrical. Further, it depends on the value of the Fermi
energy. In this work, we focus only on the contribution of
THE to the transverse conductivity for different background
magnetic phases with varying Fermi energy. In the strong
coupling limit, we use the Hamiltonian (3) and the momentum
space Kubo formalism [Eq. (9)] to study the THE. We observe
the following.

(i) Flux state: The Hall conductivity of electrons moving
on a background of the flux phase with the electron spin
strongly coupled to the local moment is plotted in Fig. 9(a)
for varying the chemical potential values. We observe the
Hall conductivity remains zero throughout the entire range
of chemical potential. As identified earlier, the flux state is a
coplanar state with zero chirality. This explains the vanishing
THE for the flux state.

(ii) Canted-flux state: As discussed before, the canted-flux
state is a 3Q state and the electronic band structure displays a
direct band gap at the K point for this state. Further, the spin
chirality associated with this noncoplanar state is nonzero,
and that contributes to THE. The transverse conductivity as
a function of Fermi energy for canted-flux state is shown in

Fig. 9(b). We observe a plateau in the Hall conductivity as the
chemical potential falls in the band gap. The Hall conductivity
has the quantized value −1 (in units of e2/h).

(iii) AIAO state: The behavior of Hall conductivity with
changing chemical potential for this phase is shown in
Fig. 9(c). There is a nonzero value of Hall conductivity for
small range of Fermi energy which is attributed to nonzero
value of chirality for this state. The value of the conductivity
is not an integer as there is no direct band gap between the
energy bands.

(iv) 3-in–1-out/3-out–1-in state: The most interesting out-
come of our work is observed for this magnetic state. This
magnetic phase is noncoplanar with nonzero value of chirality.
We also observe that degeneracy of all the bands is fully lifted
and there are direct and indirect gaps between the bands. The
Hall conductivity for this phase is shown in Fig. 9(d) and it
remains nonzero for a large window of Fermi energy lying
between −2t and 2t . Again, the noncoplanarity of this phase
manifests itself through nonzero value of THE. When the gap
between the energy bands is direct, the quantized Hall con-
ductivity remains −1 (in units of e2/h) for the width of band
gap. The quantized value of σxy is related to the sum of Chern
numbers of the lowest two bands in the energy spectrum [see
Fig. 8(d)]. This is a signature of integer THE similar to integer
quantum Hall effect observed in quantum Hall systems.

Hall conductivity at finite Kondo coupling: Having studied
the behavior of the topological Hall effect in the ground state
in the JK � t limit, we next attempt to find it at intermediate
values of the Kondo coupling JK ∼ O(t ). We use the Hamil-
tonian (2) and the real-space Kubo formalism [Eq. (11)] to
perform our transport calculations in this regime. Unlike the
JK � t limit, where the contribution to the Hall conductivity
is due to the electronic states of either the spin antiparallel
or the spin parallel to the local moments, for JK ∼ O(t ),
the contribution is due to the electronic states of both spin
parallel and antiparallel to the local moments. In addition, we
also consider the contribution of spin-flip hopping terms due
to the noncoplanar orderings of localized spins. Further, the
contribution to topological Hall effect strongly depends on the
value of Fermi energy.

We calculate the Hall conductivity for a canted-flux state
and a 3-in–1-out/3-out–1-in state for finite Kondo coupling
values by varying the Fermi energy. The results are shown
in Fig. 10. We observe that for both the spin backgrounds (i)
the Hall conductivity due to the electrons aligned antiparal-
lel and parallel show similar contribution, but with opposite
signs for JK = 8t . This can be understood by the fact that
the opposite electron spin alignment with respect to the lo-
cal magnetic ordered phases gives rise to emergent magnetic
fields of opposite signs. As a manifestation of this effect, in
a semiclassical picture, electrons of opposite spins deflect in
opposite transverse directions due to the emergent magnetic
fields. σxy changes sign as the Fermi energy crosses a van
Hove singularity. It exhibits a quantized value when the Fermi
energy lies within the band gap for both the ordered phases.
(ii) For JK = t , the Hall conductivity not only shows distinct
features as compared to the JK � t limit, but also has a large
contribution even at E f = 0. This contribution to the Hall
conductivity is due to the overlap of the electronic states
aligned parallel and antiparallel to the local spin background.

245132-8



TOPOLOGICAL HALL EFFECT IN THE … PHYSICAL REVIEW B 102, 245132 (2020)

FIG. 10. Behavior of topological Hall conductivity as a function
of the Fermi energy for JK = 8t and t , with conduction electrons
coupled to (a) canted-flux state and (b) 3-in–1-out/3-out–1-in state
orderings of the localized moments on the SS lattice.

Here, as in the previous case, σxy changes sign as the Fermi
energy crosses a van Hove singularity. However, σxy does not
show any quantized values over the whole range of Fermi
energy, indicating the absence of any clear band gap in the
electronic states. We would like to emphasize that with the
increase of JK the contribution from spin-flip hopping terms
becomes smaller and for very large Kondo coupling (JK � t )
this contribution is zero and we reproduce results similar to
Fig. 9. However, if we do not consider the spin-flip hopping
terms then for JK � 5t the transverse conductivity results
match with that of infinite Kondo coupling.

Next, we discuss the behavior of the topological spin Hall
conductivity (σ S

xy). While both σxy and σ S
xy are interlinked, they

also exhibit some distinct features which makes this study
interesting. Figure 11 shows the variation of the spin Hall
conductivity with changing chemical potential for different
values of JK on the canted-flux and the 3-in–1-out/3-out–1-in
phases, respectively. In the strong coupling limit (JK � t), the
energy bands for local spin-aligned and -antialigned electrons
are separated by a wide band gap. As a result, σxy and σ S

xy
follow one another closely. In this limit, only one species
of electrons contributes to the Hall conductivities. Both σxy

and σ S
xy, exhibit sharp jumps and change signs as the Fermi

energy is tuned across the van Hove singularities. For JK ∼ t ,
the local spin polarization is incomplete. This leads to differ-
ent fractions of spin-parallel and spin-antiparallel states with
strong overlap in energy of these states. The electron spin
states hybridize and the spins of itinerant electrons are not
simply aligned or antialigned to the local moments. The en-
ergy eigenstates have contributions from both electronic spin
states. As a consequence, the σxy and σ S

xy are decoupled from

FIG. 11. Behavior of topological spin Hall conductivity as a
function of the Fermi energy for different Kondo coupling values
of conduction electrons coupled to (a) canted-flux state and (b) 3-in–
1-out/3-out–1-in state orderings of the localized moments.

each other. For JK = t , there exist ranges of Fermi energy for
which σ S

xy > σxy. This is suggestive of the fact that electrons
with opposite spins are deflected in opposite directions, which
leads to an increase in the spin Hall conductivity and a de-
crease in the charge Hall conductivity as compared to the case
of the zero-field nonoverlapping band scenario.

V. SUMMARY

We have identified multiple noncollinear and noncoplanar
magnetic phases stabilized on the SS lattice in the presence
of competing antiferromagnetic exchange couplings, DM in-
teraction, and an external magnetic field. We discuss the role
of in-plane and out-of-plane components of the DM vectors,
and external magnetic field in the stabilization of these exotic
ground states of localized moments. Having identified the
unconventional magnetic orderings, we discuss the electronic
properties due to the coupling of itinerant electrons to these
complex spin textures, focusing on the topological Hall effect.
Our study of THE on SS lattice for strong and intermediate
Kondo couplings between localized spins and itinerant elec-
trons shows distinct contributions to Hall conductivities. Our
results predict occurrence of THE on SS lattice and may be
seen in experiments on rare-earth tetraborides.
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