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Demetrio Vilardi , Pietro M. Bonetti , and Walter Metzner
Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

(Received 9 October 2020; accepted 4 December 2020; published 18 December 2020)

We analyze the interplay of antiferromagnetism and pairing in the two-dimensional Hubbard model with a
moderate repulsive interaction. Coupled charge, magnetic, and pairing fluctuations above the energy scale of
spontaneous symmetry breaking are treated by a functional renormalization group flow, while the formation of
gaps and order below that scale is treated in mean-field theory. The full frequency dependences of the interaction
vertices and gap functions are taken into account. We compute the magnetic and pairing gap functions as a
function of doping p and compare with results from a static approximation. In spite of the strong frequency
dependences of the effective interactions and of the pairing gap, important physical results from previous static
functional renormalization group calculations are confirmed. In particular, there is a sizable doping regime
with robust pairing coexisting with Néel or incommensurate antiferromagnetism. The critical temperature
for magnetic order is interpreted as the pseudogap crossover temperature. Computing the Kosterlitz-Thouless
temperature from the superfluid phase stiffness, we obtain a superconducting dome in the (p, T ) phase diagram
centered around 15% hole doping.
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I. INTRODUCTION

Shortly after the discovery of high-temperature super-
conductivity in cuprates, Anderson [1] proposed the two-
dimensional Hubbard model to describe the behavior of the
valence electrons in the copper-oxygen planes. Indeed, the
model captures the most prominent ordered phases observed
in high-Tc cuprates: antiferromagnetism and d-wave super-
conductivity [2].

Antiferromagnetism in the Hubbard model is not always of
Néel type, that is, with antiparallel spin orientation between
adjacent lattice sites. Magnetic order with (generally incom-
mensurate) wave vectors away from the Néel point (π, π ) has
been found away from half filling in several mean-field studies
[3–7], and also, including fluctuations, by expansions in the
hole density [8–11].

Unbiased evidence for superconductivity with a sizable
energy scale already at moderate interaction strengths has
been established from functional renormalization group (fRG)
calculations [12–17], and from quantum cluster methods at
intermediate to strong coupling [18–25]. Recently, a fRG flow
starting from the dynamical mean-field solution (instead of
the bare action) has confirmed robust pairing with d-wave
symmetry at strong coupling [26].
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The fRG flow is defined by a successive, scale-dependent
integration of the fermionic fields in a path integral repre-
sentation of the effective action [17]. Spontaneous symmetry
breaking is signaled by a divergence of effective interactions
at a critical energy scale �c. Accessing the ordered phase
by continuing the flow beyond the critical scale is possible
[27], but rather complicated due to a proliferation of anoma-
lous interaction terms [28,29]. One option is to decouple the
fermionic interaction by introducing a bosonic order param-
eter field via a Hubbard-Stratonovich transformation, and to
study a coupled flow involving fermions and bosons [30,31].
Alternatively, as a “poor man’s” approximation, one may re-
strict the effective interactions below the critical scale �c to
those (reduced) interactions which drive the symmetry break-
ing [32,33]. The flow of these interactions is governed only by
a single channel (one for each order parameter), and the final
order parameters at the end of the flow are given by simple
gap equations, which can be derived from the fermionic flow
equation [33] or by introducing a bosonic order parameter
field at the critical scale [34]. Consistently formulated, this
procedure is equivalent to a mean-field theory (MFT) for
the degrees of freedom below the critical scale. In a regime
where pairing is the only instability, it turned out that the
ground state pairing gap of the Hubbard model obtained from
this fRG+MFT approach agrees well with results from the
much more involved flow equations with coupled interaction
channels. The method was then extended to parameter regions
where pairing coexists with Néel [33] or spiral [35] anti-
ferromagnetism. The coexistence of antiferromagnetism and
d-wave pairing was also found in quantum cluster calculations
at stronger interactions [19,21–23,25].

So far, fRG calculations of order parameters for the re-
pulsive two-dimensional Hubbard model have relied on a
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static approximation, that is, the frequency dependences of the
effective interaction and gap functions have been neglected
[36]. However, dynamical fRG flows in the symmetric regime
(before reaching the critical scale �c) have indicated a rather
strong impact of the frequency dependence already at moder-
ate interaction strengths [37–39]. The effective two-particle
interactions generally develop a strong dependence on all
three Matsubara frequencies, and the critical scale is enhanced
compared to the static approximation. More importantly, it
turned out that the frequency dependence leads to an expan-
sion of the parameter regime where antiferromagnetism is the
first instability (at the critical scale �c), with rather weak
pairing interactions at that scale. This cast some doubt on the
robust pairing tendencies obtained in the static fRG.

In the present paper we address this issue by using a
dynamical extension of the fRG+MFT method with full fre-
quency dependence to compute the magnetic and pairing gap
functions for the repulsive two-dimensional Hubbard model
with a moderate interaction strength. While magnetism is
indeed the leading instability in a broad doping range, we
find that robust pairing with a sizable pairing gap emerges in
coexistence with antiferromagnetism at energy scales below
�c around optimal doping. The size of the gap is not reduced
compared to the one obtained in a static fRG+MFT approxi-
mation. We also compute the superfluid phase stiffness which
enables us to estimate the Kosterlitz-Thouless transition tem-
perature for superconductivity as a function of doping.

Our paper is structured as follows. In Sec. II we define the
model and we present the fRG flow equations. Results for the
gap functions as a function of doping and frequency, for the
phase stiffness, and the Kosterlitz-Thouless temperature are
presented and discussed in Sec. III. A summary and conclu-
sion in Sec. IV closes the article.

II. FORMALISM

A. Model

The Hubbard model [40] describes spin- 1
2 lattice fermions

with quantum mechanical hopping amplitudes and a local
interaction. Its Hamiltonian has the form

H =
∑
i, j,σ

ti j c†
i,σ c j,σ + U

∑
i

ni,↑ni,↓, (1)

where c†
i,σ (ci,σ ) creates (annihilates) a fermion on site i with

spin orientation σ (↑ or ↓). We consider the two-dimensional
case on a square lattice with a repulsive interaction U > 0 at
finite temperatures T . We restrict the hopping matrix ti j to
nearest and next-to-nearest neighbors, with amplitudes −t and
−t ′, respectively. Fourier transforming ti j yields the dispersion
relation

εk = −2t (cos kx + cos ky) − 4t ′ cos kx cos ky. (2)

B. Functional renormalization group

We compute the gap functions for magnetism and super-
conductivity from a truncated fRG flow. The flow is defined
by a successive integration of the fermionic fields, which is
implemented via a flowing cutoff applied to the bare propa-
gator [17]. Here, we choose a smooth frequency cutoff of the

form [41]

G�
0 (k, ν) = ν2

ν2 + �2
G0(k, ν), (3)

where G0(k, ν) = [iν − (εk − μ)]−1 is the bare fermion prop-
agator as a function of the crystal momentum k and the
fermionic Matsubara frequency ν (odd integer multiples of
πT ). The flow parameter � is reduced continuously from
infinity to zero.

At low temperatures the flow needs to be divided in two
qualitatively distinct regimes. For � > �c all symmetries of
the bare Hamiltonian are conserved, while for � < �c the
SU(2) spin symmetry, the U(1) charge symmetry, or both
are spontaneously broken. The instabilities are signaled by
divergencies of effective interactions at the critical scale �c.
The latter is nonzero for temperatures below a pseudocritical
temperature T ∗, which depends on the hopping amplitudes,
the interaction strength, and the band filling.

In the symmetric regime we approximate the flow by
a second-order (one-loop) truncation for the effective two-
particle interaction, discarding self-energy feedback and
contributions from the three-particle interaction. All fluctu-
ation channels (charge, magnetic, pairing) and the coupling
between these channels are taken into account on equal foot-
ing. Fluctuation-driven instabilities such as d-wave pairing
from magnetic fluctuations are captured by this weak-
coupling truncation. In the symmetry-broken regime (� <

�c) we further simplify the flow by keeping only those in-
teractions which generate the order parameters. The flow of
these reduced interactions is decoupled, that is, each of them
is determined by a single channel only. The flowing-reduced
interactions determine the flow of the gap functions, which ap-
pear as anomalous self-energy contributions. Their feedback
on the flow of the interactions is crucial in the symmetry-
broken regime [27] and is therefore taken into account. The
fusion of a complete one-loop flow for � > �c with a single-
channel truncation for � < �c corresponds to a mean-field
approximation with effective interactions extracted from the
flow at the critical scale �c [33].

C. Symmetric regime

The two-particle vertex V �
σ1σ2σ3σ4

(k1, k2, k3, k4) with ki =
(ki, νi ) is generally a function of four momentum, frequency,
and spin variables, where the labels 1 and 2 correspond to
ingoing, and the labels 3 and 4 to outgoing particles. Trans-
lation invariance in space and time implies momentum and
frequency conservation, k1 + k2 = k3 + k4. We can thus drop
the redundant variable k4 in V �. In the case of SU(2) spin
rotation invariance, all spin components of the vertex can be
expressed by a single momentum and frequency-dependent
function V �(k1, k2, k3) as [42]

V �
σ1σ2σ3σ4

(k1, k2, k3, k4) = V �(k1, k2, k3)δσ1σ3δσ2σ4

−V �(k2, k1, k3)δσ1σ4δσ2σ3 . (4)

To parametrize the momentum dependence of the vertex,
we use the channel decomposition introduced by Husemann
and Salmhofer [41], where the vertex is expressed as a
sum of the bare interaction and fluctuation-induced effective
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interactions in the pairing, magnetic, and charge channels,

V �(k1, k2, k3)

= U − φ�
p (k1, k3; k1 + k2) + φ�

m (k1, k2; k2 − k3)

+ 1
2φ�

m (k1, k2; k3 − k1) − 1
2φ�

c (k1, k2; k3 − k1). (5)

The dependence on the two fermionic momenta in each
channel is more regular than the dependence on the bosonic
linear combination in the last argument. We will neglect it
completely in the magnetic and charge channel, where only
relatively weak momentum dependences are expected, and
approximate it by a constant and a d-wave term in the pairing
channel, that is,

φ�
p (k1, k3; q) = S�

q,ω(ν1, ν3)

+ dk1− q
2
dk3− q

2
D�

q,ω(ν1, ν3), (6)

φ�
m (k1, k2; q) = M�

q,ω(ν1, ν2), (7)

φ�
c (k1, k2; q) = C�

q,ω(ν1, ν2), (8)

with q = (q, ω) and dk = cos kx − cos ky. The dependence on
the remaining bosonic momentum q is kept, and the depen-
dence on all three Matsubara frequencies ν1, ν2, and ω is fully
taken into account. The parametrization of V �(k1, k2, k3) via
Eqs. (5)–(8) has already been used in Ref. [38]. The flow
equations for the four functions S�, D�, M�, and C� can
be found there.

D. Symmetry-broken regime

In the regime � < �c at least one symmetry of the Hub-
bard Hamiltonian is spontaneously broken. The flow of the
effective interactions [17] and most studies by other methods
[2] indicate antiferromagnetism (Néel, stripes, spiral, etc.) and
d-wave pairing as the key instabilities. We restrict the zoo of
possible magnetic order patterns to spiral order with a single
wave vector Q, which includes Néel order as the special case
where Q = (π, π ). Spiral order is planar and can be oriented
in any plane. The most convenient choice is a plane perpen-
dicular to the spin-quantization axis, that is, the xy plane for
the standard spin basis.

Spiral magnetic order in the xy plane is associated with
anomalous expectation values 〈ψ↑(k)ψ∗

↓(k + Q)〉, where Q =
(Q, 0), and singlet pairing with anomalous expectation values

of the form 〈ψ↑(k)ψ↓(−k)〉. Here and in the following, ψ∗
σ (k)

and ψσ (k) are Grassmann fields corresponding to fermion cre-
ation and annihilation operators in momentum representation,
respectively. Symmetry breaking leads to anomalous terms
in the effective action ��[ψ,ψ∗]. Spiral order leads to spin
flips combined with a momentum shift Q, and pairing leads to
pair creation and annihilation terms. The quadratic part of the
effective action thus has the general form

��
2 [ψ,ψ∗] =

∫
k

∑
σ

{ − [
G�

0 (k)
]−1 + ��(k)

}
ψ∗

σ (k)ψσ (k)

+
∫

k

[
�

m (k)m∗(k) + �∗
m (k∗)m(k)

]

+
∫

k

[
�

p (k)p∗(k) + �∗
p (k∗)p(k)

]
, (9)

where k∗ = (k,−ν),

m(k) = ψ↑(k) ψ∗
↓ (k + Q), m∗(k) = ψ↓(k + Q)ψ∗

↑(k),

p(k) = ψ↑(k)ψ↓(−k), p∗(k) = ψ∗
↓(−k)ψ∗

↑ (k),

and
∫

k = T
∑

ν

∫
k with

∫
k = ∫

d2k
(2π )2 is a shorthand nota-

tion for momentum integrals and Matsubara frequency sums.
��(k) is the normal self-energy, which we neglect in this
work. �

m (k) and �
p (k) are (generally) complex functions,

which we refer to as the magnetic gap function and pairing gap
function, respectively. The frequency dependence of the (spin-
singlet) pairing gap is symmetric, that is, �

p (k) = �
p (k∗).

It is convenient to express ��
2 [ψ,ψ∗] in a Nambu repre-

sentation as

��
2 [�,�∗] = −

∫ ′

k
�∗(k)[G�(k)]−1�(k), (10)

with a four-component Nambu spinor

�(k) = [ψ↑(k), ψ∗
↓ (−k), ψ↓(k + Q), ψ∗

↑ (−k − Q)], (11)

and a 4 × 4 Nambu propagator G�(k) = −〈�(k)�∗(k)〉. The
prime at the integral indicates that the momentum integration
is restricted to a reduced magnetic Brillouin zone. Its shape
depends on Q. For example, for Q = (π − 2πη, π ), a suitable
reduced Brillouin zone is given by {k; |kx| � π, |ky| � π/2}.
The matrix elements of the inverse Nambu propagator are
determined by Eq. (9) as

[G�(k)]−1 =

⎛
⎜⎜⎜⎜⎝

[
G�

0 (k)
]−1

�
p (k) �

m (k) 0

�∗
p (k∗) −[

G�
0 (−k)

]−1
0 −�

m (−k − Q)

�∗
m (k∗) 0

[
G�

0 (k + Q)
]−1 −�

p (−k − Q)

0 −�∗
m (−k∗ − Q∗) −�∗

p (−k∗ − Q∗) −[
G�

0 (−k − Q)
]−1

⎞
⎟⎟⎟⎟⎠. (12)

Our central approximation in the regime � < �c is that we keep only those effective interactions which contribute directly
to the flow of the gap functions. The corresponding reduced quartic part of the effective action has the form

��
4 [ψ,ψ∗] =

∫
k,k′

V �
m (k, k′)

2
[m∗(k)m(k′) + m(k)m∗(k′)] +

∫
k,k′

W �
m (k, k′)

2
[m∗(k)m∗(k′) + m(k)m(k′)]

+
∫

k,k′

V �
p (k, k′)

2
[p∗(k)p(k′) + p(k)p∗(k′)] +

∫
k,k′

W �
p (k, k′)

2
[p∗(k)p∗(k′)+p(k)p(k′)]. (13)
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The coupling functions V �
m (k, k′) and V �

p (k, k′) parametrize
reduced normal interactions. For example, V �

p (k, k′) corre-
sponds to the coupling function of the reduced BCS model,
which is restricted to the Cooper channel (with vanishing total
momentum of ingoing and outgoing particles). W �

m (k, k′) and
W �

p (k, k′) parametrize anomalous interaction terms which are
generated in the symmetry-broken regime [43].

At the critical scale �c (and above it), the anomalous
terms vanish, while the normal reduced coupling func-
tions can be obtained from the full two-particle vertex
V �

σ1σ2σ3σ4
(k1, k2, k3, k4) as [44]

V �
m (k, k′) = V �

σ,−σ,−σ,σ (k + Q, k′, k, k′ + Q), (14)

V �
p (k, k′) = 1

2V �
s (k,−k, k′,−k′), (15)

where V �
s = V �

σ,−σ,σ,−σ − V �
σ,−σ,−σ,σ is the spin-singlet com-

ponent of the two-particle vertex. Note that V �
m (k, k′) is

generally complex, while V �
p (k, k′) is real, since the imagi-

nary parts cancel in the spin-singlet component.
Due to the restrictions of momenta in the reduced interac-

tions, the flows of the magnetic and pairing coupling functions
are decoupled from each other, and each of them is governed
by one channel only. For example, the flow of the pairing cou-
pling is determined by the particle-particle channel. The flow
of the gap functions is entirely determined by the amplitude
coupling [27,28,45]

A�
X (k, k′) = V �

X (k, k′) + W �
X (k, k′), (16)

with X = m, p, so that we consider only this linear combi-
nation in the following. The transverse coupling V �

X (k, k′) −
W �

X (k, k′) is related to a Ward identity and the Goldstone
theorem, which are fulfilled in the fRG+MFT approach [34].

In line with our parametrization in the symmetric regime,
we simplify the momentum dependencies of the gap functions
and the coupling functions by using a small set of form fac-
tors. In the magnetic channel, the dependences on k and k′
are weak and will be neglected. In the pairing channel we
keep only the d-wave components, since there is no pairing
instability with any other symmetry. Hence, we approximate
the momentum dependences of the gap and coupling functions
by a simple ansatz, namely

�
m (k) = �

m (ν), (17)

�
p (k) = �

p (ν)dk (18)

for the gap functions, and

A�
m (k, k′) = A�

m (ν, ν ′), (19)

A�
p (k, k′) = A�

p (ν, ν ′)dkdk′ (20)

for the coupling functions. The dependences on the Matsubara
frequencies ν and ν ′ are fully taken into account.

At the critical scale �c, we have �c
m (ν) = �c

p (ν) = 0,
and

A�c
m (ν, ν ′) = V �c

m (ν, ν ′) =
∫

k,k′
V �c

m (k, k′), (21)

A�c
p (ν, ν ′) = V �c

p (ν, ν ′) =
∫

k,k′
dkdk′V �c

p (k, k′). (22)

These are the initial conditions for the flow in the symmetry-
broken regime � < �c. In our numerical solution we will
switch from the full one-loop flow in the symmetric regime
to the reduced single-channel flow slightly above the critical
scale �c, and we insert tiny gap values as the initial condition
for the gap functions to get the symmetry breaking started.

The critical scale �c is the scale at which the first insta-
bility sets in, usually the magnetic one. Below that scale the
magnetic gap develops while the pairing instability sets in at a
lower scale, and only if the temperature is sufficiently low. We
use the simplified ansatz for magnetic and pairing interactions
in the entire symmetry-broken regime � < �c, including the
purely magnetic regime above the critical scale for pairing.

Since only a single channel contributes to the flow of each
coupling function A�

X , the right-hand side of the flow equation
is a quadratic form in A�

X . It is convenient to view A�
X as a

matrix with matrix elements A�
X (ν, ν ′). The flow equation for

A�
X can then be written in matrix form,

∂�A�
X = A�

X

[
∂���

X

]
A�

X , (23)

for X = m, p, where ��
X (ν, ν ′) = δνν ′��

X (ν) is diagonal in
frequency with diagonal elements

��
m (ν) = T

∫
k

{
G�(k)G�(k + Q) + [

F�
m (k)

]2}
, (24)

��
p (ν) = T

∫
k

d2
k

{ − G�(k)G�(−k) + [
F�

p (k)
]2}

. (25)

The propagators in Eqs. (24) and (25) are defined by the
expectation values

G�(k) = −〈ψσ (k)ψ∗
σ (k)〉 = G�

11(k), (26)

F�
m (k) = −〈ψ↑(k)ψ∗

↓(k + Q)〉 = G�
13(k), (27)

F�
p (k) = −〈ψ↑(k)ψ↓(−k)〉 = G�

12(k), (28)

where G�
αα′ (k) are matrix elements of the Nambu propagator

defined in Eq. (12).
The flow equation (23) can be formally integrated. With the

initial condition A�
X = A�c

X = V �c
X for � = �c, one obtains

the solution

A�
X = [

1 − Ṽ �c
X ��

X

]−1
Ṽ �c

X , (29)

where [· · · ]−1 denotes a matrix inversion, and

Ṽ �c
X = [

1 + V �c
X �

�c
X

]−1
V �c

X . (30)

Ṽ �c
X and V �c

X are related by the Bethe-Salpeter equation
V �c

X = Ṽ �c
X + Ṽ �c

X �
�c
X V �c

X . Hence, Ṽ �c
X is the two-particle ir-

reducible part of V �c
X .

The flow equations for the gap functions are obtained from
the first equation in the flow equation hierarchy, which relates
the flow of the self-energy to the two-particle vertex [17].
Inserting the two-particle vertex as described above, one finds

∂��
m (ν) = −T

∑
ν ′

∫
k
A�

m (ν, ν ′ )̃∂�F�
m (k, ν ′), (31)

∂��
p (ν) = −T

∑
ν ′

∫
k
A�

p (ν, ν ′ )̃∂�F�
p (k, ν ′)dk, (32)
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where F�
m (k) and F�

p (k) are the anomalous propagators
corresponding to magnetic order and pairing, respectively.
The derivative denoted by ∂̃� acts only on the scale depen-
dence directly introduced by the cutoff function, not on the
scale dependence from the flowing gap functions appearing
in the expressions for F�

m (k) and F�
p (k). By contrast, the

scale derivative ∂� in Eq. (23) is a total derivative, which
includes self-energy feedback terms generated from tadpole
contractions of three-particle vertices [27,46].

The flow equations (31) and (32) can be formally integrated
to [33]

�
m (ν) = −T

∑
ν ′

∫
k

Ṽ �c
m (ν, ν ′)F�

m (k, ν ′), (33)

�
p (ν) = −T

∑
ν ′

∫
k

Ṽ �c
p (ν, ν ′)F�

p (k, ν ′)dk, (34)

where Ṽ �c
X is the irreducible part of V �c

X . These are nonlinear
integral equations for the gap functions �

X (ν). Finding a self-
consistent solution by iteration is difficult. We found that it is
much easier to compute the gap functions from a numerical
integration of the flow equations (31) and (32).

The pairing gap function is symmetric in frequency, that is,
p(ν) = p(−ν), and can be chosen real for all frequencies,
since Ṽ �c

p (ν, ν ′) is real for all frequencies. The magnetic gap
function can be chosen such that m(−ν) = ∗

m(ν). Its imag-
inary part cannot be removed by choosing a suitable global
phase, since the effective interaction Ṽ �c

m (ν, ν ′) is complex.

III. RESULTS

Before presenting our results, we mention here a few tech-
nical details regarding the numerical solution of the equations.
In the symmetric regime, we solve the flow equation of the
competing channels by taking into account about 90 Mat-
subara frequencies for each frequency argument and about
320 Brillouin zone patches for the transfer momentum. When
required, we extend the frequency range with a numerical
projection [47]. We have checked that the frequency boxes
are large enough to obtain converged results. The symmetric
one-loop flow is stopped when the effective interaction in one
of the channels reaches the value 400t , that is, at a scale �

very close to the critical scale �c. In the symmetry-broken
regime, the two order parameters are initialized with a small
value of the order 10−3t . The irreducible vertices, Eq. (30),
and the flowing vertices, Eq. (29), in the symmetry-broken
regime are calculated with a matrix inversion in Matsubara
frequency space.

The momentum Q characterizing the spiral order is deter-
mined from the maximum of the magnetic interaction upon
approaching the critical scale �c in the symmetric regime. It
has the general form Q = (π − 2πη, π ), or symmetry related.
We have checked that the peak momentum of the magnetic
interaction at �c is very close to the momentum Q which
minimizes the free energy at the end of the flow.

The particle density n is fixed at each stage of the flow.
In the symmetric regime the relation between density and
chemical potential remains the bare one, since we have no
self-energy correction. In the symmetry-broken regime we
compute the density from the normal component of the

FIG. 1. Amplitudes of the magnetic and pairing gaps as a func-
tion of doping at fixed temperature T = 0.027t . The gaps from the
dynamical fRG with full frequency dependence are shown for the
lowest Matsubara frequency ν0 = πT , and compared to results from
the static approximation. The vertical arrows indicate the transition
from Néel to incommensurate spiral antiferromagnetism.

fermion propagator in the standard way, and we adapt the
chemical potential such that the density remains fixed.

We choose a fixed hopping amplitude ratio t ′/t = −0.16
and a moderate interaction strength U = 3t in all calcula-
tions. We use natural units such that h̄ = kB = 1. The lattice
constant is also set to one. Quantities with dimension energy
(=temperature) are presented in units of t .

A. Order parameters

In Fig. 1, we show the amplitudes (maxima in momentum
space) of the magnetic and the pairing gaps as a function of
the hole doping p = 1 − n at a fixed temperature T = 0.027t .
Results from the dynamical fRG with full frequency depen-
dence as described above are compared to results from a static
approximation as employed by Wang et al. [33] and Yamase
et al. [35], where all frequency dependences are neglected.
The gap amplitudes obtained from the dynamical fRG are
shown at the lowest positive Matsubara frequency, that is,
ν0 = πT . The pairing gap amplitude is 2p(ν), since the
maximum value of the d-wave form factor dk = cos kx −
cos ky is two. Within our ansatz, the magnetic gap is mo-
mentum independent. Its “amplitude” is thus simply m(ν).
It is generally complex, but the imaginary part is small for
ν = ν0 = πT . The imaginary part of the analytic continuation
of m(ν) to the entire complex frequency plane vanishes for
ν → 0. In the figure we only show the real part of m(ν0).
In the static approximation the magnetic gap is frequency
independent and can be chosen real.

Antiferromagnetic order extends from half filling to a
doping value of around 20%, with Néel order up to about
13%, and incommensurate spiral order beyond. The transi-
tion between Néel order and incommensurate spiral order is
discontinuous, with a pronounced jump of the incommen-
surability η. In the range between 8% and 20% doping, a
sizable pairing order parameter appears. Hence, our calcu-
lation confirms the coexistence of antiferromagnetism and
d-wave pairing in the two-dimensional Hubbard model, as
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previously obtained from static fRG calculations [32,33,35].
The doping dependence of the incommensurability η also
agrees well with previous static fRG calculations [35]. The
pairing mechanism is magnetic, that is, the attraction in the
d-wave pairing channel is predominantly generated by an-
tiferromagnetic fluctuations. The suppression of the pairing
amplitude close to half filling is caused by the magnetic gap
leading to a truncation of the Fermi surface to small hole
pockets.

The gap amplitudes obtained from the static fRG are some-
what smaller than those obtained from the dynamical fRG,
but they exhibit a similar qualitative doping dependence. The
magnetic order in the static approximation is weaker for two
reasons, which have been revealed already previously [38].
First, there is a minimum of the magnetic effective interaction
M�

Q,ω=0(ν1, ν2) at the lowest fermionic Matsubara frequen-
cies |νi| = πT . In the static approximation this minimum
value is practically extended to all frequencies ν1 and ν2. Sec-
ond, in the static approximation the suppression of magnetic
interactions from other fluctuation channels is overestimated
[38,39]. The pairing gap is also reduced in the static approxi-
mation. Since the pairing mechanism is mostly magnetic, one
reason for this reduction is certainly the weaker magnetic in-
teraction. On the other hand, the decay of the effective pairing
interaction at large frequencies is neglected in the static ap-
proximation, leading to an enhancement of pairing tendencies
[37,38]. The net effect seems to be a moderate reduction of
the pairing gap by the static approximation. Overall, in spite
of the strong frequency dependences of the interaction vertex
[37,38], the static approximation does not entail a major error
in the size of the magnetic and pairing gaps.

The influence of the frequency dependence of the mag-
netic interaction vertex on pairing was previously analyzed
by Kitatani et al. [48] at an intermediate-coupling strength
(U = 6t) within the dynamical vertex approximation [49]. In
agreement with our results, they found a minimum at low
frequencies. They concluded that this minimum leads to a
significant reduction of the energy scale for pairing. This is not
in conflict with our results, because they compared their result
to that from a simple random phase approximation for the
magnetic interaction, which grossly overestimates its strength
in the relevant frequency range.

Yamase et al. [35] observed a pronounced dip of the mag-
netic gap at van Hove filling, where the pairing gap suppresses
the magnetic order completely. This feature is not visible in
Fig. 1, neither in the static nor in the dynamical approxima-
tion. The discrepancy is probably due to the finite temperature
in our calculation. At present, we can access lower tempera-
tures only by neglecting the frequency dependences. In Fig. 2
we show the doping dependence of the gap amplitudes at
T = 0.006t as obtained from the static fRG. Here, a dip of
the magnetic gap at van Hove filling (pvH ≈ 14% for our pa-
rameters) is clearly visible. We expect that the dip will become
even more pronounced upon further lowering the temperature.

B. Flow and frequency dependence

In this section we present some details on the flow and on
the frequency dependences for a fixed doping p = 0.12 and
a fixed temperature T = 0.027t . In Fig. 3 we show the flow

FIG. 2. Amplitudes of the magnetic and pairing gap as a func-
tion of doping as obtained from the static fRG at the temperature
T = 0.006t . The vertical arrow indicates the transition from Néel to
incommensurate spiral antiferromagnetism.

of the magnetic gap �
m (ν0) at the lowest positive Matsubara

frequency ν0 = πT together with the flow of the magnetic
amplitude coupling A�

m (ν0, ν0). The flow looks qualitatively
the same as for the BCS model [27]. The effective interaction
increases rapidly upon approaching the critical scale �c from
above and decreases again below it, approaching eventually a
moderate finite value. The peak at �c is regularized by the
small initial gap term inserted by hand. The gap increases
monotonically from its tiny initial value at �c to a much larger
value for � → 0. The flows of �

m (ν) and A�
m (ν, ν ′) have

the same qualitative behavior for all choices of the Matsubara
frequencies ν and ν ′. The flow of the pairing gap and pairing
coupling looks similar, too, but the onset of the gap and the
peak in the coupling is situated at a lower scale.

In Fig. 4 we show the frequency dependence of the gap
amplitudes at the end of the flow. The pairing gap can be
chosen real for all frequencies, while the magnetic gap is nec-
essarily complex. It is obvious that the frequency dependence
of Re m(ν) is very weak, while p(ν) decays rather quickly
over the first few Matsubara frequencies. Hence, an accurate

FIG. 3. Flow of the magnetic gap �
m (ν0) and of the magnetic

amplitude coupling A�
m (ν0, ν0 ) with ν0 = πT at doping p = 0.12

and temperature T = 0.027t .
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FIG. 4. Real part of the magnetic gap amplitude and pairing gap
amplitude as a function of frequency for p = 0.12 and T = 0.027t .
The magnetic gap has a shallow minimum at low frequencies and
tends to a constant at large frequencies. The pairing gap exhibits a
peak at the lowest Matsubara frequency and decays monotonically
with increasing frequency.

continuation of the pairing gap to zero frequency is difficult.
For large frequencies the pairing gap is roughly proportional
to 1/ν.

The frequency dependence of effective magnetic and pair-
ing interactions is shown in Fig. 5. There is a pronounced
structure on the diagonal ν ′ = ν in the magnetic channel,
and for ν ′ = ±ν in the pairing channel. Note that these fea-
tures are not present in the coupling functions M�

q,ω(ν, ν ′)
and D�

q,ω(ν, ν ′), respectively, but are rather due to peaks of

FIG. 5. Frequency dependence of effective interactions in the
magnetic (top) and pairing channels (bottom) at doping p = 0.12 and
temperature T = 0.027t . The amplitude couplings A�

X (ν, ν ′) at the
end of the flow (� → 0) are compared to the two-particle irreducible
interaction parts Ṽ �c

X (ν, ν ′) at the critical scale �c. The effective
interactions in the magnetic channel have a small imaginary part
which is not shown.

the other coupling functions as a function of the bosonic
frequency ω at ω = 0. For the magnetic interaction, a qual-
itatively similar frequency structure is also obtained from
a dynamical mean-field approximation, which neglects all
correlations except the local ones [50]. The frequency de-
pendence is obviously generated in the symmetric regime,
so that it is fully developed already at the critical scale �c.
The amplitude couplings A�

X (ν, ν ′) at the end of the flow
(� → 0) exhibit the same frequency dependence as the two-
particle irreducible interaction parts Ṽ �c

X (ν, ν ′) at the critical
scale �c. Hence, the frequency structure is not significantly
changed in the symmetry-broken regime. In the pairing chan-
nel there is even quantitative agreement between Ṽ �c

p (ν, ν ′)
and A�

p (ν, ν ′). This indicates that Ṽ �c
p ��

p becomes small for
� → 0 [see Eq. (29)], which must be due to a strong suppres-
sion of ��

p by the gap formation.
For large frequencies and away from the special lines

ν ′ = ±ν, the reduced magnetic interaction Ṽ �c
m (ν, ν ′) tends

to the bare Hubbard coupling U , while the reduced pairing
interaction Ṽ �c

p (ν, ν ′) decays to zero. The latter behavior is
the reason for the decay of the pairing gap at large frequencies
described above.

C. Superfluid stiffness and phase diagram

We finally compute the superfluid phase stiffness, which
allows us to estimate the Kosterlitz-Thouless temperature TKT

for the onset of superconductivity. Together with the temper-
ature T ∗ for the onset of antiferromagnetism, we can thus
draw a phase diagram in the plane spanned by doping and
temperature.

A general expression for the phase stiffness in a mean-field
state with coexisting spin-singlet superconductivity and anti-
ferromagnetism (Néel or spiral) has been derived in a recent
work by Yamase and one of us [51]. The phase stiffness
is fully determined by the bare dispersion relation and the
magnetic and pairing gaps. The gaps have been assumed to be
frequency independent in the derivation. We therefore neglect
the frequency dependence of the gaps, and insert the gap at the
lowest Matsubara frequency ν0 = πT . In a spiral state with an
ordering vector Q = (π − 2πη, π ) with η > 0 the phase stiff-
ness in the x and y directions is slightly different. In Fig. 6 we
plot the phase stiffnesses Jx and Jy as a function of doping at
the fixed temperature T = 0.027t . The pairing gap amplitude
from Fig. 1 is also reproduced for direct comparison. In the
Néel state the stiffness is isotropic, Jx = Jy, while in the spiral
regime Jy is slightly smaller than Jx.

The stiffness and the gap amplitude have a comparable size
in the regime where both are larger than the temperature, but
the stiffness decreases much faster at low doping, since it is
more strongly suppressed by thermal excitations than the gap.
By contrast, a static fRG calculation at zero temperature indi-
cated that in the ground state the stiffness decreases slightly
more slowly than the gap amplitude upon approaching half
filling from the hole-doped side [51]. Note that, in general,
there is no direct relation between the size of the gap and the
size of the phase stiffness in a superconductor.

In a two-dimensional system, the thermal phase transition
between the superfluid and the normal phase is a Kosterlitz-
Thouless transition associated with topological excitations
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FIG. 6. Phase stiffness in the x and y directions as a function of
doping at fixed temperature T = 0.027t . The pairing gap amplitude
2p(ν0 ) is also shown for comparison.

(vortices) [52]. Magnetic order or (noncritical) magnetic fluc-
tuations do not affect the universal properties of this transition.
In an isotropic system, the transition temperature TKT is re-
lated to the phase stiffness J by the universal relation TKT =
π
2 J (TKT) [52]. In the spiral state the phase stiffness is slightly
anisotropic, that is, we have Jx 
= Jy, while there is still a
unique transition temperature. Generalizing the relation be-
tween TKT and J to anisotropic systems by a simple rescaling
of the length scales in the phase action, we find

TKT = π

2

√
Jx(TKT)Jy(TKT). (35)

Using this relation we are able to compute the Kosterlitz-
Thouless temperature from the stiffnesses Jα (T ), as long as
TKT is higher than the lowest temperature T = 0.027t we can
access. In Fig. 7 we plot the resulting Kosterlitz-Thouless
temperature as a function of doping, together with the critical
temperature T ∗ for the onset of antiferromagnetism. The latter
is determined as the lowest temperature at which the fRG flow
does not encounter any magnetic instability down to � = 0.

FIG. 7. (p, T ) phase diagram with the critical temperature for
the onset of antiferromagnetism T ∗, the pairing temperature Tp, and
the Kosterlitz-Thouless temperature TKT. The white shading at low
temperatures indicates that we cannot access temperatures below
T = 0.027t with our present dynamical fRG code.

We also show the pairing temperature Tp at which the pairing
gap p vanishes. One can see that Tp is much higher than
TKT, especially at lower doping. Hence, a sizable temperature
window with a pairing gap and superconducting fluctuations
opens between TKT and Tp.

Our mean-field approximation yields magnetic long-range
order for temperatures below T ∗. General arguments and nu-
merical studies show that fluctuations destroy this long-range
order, giving rise to a pseudogap state with strong short-
ranged magnetic correlations. Hence, T ∗ should be interpreted
as the onset temperature for pseudogap behavior. Implement-
ing the fluctuations that turn the magnetically ordered state
into a pseudogap state will be an interesting extension of our
present theory. Since we cannot access temperatures below
T = 0.027t with our present dynamical fRG code, we can-
not calculate the Kosterlitz-Thouless temperature below 10%
doping. Low-temperature results from a static fRG flow in-
dicate that TKT vanishes linearly in doping upon approaching
half filling [51].

IV. CONCLUSION

We have performed a dynamical fRG analysis of magnetic
order and superconductivity in the two-dimensional repulsive
Hubbard model at a moderate interaction strength U = 3t .
A one-loop flow with coupled charge, magnetic, and pair-
ing interaction channels in the symmetric regime above the
critical energy scale �c was combined with a mean-field
approximation with decoupled reduced interactions in the
symmetry-broken regime below �c. The full frequency de-
pendences of the interaction vertices and gap functions were
taken into account. The momentum dependences were ap-
proximated by suitable form factors.

While magnetism appears as the leading instability at the
critical scale �c in a broad doping range from half filling to
about 20%, robust pairing with a sizable pairing gap emerges
between 10% and 20% doping, in coexistence with antiferro-
magnetism. The size of the pairing gap is slightly enhanced
compared to results from a static fRG, probably as a conse-
quence of the enhanced magnetic interactions. The effective
interactions exhibit strong frequency dependences, as already
observed in previous dynamical fRG calculations, which
were, however, limited to the symmetric regime [37,38]. The
magnetic gap depends only weakly on frequency, while the
pairing gap is peaked at the lowest Matsubara frequency and
decays rapidly at higher frequencies.

We have also computed the superfluid phase stiffness
and the Kosterlitz-Thouless transition temperature TKT as
a function of doping p. Combining TKT(p) with the onset
temperature T ∗(p) for magnetism yields a phase diagram
with a dome-shaped superconducting regime under the quasi-
parabolic roof defined by T ∗(p). Including magnetic order
parameter fluctuations would replace the ordered antifer-
romagnet in our theory by a pseudogap state with strong
magnetic correlations at any finite temperature. The shape
of T ∗(p) and TKT(p) agrees qualitatively with the pseudogap
temperature and the superconducting transition temperature,
respectively, in high-Tc cuprates.

Our work can be naturally extended in two directions.
First, the fRG+MFT approach can be extended to the strongly
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interacting regime by using the dynamical mean-field solution
[53,54] of the Hubbard model as a starting point for the fRG
flow. The combination of dynamical mean-field theory and
fRG was proposed some time ago [55], and recently applied to
the two-dimensional Hubbard model at strong coupling, albeit
only in the symmetric regime up to the point where effective
interactions diverge [26]. Magnetic and pairing gap functions
could now be computed by continuing the flow with reduced
but dynamical interactions into the symmetry-broken regime.

Second, the mean-field solution for magnetic order in the
symmetry-broken regime could be improved by implementing
thermal and quantum fluctuations of the spin orientation. A

most promising route to do this is to treat the magnetic regime
with an SU(2) gauge theory as recently developed by Scheurer
et al. [56]. The critical temperature T ∗ for magnetism obtained
from the fRG flow assumes the role of the pseudogap temper-
ature in that improved theory.
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