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One striking property of the Landau level spectrum of a Weyl semimetal (WSM) is the existence of a chiral
Landau level, in which the electrons propagate unidirectionally along the magnetic field. This linearly dispersive
level influences the optical properties of WSMs. For example, it was recently shown that a complete optical valley
polarization is achievable in a time-reversal symmetric Weyl semimetal placed in a magnetic field [S. Bertrand
et al., Phys. Rev. B 100, 075107 (2019)]. This effect originates from inter-Landau level transitions involving
the chiral Landau level and requires a tilt of the Weyl cones. In this paper we show how the magneto-optical
Kerr effect (MOKE) is modified in a WSM with tilted Weyl cones in comparison with its behavior in a normal
metal and how a valley polarization can be detected using MOKE. We study both the Faraday (longitudinal) and
Voigt (transverse) configurations for light incident on a semi-infinite WSM surface with no Fermi arcs. We use
a minimal model of a WSM with four tilted Weyl nodes related by mirror and time-reversal symmetry. In the
Voigt configuration, a large peak of the Kerr angle occurs at the plasmon frequency. We show that the blueshift
in frequency of this peak with increasing magnetic field is a signature of the chiral anomaly in the MOKE.

DOI: 10.1103/PhysRevB.102.245126

I. INTRODUCTION

A Weyl semimetal [1] is a three-dimensional topological
phase of matter, where pairs of nondegenerate bands cross at
isolated points in the Brillouin zone. Near these points, called
“Weyl nodes,” the electronic dispersion is gapless and linear
in momentum and the excitations satisfy the Weyl equation,
a two-component analog of the Dirac equation. Each Weyl
node is a source or sink of Berry curvature, which acts as a
magnetic field in momentum space, and has a chirality index
χ = ±1 reflecting the topological nature of the band structure.
The Nielsen-Ninomiya theorem [2] requires that the number
of Weyl points in the Brillouin zone be even so that Weyl
nodes must occur in pairs of opposite chirality. For the Weyl
nodes to be stable, either inversion symmetry or time-reversal
symmetry must be broken.

Weyl semimetals show a number of interesting transport
properties, such as an anomalous Hall effect [3], a chiral-
magnetic effect [4], Fermi arcs [5], and a chiral anomaly
leading to a negative longitudinal magnetoresistance [6]. The
topological aspects of WSMs also show up in their optical
properties, especially so when a magnetic field is present. In
this case, the linear dispersion is split into positive (n > 0)
and negative (n < 0) energy dispersive Landau levels. The
n = 0 Landau level is chiral because its dispersion is unidi-
rectional, e.g., E (kz ) = −χvF kz, for a magnetic field along the
z direction. The absorption spectrum is different from that of
Schrödinger or Dirac fermions [7] and can be used to show the
phenomenon of charge pumping due to the chiral anomaly [8]
or other photoinduced responses, as well as to distinguish
between type I and type II WSMs [9].

In this paper we investigate another optical property that is
affected by the topological nature of WSMs, i.e., the magneto-

optical Kerr effect (MOKE), which consists of the rotation of
the plane of polarization of a beam of light reflected from the
surface of a WSM in a magnetic field. In graphene, also a ma-
terial with Dirac-like dispersion, a substantial rotation of the
polarization plane (>0.1 rad) upon transmission (the related
Faraday effect) has been reported recently [10]. In WSMs,
Faraday and Kerr rotations have been studied in some detail
in Ref. [11] for a minimal model of a WSM with intrinsically
broken time-reversal symmetry (TRS) and no magnetic field.
In such a model, the axion term of the electromagnetic action
makes a gyrotropic contribution to the dielectric function,
thereby leading to Faraday and Kerr rotations in the absence
of an external magnetic field.

In the present work our model of a WSM preserves TRS
and the Kerr rotation is due to the presence of an external
magnetic field, which we set either along the direction of
propagation of the incoming electromagnetic wave (i.e., the
longitudinal or Faraday configuration) or perpendicular to it
(the transverse or Voigt configuration). One motivation for this
work is our previous study of the optical absorption [12,13] in
WSMs, which predicted the possibility of a complete optical
valley polarization for a sizable interval of frequency in a
time-reversal symmetric type I WSM with tilted Dirac cones,
by a suitable choice of the relative orientation of the incom-
ing light wave, magnetic field, and tilt vector. By complete
valley polarization, we mean that two different nodes start
absorbing light at a different frequency. This is a property of
the electronic structure of the WSM in a magnetic field. The
valley polarization shows up as a splitting of the absorption
line of two nodes related by TRS at zero magnetic field, for
transitions involving the chiral Landau level.

There have been some previous works on the MOKE
in WSMs. A giant polarization rotation has been predicted

2469-9950/2020/102(24)/245126(17) 245126-1 ©2020 American Physical Society

https://orcid.org/0000-0003-0602-2131
https://orcid.org/0000-0002-6252-290X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.245126&domain=pdf&date_stamp=2020-12-17
https://doi.org/10.1103/PhysRevB.100.075107
https://doi.org/10.1103/PhysRevB.102.245126


PARENT, CÔTÉ, AND GARATE PHYSICAL REVIEW B 102, 245126 (2020)

in type I and type II WSM with tilted cones and broken
TRS in zero magnetic field [14]. Kerr and Faraday rotations
for zero tilt but finite magnetic field and broken TRS have
also been studied [15]. Moreover, experimental evidences for
chiral pumping of the Weyl nodes in the WSM TaAs have
appeared recently [16,17]. The work we present here is differ-
ent. We study the MOKE in a simplified model of a WSM
with four nodes related by TRS and mirror symmetry in a
quantizing magnetic field and in both the Faraday and Voigt
geometries. We show that, in contrast with a “normal” metal,
in a WSM a sizable Kerr rotation can be expected in both
geometries for moderate values of the background dielectric
constant ε∞. In the resonant regime, where the frequency
of the incoming light matches an electronic interband (i.e.,
inter-Landau level) transition, Kerr rotation can be used as
a spectroscopic tool to detect the inter-Landau level tran-
sitions. The presence of tilted cones modifies the Landau
level quantization and changes the selection rules, giving a
much richer interband spectrum in MOKE: when a magnetic
field is applied in a direction other than the tilt, interband
transitions other than the usual dipolar ones (|n| → |n| ± 1)
become possible [9]. Moreover, the valley polarization effect
we reported earlier for optical absorption also appears in the
Kerr rotation, thus providing another way to detect this effect
experimentally.

We find that the Voigt configuration is particularly interest-
ing because it enables having a component of the incoming
electric field in the direction of the quantizing magnetic field.
A consequence of the chiral anomaly in WSMs is that the
plasmon frequency ωp, which is given by the condition that
Re [ε‖(ωp)] = 0, increases with magnetic field. Here ε‖ is the
element of the dielectric tensor in the direction of the external
magnetic field, e.g., εxx for B along x̂. In contrast with the
Faraday configuration, ε‖ enters in the definition of the Kerr
angle so that we expect that the behavior of the Kerr angle
will be modified by the chiral anomaly. Indeed, we show that
a strong maximum in the Kerr angle occurs at the plasmon
frequency, which is in the THz range for moderate values of
ε∞, i.e., close to the threshold of the electronic interband tran-
sitions. The frequency of this peak increases with magnetic
field, providing a clear signature of the chiral anomaly in the
Kerr rotation.

The remainder of this paper is organized as follows:
Section II introduces our minimal four-node model of a WSM
with TRS and tilted cones, and gives the energy spectrum
of each node. Section III explains how we compute the dy-
namical conductivity tensor for both inter- and intra-Landau
level transitions. In Sec. IV we give the formalism to compute
the Kerr angle in both the Faraday and Voigt configurations.
Section V contains our numerical results, which are further
summarized in Sec. VI. In order to lighten the main text, we
have put details of all calculations in Appendix A for the
energy spectrum and Appendix B for the derivation of the
current operator for tilted cones. In Appendix C we discuss
the MOKE for a normal metal in order to provide a basis
for comparison with our findings for a WSM. In Appendix D
we derive the magnetic-field dependence of the low-energy
peak in the Kerr rotation angle that appears in the Faraday
configuration.

FIG. 1. Toy model of a WSM with time-reversal symmetry and
a mirror plane perpendicular to the ẑ direction. The y axis passes
through the cross. Blue and red circles indicate Weyl nodes with
opposite chiralities.

II. MODEL HAMILTONIAN

We consider a simple model of a WSM, which possesses
TRS in the absence of a magnetic field. This toy model has
been described and justified in Refs. [12,13], where we used
it to calculate the optical valley polarization in a WSM. The
model consists of four tilted Weyl nodes (denoted by the
index τ = 1, 2, 3, 4), two for each chirality, and a mirror plane
placed perpendicularly to the z axis as shown in Fig. 1. Pairs of
nodes of opposite chirality (τ = 1, 2 and τ = 3, 4) are related
to one another by the mirror plane, while nodes τ = 1, 3 and
τ = 2, 4 are related by time-reversal symmetry in the absence
of the magnetic field. Thus, the four nodes are symmetry
equivalent in the absence of a magnetic field.

The low-energy noninteracting single-particle Hamiltonian
for an electron in node τ = 1 is given by

hτ (p) = vF t · pσ0 + vF p · σ, (1)

where p is the momentum of the electron measured with
respect to the Weyl node, σ is a vector of Pauli matrices in
the 1/2-pseudospin state of the two bands at their crossing
points, σ0 is the 2 × 2 unit matrix, vF is the Fermi velocity,
and t is a dimensionless vector describing the magnitude and
direction of the tilt of the Weyl cone. We restrict our analysis
to a type I WSM, i.e., to |t| < 1. The Hamiltonians of the
other three Weyl nodes are obtained by applying mirror and
time-reversal operations to h1(p). These amount to making the
transformations

τ = 1 → 2 : (vF , tx, ty, tz ) → (−vF ,−tx,−ty, tz ),

τ = 1 → 3 : (vF , tx, ty, tz ) → (vF ,−tx,−ty,−tz ),

τ = 1 → 4 : (vF , tx, ty, tz ) → (−vF , tx, ty,−tz ), (2)

where we have assumed that σ transforms as a spin under
time-reversal and mirror operations (see Ref. [13] for a dis-
cussion of this point).

A transverse static magnetic field B0 is added via the
Peierls substitution p → P = p + eA. While it is possible to
obtain the energy levels of the Hamiltonian analytically [9],
we find it more convenient to use a numerical approach
in order to get a fully orthonormal basis for the eigen-
spinors. Moreover, a numerical approach allows a study of
the system for arbitrary orientations of the magnetic field
and tilt vector. It also allows the consideration of more
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FIG. 2. Dispersion of the first Landau levels of the four nodes
for t = t̂z and B = B0̂x. The chiral Landau level is represented by
the dashed line. The length of each arrow indicates the lowest-energy
interband transition under right circularly polarized light. When the
tilt vectors of the nodes are perpendicular to the static magnetic field,
all nodes have the same interband absorption threshold. For clarity,
the position of the different nodes has been shifted in k‖�.

complex Hamiltonians with, for example, nonlinear terms in
the energy spectrum [13]. The numerical diagonalization of
h1(P) is carried out in Appendix A. The many-body Hamilto-
nian in the basis of the Landau levels of h1(P) can be written
as

H =
∑

τ,X,p‖,I

EI (τ, p‖)d†
I (τ, X, p‖)dI (τ, X, p‖). (3)

In Eq. (3) the eigenstates are defined by the set of quantum
numbers (I, X, p‖, τ ), where X is the guiding-center index
and I = (n, s) is the Landau level index. Our convention
is to take n = 0, 1, 2, 3, . . . as a positive number and use
s = +1 (−1) for the positive (negative)-energy levels. The
variable p‖ = h̄k‖ is the momentum in the direction of the
magnetic field, which we set along the z (or x) axis, i.e.,
perpendicular (or parallel) to the mirror plane. Each Landau
level (I, p‖, τ ) has the macroscopic degeneracy Nϕ = S/2π�2,
where � = √

h̄/eB0 is the magnetic length and S is the area
of the WSM perpendicular to the magnetic field. The op-
erator d†

I (τ, X, p‖) creates an electron in the quantum state
(I, p‖, X, τ ).

The dispersion of the Landau levels is given in Figs. 2
and 3 for t ⊥ B and t||B, respectively. The arrows in these
figures indicate the energy gap for interband transitions when
the Fermi level EF is in the chiral Landau level (i.e., n = 0).
The optical gaps are identical for all nodes when the tilt
and magnetic field are perpendicular to each other. When the
magnetic field is perpendicular to the mirror plane and has
a nonzero projection along the tilt vector, the optical gaps
for interband transitions involving the chiral Landau level are
different for nodes that are related by time-reversal symmetry
when B0 = 0, but equal for nodes that are mirror partners
(see Ref. [12] for a discussion on general orientations of B).
When light propagates along the direction of the magnetic
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FIG. 3. Dispersion of the Landau levels for the four nodes for
t = t̂z and B = B0̂z. The chiral Landau level is represented by the
dashed line. The length of each arrow indicates the lowest-energy
interband transition under right circularly polarized light. When the
tilt vectors of the nodes have nonzero components along the static
magnetic field, different pairs of nodes have different interband ab-
sorption thresholds in the quantum limit, thereby leading to a valley
polarization. For clarity, the position of the different nodes has been
shifted in k‖�.

field, this difference in the absorption gap leads to a full valley
polarization [12].

III. OPTICAL CONDUCTIVITY

The magneto-optical conductivity of Weyl semimetals has
been calculated before [18]. The effect of a tilt on the AC
optical response has also been considered in a model of a
WSM with broken TRS and no quantizing magnetic field [19].
Here we consider the effect of a tilt on the four-node model
introduced above (which has TRS) and in the presence of a
quantizing magnetic field. We restrict ourselves to T = 0 K.
Since we are mainly interested in the behavior of the Kerr
angle in the resonant regime, i.e., in the THz range of fre-
quencies, finite temperature effects should be negligible for
experiments carried out at low temperature, i.e., at a few
Kelvin.

The single-particle current operator for node τ is defined
by

jτ = − ∂hτ (p)

∂Aext

∣∣∣∣
Aext→0

= −evF (σ + tσ0), (4)

where Aext is the vector potential of an external electromag-
netic field. The many-body current is

Jτ =
∫

d3rψ†
τ (r)jτψτ (r)

= −evF

∑
τ,p‖,X

∑
I,J

ϒI,J (τ, p‖)d†
I (τ, X, p‖)dJ (τ, X, p‖),

(5)

where the matrix elements ϒI,J (τ, p‖) are given in Eq. (B4)
of Appendix B.
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It is convenient to define the operator

ρI,J (τ, p‖) = 1

Nϕ

∑
X

d†
I (τ, X, p‖)dJ (τ, X, p‖), (6)

so that the many-body Hamiltonian and current can be written
as

H =
∑
τ,p‖,I

EI (τ, p‖)ρI,I (τ, p‖) (7)

and

Jτ = −evF

∑
p‖

∑
I,J

ϒI,J (τ, p‖)ρI,J (τ, p‖). (8)

The optical conductivity tensor is related to the retarded
current response function χR

α,β (ω) = χR
αβ (q = 0, ω) by

σα,β (ω) = i

ω

[
χR

α,β (ω) − χR
α,β (0)δαβ

]
, (9)

where α, β ∈ {x, y, z} and ω is the frequency of the incom-
ing light beam. The diamagnetic contribution to the current
operator is lacking in the continuum approximation of the
linear spectrum of the low-energy model. This absence leads
to unphysical terms [11] in σα,β (ω). The second term on the
right-hand side of Eq. (9) is required in order to remove these
spurious contributions.

The retarded current response function can be obtained
from the two-particle Matsubara Green’s function

χα,β (τ ) = − 1

h̄V
〈Tτ Jα (τ )Jβ (0)〉

= −e2v2
F

1

h̄V

∑
I,J

∑
K,L

∑
p‖,p′

‖

ϒ
(α)
I,J (p‖)ϒ (β )

K,L(p′
‖)

×〈Tτ ρI,J (τ, p‖)ρK,L(0, p′
‖)〉, (10)

where Tτ is the time ordering operator and τ an imaginary
time, not to be confused with the node index. We omit the
node index in the remaining of this section in order to avoid
any confusion. In linear response, χα,β (τ ) is approximated by

χα,β (τ ) = e2v2
F

1

h̄V

∑
I,J

∑
X,p‖

ϒ
(α)
I,J (p‖)ϒ (β )

J,I (p‖)

×GI,X (p‖,−τ )GJ,X (p‖, τ ), (11)

where the single-particle Matsubara Green’s function is de-
fined by

GI,X (p‖, τ ) = −〈Tτ dI (p‖, τ )d†
I (p‖, 0)〉. (12)

Fourier-transforming χα,β (τ ), we get the familiar result, for
each node,

χα,β (i�p) =
∫ β h̄

0
dτei�pτ χα,β (τ )

= e2v2
F

β h̄2V

∑
ωn

∑
I,J

∑
X,p‖

ϒ
(α)
I,J (p‖)ϒ (β )

J,I (p‖)

×GI,X (p‖, iωn)GJ,X (p‖, i�p + iωn), (13)

where �p, ωn are, respectively, bosonic and fermionic Mat-
subara frequencies. The current-current response has contri-
butions from both intra- and inter-Landau level transitions. We

compute them separately in the following sections. Moreover,
the total current response and the related dielectric tensor are
obtained by summing the individual current response of the
four nodes.

The fact that the total optical conductivity is given by the
sum of node-resolved optical conductivities is a consequence
of the vanishing of the interband matrix elements of the cur-
rent operator between states that are located in different Weyl
nodes. At first glance, the vanishing of the matrix element is
not obvious in the presence of a magnetic field. For example,
when the magnetic field is pointing along the z direction, the
energy spectra of nodes 1 and 2 as a function of kz will be
superposed with the energy spectra of nodes 4 and 3, respec-
tively. Yet, it turns out that the interband transitions induced
by light do not mix the states originating from different nodes.

The underlying reason for this may be easily understood
in the Landau gauge, where two components of the crystal
momentum remain good quantum numbers. One of the com-
ponents is the momentum along the magnetic field, while the
other component is perpendicular to it (and is often disguised
in the form of the guiding center). The translational symmetry
along this second direction is key to ensure that interband
transitions induced by light do not mix different nodes.

For example, suppose that we take the magnetic field along
the z direction. Nodes 1 and 4 in Fig. 1 have the same kz

coordinate, but a vastly different kx coordinate. Choosing the
Landau gauge such that kx is a good quantum number, it
follows from translational symmetry that light (whose wave
vector is essentially zero compared to the separation of the
nodes in kx) cannot connect bands from node 1 with bands
from node 4. A similar argument can be employed for other
orientations of the magnetic field.

On a related note, if the magnetic length becomes compara-
ble to or shorter than the inverse of the distance in momentum
space that separates two Weyl nodes at zero field, then a
hybridization takes place between those two nodes and gaps
open in the chiral Landau levels. In that regime, if the Fermi
level falls inside the gap, chirality is not a good quantum
number even at low energy, and our theory no longer applies.
Yet, significant hybridization effects have been reported only
at ultrahigh magnetic fields [20].

A. Inter-Landau-level contributions to the current response
function χα,β(ω)

With the Hamiltonian given by Eq. (3), the single-particle
Matsubara Green’s function is simply

GI,X (p‖, iωn) = 1

iωn − [EI (p‖) − μ]/h̄
, (14)

where μ is the chemical potential. It is independent of the
guiding-center index X .

Performing the frequency sum in Eq. (13) and taking the
analytic continuation i�p → ω + iδ, we get for each node τ

the interband response function

χR
α,β (ω) = − e2v2

F

4π2�2h̄2

∑
I, J

(I �= J )

∫
d p‖ϒ

(α)
I,J (p‖)ϒ (β )

J,I (p‖)

× f [EJ (p‖)] − f [EI (p‖)]

ω + iδ − [EJ (p‖) − EI (p‖)]/h̄
, (15)
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where f (E ) = 1/(eβ(E−μ) + 1) is the Fermi function, β =
1/kBT , and kB is the Boltzmann constant. At T = 0 K, μ →
EF and f [EJ (p‖)] → �[EF − EJ (p‖)], where �(x) is the step
function and EF is the Fermi level. Only transitions between
an occupied and an unoccupied level can contribute to the
response function.

In Eq. (15) the effects of disorder and finite resolution of
the measurement apparatus have been included phenomeno-
logically via a small broadening parameter δ � 0.05 meV.
This broadening does not have a significant effect in our main
results, provided that the inter-Landau level spacing near the
Fermi level is large compared to δ. Such is the case for us.

B. Intra-Landau-level contribution
to the response function χα,β(ω)

We consider the situation where the Fermi level lies in
the chiral level n = 0, above E = 0 but below the energy of
the level n = 1. The only allowed intra-Landau level transi-
tions are then those that take place in the chiral level. To
calculate their contribution to the current response function,
disorder needs to be considered. The spectral representation of
the disorder-averaged single-particle Green’s function in level
n = 0 is given by

〈G0,X (p‖, iωn)〉 =
∫ +∞

−∞
dω

A0(p‖, ω)

iωn − ω
, (16)

with the spectral weight approximated by the Lorentzian
shape

A0(p‖, ω) = �/π

{ω − [E0(p‖) − μ]/h̄}2 + �2
, (17)

where � = 1/2τ0, with τ0 the momentum relaxation time. The
current response function becomes

χα,β (i�p) = e2v2
F Nϕ

h̄V

∑
p‖

ϒ
(α)
0,0 (p‖)ϒ (β )

0,0 (p‖)

× 1

β h̄

∑
ωn

∫ +∞

−∞
dω′ A0(p‖, ω′)

i�p + iωn − ω′

×
∫ +∞

−∞
dω′′ A0(p‖, ω′′)

iωn − ω′′ . (18)

Performing the Matsubara frequency sum and taking the ana-
lytical continuation i�p → ω + iδ, we get

χR
α,β (ω) = e2v2

F

2π�2h̄2

∫
d p‖
2π

ϒ
(α)
0,0 (p‖)ϒ (β )

0,0 (p‖)

×
∫ +∞

−∞
dω′

∫ +∞

−∞
dω′′a0(p‖, ω′)

×a0(p‖, ω′′)
f (ω′′) − f (ω′)

ω + iδ + ω′′ − ω′ , (19)

where we have defined

a0(p‖, ω) = A0(p‖, ω + μ/h̄). (20)

Defining also

g0(p‖, ω) = ω − E0(p‖)/h̄

[ω − E0(p‖)/h̄]2 + �2
, (21)

we get, at zero temperature and after some simple algebra,

χR
αβ (ω) = e2v2

F

2π�2h̄2

∫
d p‖
2π

ϒ
(α)
0,0 (p‖)ϒ (β )

0,0 (p‖)

×
[∫ +EF /h̄

−∞
dω′a0(p‖, ω′)

×[g0(p‖, ω′ + ω) + g0(p‖, ω′ − ω)]

−iπ
∫ EF /h̄

EF /h̄−ω

dω′a0(p‖, ω′)a0(p‖, ω′ + ω)

]
.

(22)

Thus, the intraband conductivity in the chiral level is given by

σ intra
α,β (ω) = e2v2

F

2π�2h̄2

i

ω

∫
d p‖
2π

ϒ
(α)
0,0 (p‖)ϒ (β )

0,0 (p‖)

×
[∫ +EF /h̄

−∞
dω′a0(p‖, ω′)K (p‖, ω, ω′)

−iπ
∫ EF /h̄

EF /h̄−ω

dω′a0(p‖, ω′)a0(p‖, ω′ + ω)

]
,

(23)

with the function

K (p‖, ω, ω′) = g0(p‖, ω′ + ω) + g0(p‖, ω′ − ω)

−2δα,βg0(p‖, ω′). (24)

In the absence of a tilt, only the matrix element ϒ
(α)
0,0 (p‖)

for α in the direction of the magnetic field is nonzero. Thus,
only the conductivity σ‖(ω) [which is σxx(ω) for B = B0̂x and
σzz(ω) for B = B0̂z] is nonzero. From Eq. (23) we get (for
each node)

Re [σ‖(ω)] = vF e3τ0

4π2 h̄2

B0

1 + (ωτ0)2 , (25)

Im [σ‖(ω)] = ωτ0 Re [σ‖(ω)]. (26)

Our results for the conductivity contain the momentum in-
stead of the transport relaxation time since vertex corrections
are not included in our calculation of the current response
function. Yet, in the quantum limit, only internode scattering
leads to the relaxation of the charge current. Hence, below we
will associate τ0 with the internode scattering time.

A finite tilt modifies the matrix elements ϒ
(α)
0,0 (p‖) and

makes the other elements of the conductivity tensor nonzero,
in particular σ⊥(ω) [i.e., σzz(ω) for B = B0̂x and σxx(ω) for
B = B0̂z], which enters in the definition of the Kerr angle for
the Voigt configuration, as we show below.

With τ0 and vF independent of the magnetic field, Eq. (25)
shows that the conductivity Re [σ‖(ω)] increases linearly with
the magnetic field. This negative magnetoresistance is a sig-
nature of the chiral anomaly in Weyl semimetals [6], where
collinear electric and magnetic fields (E · B �= 0) result in a
transport of electrons between two Weyl nodes of opposite
chirality. It is known, however, that τ0 varies with magnetic
field in a way that depends on the type of disorder considered.
For instance, in the case of short-ranged neutral impurities,
Re [σ‖(ω)] becomes independent of B. The B dependence of
vF can further alter the sign of the magnetoresistance [21,22].
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As a result, the B dependence of Re [σ‖(ω)] is not robustly
linked to the chiral anomaly.

In contrast, the situation appears to be more promising
when it comes to the plasmon frequency ωp. At q = 0, ωp

is given by the condition

Re [ε||(ωp)] = 0, (27)

i.e.,

1 − Im [σ‖(ωp)]

ε0ωp
= 0, (28)

which gives

1 − 1

ε0

vF e3

4π2 h̄2

τ 2
0

1 + (ωpτ0)2 B0 = 0. (29)

The plasmon frequency occurs at high frequency (in the THz
range in WSMs), which can exceed the momentum scattering
rate. When ωpτ0  1, one has, adding the contributions of the
four nodes,

ω2
p = 4

e2vF

4π2 h̄�2ε0
= 4

e3vF B0

4π2h̄2ε0
, (30)

where ε0 is the permittivity of free space (in general to be
multiplied by ε∞ due to screening from high-energy elec-
tronic bands). The linear increase with magnetic field of ω2

p
is also a signature of the chiral anomaly [6] and should not
be modified by disorder insofar as ωpτ0  1. This trend re-
mains likewise robust to the B dependence of vF (neglected
herein). In a normal metal, the plasmon frequency ω2

p,metal =
nee2/mε0, with ne the electronic density and m the effective
mass of the electron, is independent of the magnetic field (see
Appendix C). The dispersion relation of the plasmon mode
in WSMs and normal metals are discussed in more detail in
Ref. [23]. The plasmon frequency, or equivalently the zero of
the longitudinal dielectric function, increases as

√
B0. When

interband transitions are considered, ωp is shifted to a lower
frequency as shown in Fig. 4, although it remains in the THz
range.

In the derivation of Eq. (30), we have neglected the tilt of
the Weyl cones. Simple analytical considerations show that, in
our model, the component of the tilt parallel to the magnetic
field does not change Eq. (30). The component of the tilt per-
pendicular to the magnetic field is more complicated to treat
analytically; we have established numerically that it shifts
the plasmon frequency to lower frequencies [relative to that
expected from Eq. (30)], without altering the field dependence
of the plasmon frequency qualitatively.

In the derivation of Eq. (30), we have likewise neglected
the band curvature of the chiral Landau levels. This curvature
becomes significant as we approach the energy scale where
two different chiral Landau levels connect with one another. In
order to investigate the influence of band curvature in the plas-
mon frequency, we consider a spin-degenerate tight-binding
dispersion εk = −2γ cos (ka), for which the long-wavelength
density response function in the quantum limit reads

χR
n,n(q, ω) ≈ 4Nϕ

π h̄2S

1

aω2
γ (qa)2 sin (kF a), (31)
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FIG. 4. Real part of the relative dielectric function ε‖ = εxx as
a function of ω for an external static magnetic field B = B0̂x with
B0 = 0.3 T. The zero of ε‖(ω), which gives the plasmon frequency,
is pushed to a lower frequency when inter-Landau level contribu-
tions are considered. Parameters: Total electronic density ne = 1 ×
1020 m−3, momentum relaxation time τ0 = 10 ps, Fermi velocity
vF = 3 × 105 m/s, and tilt t = 0.

where a is the lattice constant, kF = neπ
2�2 is the Fermi mo-

mentum, ne is the electron density, and vF = 2γ a sin (kF a)/h̄
is the Fermi velocity. It follows that

ω2
p = e2

π2�2h̄ε0

2γ a

h̄
sin (kF a) = e2vF

π2�2h̄ε0
. (32)

In the low-density limit (ne�
2a � 1), when the Fermi level is

close to the bottom of the dispersion, the plasmon frequency
is independent of the magnetic field and given by

ω2
p = e2

ε0

1

h̄2 2γ a2ne. (33)

This is the result expected for a parabolic band dispersion with
an effective mass h̄2/(2γ a2). At higher densities, when the
Fermi level lies close to the region where the dispersion is
linear, such that sin(kF a) � 1, we recover Eq. (30). Thus, we
learn that Eq. (30) holds in the quantum limit provided that
the Fermi level lies in the regime where the energy dispersion
is linear; such is the case in the Weyl semimetals of interest.

IV. FORMALISM FOR THE MAGNETO-OPTICAL
KERR EFFECT

We consider an electromagnetic wave arriving at normal
incidence on a surface of a semi-infinite WSM that has no
Fermi arcs. The Maxwell equations in regions 1 (the vacuum)
and 2 (the WSM) are

∇ · D = ρ f ; ∇ × E = −∂B
∂t

, (34)

∇ · B = 0; ∇ × H = j f + ∂D
∂t

, (35)

where ρ f and j f are the free charge and current densities. We
assume that the WSM is nonmagnetic so that B = μ0H with
μ0 the permeability of free space. We use the constitutive
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relation D = ε0
←→ε · E, where ←→ε is the relative dielectric

tensor which is related to the conductivity tensor ←→σ by

←→ε = ←→
I + i

←→σ
ε0ω

, (36)

with
←→

I the unit tensor and ε0 the permittivity of free space.
To account for the high-energy transitions not included in

our calculation, the unit tensor
←→

I should be replaced by the
relative dielectric tensor ←→ε ∞ whose precise form depends
on the particular WSM considered. In our calculation we take
←→ε ∞ = ε∞

←→
I with ε∞ = 1. Because ε∞ can be quite big in

WSMs, we discuss the effects of increasing ε∞ on the Kerr
angle in Sec. VI.

From the Maxwell equations, the dispersion relation of

an electromagnetic wave in both regions (with ←→ε = ←→
I in

region 1) is given by

q2E−(q · E)q =ω2

c2
←→ε · E. (37)

At the interface between vacuum and WSM, the electro-
magnetic field must obey the boundary conditions

(D1−D2) · n̂ = σ f , (B1−B2) · n̂ = 0,

E‖
1−E‖

2 = 0, H‖
1−H‖

2 = 0, (38)

where n̂ is a vector normal to the WSM surface, pointing from
region 2 to 1. E‖

i , H‖
i (with i = 1, 2) are the field components

parallel to the surface of the WSM, which we take to be the
x-y plane at z = 0.

The incident wave is assumed to be linearly polarized in
the x-y plane: EI (z, t ) = (Ex

0 x̂ + Ey
0 ŷ)ei(qz−ωt ). Its dispersion

relation is q2 = ω2/c2, where c is the speed of light in vac-
uum. The reflected wave is given by

ER(z, t ) = [(
rxxEx

0 + rxyEy
0

)
x̂

+ (
ryxEx

0 + ryyEy
0

)
ŷ
]
e−i(qz+ωt ), (39)

where ri j are complex reflection coefficients that depend on
the orientation of the magnetic field, tilt vector, and mirror
plane. We consider two different cases in the following sec-
tions: the longitudinal and transverse configurations.

A. Longitudinal propagation (q ‖ B0 ‖ ẑ)

In the longitudinal configuration, the electromagnetic wave
propagates in the direction of the external magnetic field. If
the external magnetic field B0 and the tilt vector t are in the
ẑ direction, perpendicular to the mirror plane, then the total
dielectric tensor (sum of the four nodes) has the form

←→ε =

⎛⎜⎝ εxx εxy 0

−εxy εxx 0

0 0 εzz

⎞⎟⎠. (40)

In this situation, Maxwell equations support in the WSM
two elliptically polarized electromagnetic waves, the ana-
log of the right (RCP) and left (LCP) circularly polarized
waves, with electric fields E+ = Ex + iEy and E− = Ex − iEy.
The transmitted electric fields for these two solutions are

given by

E(±)
T (z, t ) = [(

t (±)
xx Ex

0 + t (±)
xy Ey

0

)
x̂

+ (
t (±)
yx Ex

0 + t (±)
yy Ey

0

)
ŷ
]
e−i(q±z−ωt ), (41)

where ti j (ω) are complex transmission coefficients. The com-
ponent ET,z = 0 so that the wave is transverse in both media
and there is no induced charge (i.e., ∇ · D = 0) in the WSM.
The dispersion relations are

q2
±(ω) = ω2

c2
(εxx ± iεxy) ≡ ω2

c2
ε∓(ω) = q2ε∓(ω), (42)

with q = ω/c.
The total electric fields in regions 1 and 2 are given by

E1(z, t ) = EI (z, t ) + ER(z, t ), (43)

E2(z, t ) = E+
T (z, t ) + E−

T (z, t ), (44)

with the magnetic fields obtained from Faraday’s law.
Applying the boundary conditions to the total electric and

magnetic field and isolating the reflection coefficients, we get

rxx(ω) = ryy(ω) = 1 − √
ε+ε−

(1 + √
ε+)(1 + √

ε−)
, (45a)

ryx(ω) = −rxy(ω) = i(
√

ε+ − √
ε−)

(1 + √
ε+)(1 + √

ε−)
. (45b)

In this configuration the incident wave is taken to be lin-
early polarized at an angle θI = π/4 from the x axis with
amplitude Ex

0 along both directions of the x-y plane, so that
the reflected electric field is

ER(z, t ) = [Ex
R(ω)x̂ + Ey

R(ω )̂y]e−i(qz+ωt ), (46)

with

Ex
R(ω) = [rxx(ω) + rxy(ω)]Ex

0 , (47)

Ey
R(ω) = [rxx(ω) − rxy(ω)]Ex

0 . (48)

The coefficients ri j (ω) are obtained from the dielectric tensor←→ε , which contains the combined current response function
of the four nodes.

B. Transverse propagation (q ⊥ B0 ‖ x̂)

In the transverse configuration, the electromagnetic wave
still propagates along the z axis, but the external magnetic field
is taken to point in the direction x̂, i.e., parallel to the mirror
plane. For a tilt along the z axis, the dielectric tensor for this
configuration has the form

←→ε =

⎛⎜⎝εxx 0 0

0 εyy εyz

0 −εyz εzz

⎞⎟⎠ (49)

when the contributions of the four nodes are taken into
account.

Maxwell’s equations give again two dispersion relations:
one where the electric field E‖ of the incident light is polarized
along x, i.e., parallel to the static magnetic field, giving the
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dispersion relation

q2
‖ = ω2

c2
εxx, (50)

and one where the electromagnetic wave is polarized along
y, i.e., perpendicular to the static magnetic field with the
dispersion relation

q2
⊥ = ω2

c2

(
εyy + ε2

yz

εzz

)
= ω2

c2
εv, (51)

where εv is called the Voigt dielectric function [24]. In this
later case there is an induced field in the direction of propaga-
tion, given by

Ez = −εzy

εzz
Ey, (52)

so that the electric field for this polarization, in medium 2, is
given by

E⊥ = Ey

(̂
y − εzy

εzz
ẑ
)

. (53)

The induced charge is still zero, however. The transmitted
wave in the WSM is given by

E(±)
T (z, t ) = t‖E‖e−i(q‖z−ωt ) + t⊥E⊥e−i(q⊥z−ωt ), (54)

where t‖, t⊥ are the transmission coefficients for the parallel
and transverse polarizations. In the Voigt configuration, the
polarization vector of an incident electromagnetic wave po-
larized at an angle with respect to the x axis in the x-y plane
will rotate in the WSM because of the different refractive
indices for the parallel and transverse polarizations. There is
no rotation if the polarization vector is only along the x or y
axis. This form of dichroism can also lead to a sizable Kerr
rotation as we show in Sec. V. Solving Eqs. (37) and (38)
gives the reflected field components

Ex
R(ω) = 1 − √

εxx

1 + √
εxx

Ex
0 (ω),

Ey
R(ω) = 1 − √

εv

1 + √
εv

Ey
0 (ω). (55)

C. Definition of the Kerr angle

We define the phases θ x
R and θ

y
R by

Ex
R = ∣∣Ex

R

∣∣iθ x
R , Ey

R = ∣∣Ey
R

∣∣eiθ y
R , (56)

where |Ei
R|, θ i

R (with i = x, y) are, respectively, the moduli and
associated phases of the complex components of the reflected
wave. The reflected electric field at z = 0 is then

E(t ) = ∣∣Ex
R

∣∣ cos
(
θ x

R − ωt
)̂
x + ∣∣Ey

R

∣∣ cos
(
θ

y
R − ωt

)̂
y. (57)

The polarization of the reflected field is strongly modified as
the frequency is varied. It could be linear, elliptical, or circular.
The sense of rotation of the polarization can also change with
ω. A complete description of the reflected field would give
E(t ) over one period of oscillation. Experimentally, however,
what is reported is the Kerr angle θK and ellipticity φK defined
by

tan (θK + θI ) =
∣∣∣∣Ey

R

Ex
R

∣∣∣∣, (58)

where θI is the polarization angle of the incident linearly
polarized wave, and the ellipticity

φK = θ x
R − θ

y
R. (59)

In the Faraday configuration, with an incident wave lin-
early polarized at an angle θI = π/4 with respect to the x axis,
the Kerr angle is given by

tan (θK + θI ) =
∣∣∣∣1 + i(

√
ε+ − √

ε−) − √
ε+ε−

1 − i(
√

ε+ − √
ε−) − √

ε+ε−

∣∣∣∣, (60)

while in the Voigt configuration for the identically polarized
incident wave, the Kerr angle is

tan (θK + θI ) =
∣∣∣∣ (1 − √

εv )(1 + √
εxx )

(1 + √
εv )(1 − √

εxx )

∣∣∣∣. (61)

As mentioned above, Eqs. (60) and (61) do not define
precisely (i.e., in the range [−π, π ]) the polarization angle of
the reflected electric field. Instead, the Kerr angle θK + θI is
defined in the range [0, π/2]. Since we take θI = π/4 in our
calculations, we get a θK that can be positive or negative which
indicates that the polarization angle increases or decreases
from π/4, giving a peak or a dip (inverted peak) in the curve
of θK (ω).

V. NUMERICAL RESULTS FOR THE KERR ANGLE

We compute the Kerr angle in the four-node model for
two specific configurations: (1) the longitudinal Faraday con-
figuration where q ‖ B0‖ ẑ and the linear polarization vector
is ê⊥B0; and (2) the transverse Voigt configuration where
q ‖ ẑ, B0 = B0̂x⊥q and the linear polarization vector ê is in
the x-y plane. For the Faraday configuration we choose the
magnetic field to be perpendicular to the mirror plane while
we take it in the mirror plane in the Voigt configuration.
Other choices are, of course, possible. We assume a total
electronic density of ne = 1 × 1020 m−3 for the four nodes.
For the interband transitions we introduce the scattering rate
phenomenologically by taking a finite but small value of δ in
the conductivity tensor. For the intraband transitions, disorder
is taken into account explicitly by introducing a Lorentzian
broadening � = 1/2τ0 with τ0 = 10−11 s. In both configu-
rations, the tilt vector is taken to be t = t0̂z with t0 = 0.5,
so that t‖B0 in the Faraday configuration and t⊥B0 in the
Voigt configuration. This is done in order to isolate the main
features of the Kerr angle in both configurations, i.e., valley
polarization in the former, and chiral anomaly in the latter.
In the presentation of our results, we change the notation for
the Landau level index, i.e., we choose n to be positive for
s = +1 and negative for s = −1. The chiral Landau level is
still n = 0.

A. Faraday configuration

When the external magnetic field has a nonzero projec-
tion along the tilt vector, an optical valley polarization effect
appears in the absorption spectrum. This effect results in
a splitting of the interband transition peaks 0 → |n| and
−|n| → 0 that involve the chiral Landau level. One pair of
nodes starts absorbing light at a lower frequency than the other
pair, leading to a valley polarization. This phenomenon was
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FIG. 5. Frequency dependence of the Kerr angle θK and real part
of the dielectric functions ε+ and ε− in the Faraday configuration,
where q, B0, t ‖̂z. The interband transitions contributing to the main
peaks are indicated. The 0 → 1 and −1 → 0 transitions are each
split into two as a consequence of valley polarization; the Weyl nodes
τ contributing to each of the subpeaks are indicated. Parameters:
B0 = 0.2 T, ne = 1 × 1020 m−3, vF = 3 × 105 m/s, t = 0.5̂z.

studied extensively in our previous work on the absorption
spectrum of a WSM [12]. Here we show that it is also possible
to probe it using the MOKE.

A plot of the Kerr angle versus frequency is shown in
Fig. 5 for the case where the vectors q, B0, t are all parallel
to the z axis and so perpendicular to the mirror plane. The
incident wave is assumed linearly polarized in the x-y plane
with θI = π/4 and the Fermi level is in the chiral Landau
level. In this configuration only the dipolar transitions are
permitted. The allowed interband transitions are visible as a
succession of dips in the curve of the Kerr angle vs frequency
for ω � 4 × 1012 rad/s or peaks in the dielectric functions
Re [ε±(ω)]. The curve of θK (ω) shows a large peak around
ω ≈ 1 × 1012 rad/s, which coincides with the frequency ω+
where Re [ε+(ω)] = 0. Figure 6 shows that this large peak
in θK (ω) is redshifted in frequency when the magnetic field
increases, which is also the behavior of the frequency ω+(B).
A similar shift happens in a normal metal (see Appendix C).
In Appendix D we show that this large peak in θK (ω) comes
mostly from the pair of transitions n = −1 → n = 0 and n =
0 → n = −1 and show that the frequency shift is inversely
proportional to the magnetic field B0. We remark that τ0 does
not enter in the calculation of the Kerr angle, i.e., in Eq. (60),
in this configuration.

Figure 5 shows that nodes related by time-reversal symme-
try (TRS), i.e., nodes 1 and 3 or 2 and 4, have different optical
gaps in the Faraday configuration. This causes a splitting of
the dips in θK (ω) or the peaks in Re [ε±(ω)] corresponding
to the transitions 0 → 1 and −1 → 0. (Note that we could
have chosen a different Faraday configuration leading to no
splitting.) The other interband peaks in Re [ε±(ω)], corre-
sponding to transitions between nonchiral Landau levels, are
not split. By contrast, when t · B0 = 0 for all nodes, transi-
tions 0 → 1 (or −1 → 0) are equivalent for all four nodes
and therefore, only a single dip or peak is present for each
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FIG. 6. Kerr angle as a function of frequency for different values
of the magnetic field B = B0̂z in the Faraday configuration. Parame-
ters: ne = 1 × 1020 m−3, vF = 3 × 105 m/s, t = 0.5̂z.

transition 0 → 1 or −1 → 0. With a linearly polarized inci-
dent wave, both 0 → 1 and −1 → 0 transitions are excited.
For a circularly polarized light, either the 0 → 1 or −1 → 0
transition is excited. (More specifically, the transitions |n| →
|n| + 1 show up in ε− and the transitions |n| → |n| − 1 in
ε+, as in graphene.) The valley polarization effect due to a
finite tilt, for transitions involving the chiral level, are thus
detectable in the Kerr rotation spectra.

Using Eq. (A23), the energy gap between two Landau lev-
els n, m �= 0 of a tilted Weyl cone is independent of the node
index and increases with magnetic field. As we just showed,
the gap involving the chiral level behaves differently. If the
Fermi level is not at the neutrality point, it depends on the
node index and the splitting of the 0 → 1 (or −1 → 0) peak
decreases with increasing magnetic field as can be seen in
Fig. 6. This behavior is also present in the absorption spectrum
(see Fig. 9 of Ref. [12]). It follows that, in the quantum limit,
the valley polarization is present in the Kerr rotation angle in a
larger range of frequencies as the magnetic field is decreased.
The splitting can also be increased by increasing the tilt. It
would be interesting to measure these effects experimentally.

B. Voigt configuration

In the Voigt configuration, the magnetic field B = B0̂x
is perpendicular to the propagation vector q ‖ ẑ and the tilt
vector t ‖ ẑ and the polarization vector ê lies in the x-y plane.
As Eq. (55) shows, in order to see a Kerr rotation in the Voigt
configuration, the polarization of the incident wave propa-
gating along the z direction must make an angle with the x
and y axis. We choose θI = π/4 and Ex

0 = Ey
0 = E0 for the

incoming electric field. Then, the reflected electric field is
given by

Ex
R(ω) = 1 − √

εxx

1 + √
εxx

E0(ω), Ey
R(ω) = 1 − √

εv

1 + √
εv

E0(ω),

(62)

with εv = εyy + ε2
yz/εzz.
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We first remark that if interband transitions are not in-
cluded in the calculation of the dielectric functions, then εyy =
1 and εyz = 0 so that εv = 1. It then follows from Eq. (62)
that Ey

R(ω) = 0, and so tan (θK + θI ) = 0, giving θK = −π/4.
There is no structure in the Kerr angle in this case. When both
intraband and interband transitions are included, the behavior
of the Kerr angle with frequency and magnetic field is shown
in Fig. 7. We notice that the Kerr angle in this configura-
tion is as big as in the Faraday configuration, in contrast
to a normal metal (where it is at least ten times smaller).
Moreover, its behavior is clearly different from that in the
Faraday configuration. The strong peak in the Kerr angle at
high frequency occurs when Re [εxx(ω)] = 0, i.e., at the WSM
plasmon frequency ω = ωp given by Eq. (30), as can be seen
in Fig. 8. The peak is also present at zero tilt, and its frequency
increases as

√
B0. In an ordinary metal, the frequency of

the peak in the Kerr angle increases proportionally to B2
0.

Moreover, in a metal, the negative peak in the Kerr angle
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FIG. 8. Frequency dependence of the dielectric functions εxx and
εv and of the Kerr angle θK for a magnetic field B = 0.3 T. Param-
eters: ne = 1 × 1020 m−3, τ0 = 10 ps, vF = 3 × 105 m/s, t = 0.5̂z.
The first four peaks in Re[εxx] come from the transitions: 0 →
1, −1 → 0, 0 → 2, −2 → 0.

occurs at the plasmon frequency ωp,metal =
√

ne2/mε0, which
is independent of B0. In contrast, in a WSM, the negative peak
occurs when Re [εv (ω)] = 0 (see Fig. 8) and is redshifted
with magnetic field. In this figure the plasmon frequency is
below the interband absorption threshold. This is a common
circumstance, especially if we take into account the effect of
ε∞ which reduces the plasmon frequency without changing
the optical gap for interband transitions.

The blueshift of the strong peak in the Kerr angle in a
WSM is consistent with the measurement by Levy et al. (see
Fig. 2(d) of Ref. [16]) of the blueshift of the reflectance edge
in the Weyl semimetal TaAs. As we pointed out in Sec. III, this
magnetoresistance effect is a signature of the chiral anomaly
in a WSM and, as Fig. 7 clearly shows, it is reflected in
the displacement of the peak in the Kerr angle. This peak
is caused mainly by the intraband contribution of the chiral
Landau level to the longitudinal conductivity σxx (i.e., σ‖).
Since it occurs at the plasmon frequency given in Eq. (30),
which is independent of τ0 in the limit ωpτ0  1, it is not
affected by the magnetic-field dependence of τ0. We have
checked numerically that taking τ0 ∝ 1/B0 or τ0 ∝ 1/B2

0 does
not change the position of this peak.

The peak disappears if the intraband part of σxx is set
to zero, but is almost unchanged if σzz (i.e., σ⊥) is zero.
As discussed in Sec. III, the interband transitions produce a
redshift of the plasmon frequency. The shift of the Kerr angle
occurs in the THz range and should be measurable in optical
experiments. The blueshift of the strong peak in the Kerr angle
with magnetic field in the Voigt geometry contrasts with its
behavior in the Faraday configuration, where it is redshifted
with the magnetic field. The Voigt geometry is special because
the longitudinal dielectric function (e.g., εxx when B0||x̂) en-
ters the definition of the Kerr angle, while it does not in the
Faraday configuration.

Aside from the large maximum caused by intraband tran-
sitions, the Kerr angle displays additional smaller peaks
originating from interband transitions. The first four of these
peaks, also visible in Re [εxx(ω)] (see Fig. 8), occur at the
transitions 0 → 1; −1 → 0; 0 → 2 and −2 → 0. Because we
choose t⊥B [i.e., t‖ = 0 in Eq. (A23)], there is no splitting of
the 0 → 1 and −1 → 0 peaks and so no valley polarization in
the Kerr angle.

Figures 7 and 8 show some intriguing structure in the low-
frequency region. However, as this low-frequency behavior
will likely be strongly affected by details of the disorder, for
example the impact of the B dependence of the scattering time,
we will not discuss it further in this paper.

VI. SUMMARY AND DISCUSSION

We have shown that a sizable Kerr rotation is possible in a
simplified model of a Weyl semimetal in both the Faraday and
Voigt configurations. Inter-Landau level transitions appear as
dips or peaks in a plot of the Kerr angle vs frequency and can
be detected in this way. Moreover, a tilt of the Weyl cones
allows the detection of transitions beyond the dipolar ones. In
the particular Faraday configuration that we have chosen to
study, with a nonzero tilt of the Weyl cones in the direction of
the external magnetic field, the peaks in the Kerr angle that
represent interband transitions involving the chiral Landau
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level are split into subpeaks. This splitting, which we found
before in the absorption spectrum, is a manifestation of a full
valley polarization in a WSM [12] . A valley polarization is
thus also detectable via the magneto-optical Kerr effect.

We have also demonstrated the interest of measuring the
MOKE in the Voigt geometry. In this configuration, the Kerr
angle involves the longitudinal dielectric function ε‖(ω), un-
like in the Faraday configuration, since the electric field of
the wave has a nonzero projection on the external magnetic
field. The zero of the longitudinal dielectric function gives the
plasmon frequency ωp. The chiral anomaly in a WSM leads
to an increase of ωp with the external static magnetic, i.e.,
ωp ∝ √

B0. In the Voigt geometry, a large peak in the Kerr
angle θK occurs at ωp and is consequently blueshifted by a
magnetic field. We argued that the

√
B0 shift of this peak is

the signature of the chiral anomaly in the MOKE, just like the
shift of the absorption edge recently reported in reflectance
measurements [16].

The exact size of the Kerr angle depends, of course, on the
dielectric constant ε∞, which can be quite large in WSMs. We
have verified that using a larger value of ε∞ in our calculation
(instead of ε∞ = 1) does indeed reduce the amplitude of the
Kerr angle signal and redshifts the frequencies of the peaks
and dips. For ε∞ = 30, the amplitude of the peak in θK at B =
0.3 T in Fig. 7 is decreased from 0.65 to 0.41 rad and ωp is
reduced to ωp ≈ 2.5 × 1012 rad/s. If ε∞ is very large, the peak
θK (ωp) may be blurred by disorder. For the chiral anomaly to
be detected in the Kerr angle, the plasmon frequency must
satisfy the condition ωpτ0  1.

We have chosen a total electronic density of ne = 1 ×
1020 m−3 for our calculation, as we did not have a particular
WSM in mind. At such a small density, the quantum limit
is reached at a very small value of B0, i.e., ≈0.053 T. To be
certain that this choice does not affect the main conclusions
of our paper, and to get a quantum limit closer to recently
reported electronic density values [16,25,26], we have recal-
culated Fig. 7 for a much bigger total density of ne = 1 ×
1022 m−3 and a magnetic field of B0 = 7.83 T (the value of
B0 needed to obtain the same Fermi level as in Fig. 7 for B0 =
0.3 T). The qualitative aspects of the curve remain unchanged,
with almost the same amplitude for the peaks and dips, but
with the peak at θK (ωp) now shifted to ≈32 × 1012 rad/s,
i.e., ≈21 meV. Thus, an increase in the carrier density
could compensate for the redshift created by a larger value
of ε∞.

Although our calculations have been carried out for a toy
model, the main predictions derived from them are qualita-
tively applicable to real WSMs. For example, let us consider
TaAs, which displays two symmetry-inequivalent multiplets
of Weyl nodes (8 W1 nodes and 16 W2 nodes).

Two simple observations can be made at strong enough
magnetic fields, when the quantum limit is attained for both
W1 and W2 nodes. On the one hand, if B0 and q are both
parallel to the c axis of the crystal (Faraday configuration),
one should see a peak splitting due to valley polarization in
the contribution from the W2 nodes to the Kerr angle. No
such splitting would be present in the contribution from the
W1 nodes, because these are not tilted along the c axis [27].
The experimental distinction of the contributions from W1
and W2 nodes to the valley polarization is made possible by

their clearly different optical gaps (�25 meV in the case of
W1 nodes, and �4 meV in the case of W2 nodes). On the
other hand, if B0 is along the c axis of the crystal but q is
along the a or b axis (Voigt configuration), a peak in the Kerr
angle will emulate the blueshift of the plasmon frequency as
a function of B0. Both W1 and W2 nodes contribute to this
blueshift.

The analysis becomes more complicated at weaker mag-
netic fields, where quantum limit is attained for the W2 nodes
but not for the W1 nodes. In this regime, interband transitions
between nonchiral Landau levels of the W1 nodes will result
in additional low-frequency features in the absorption spec-
trum and in the Kerr angle, which could make it more difficult
to resolve the valley polarization signal coming from the W2
nodes. Also, the contribution from the nonchiral Landau levels
of the W1 nodes to the plasmon frequency will not in general
scale as

√
B (depending on the distance in energy between the

Fermi level and the bottom of each nonchiral Landau level).
At the same time, the chiral Landau levels of both W1 and
W2 nodes will still make a contribution to ωp that scales
as

√
B.

In our theory we have neglected nonlinear terms that are
present in the energy dispersion of real WSMs at zero mag-
netic field. The impact of those terms in our main results,
unimportant if the Fermi level is close to the Weyl nodes, is
twofold. First, nonlinear terms in the energy dispersion give
rise to a valley polarization, much like the tilt of the Weyl
cones does [12]. As such, nonlinear terms produce features in
the Kerr angle that are associated with the valley polarization,
even in the absence of a tilt. Second, nonlinear terms in the
energy dispersion can change the magnetic field dependence
of the plasmon frequency. For example, if the chemical po-
tential is near the bottom of the band that connects two chiral
Landau levels in a real WSM, then a calculation that assumes
a parabolic dispersion gives a plasmon frequency that is in-
dependent of the magnetic field. When the chemical potential
increases and reaches the linear regime of the electronic dis-
persion, the plasmon frequency becomes a function of the
magnetic field as in our model of the WSM. The latter is the
regime of interest for us.

In real WSMs, the Fermi velocity near a Weyl node
is anisotropic. Yet, this anisotropy can be incorporated in
our isotropic model by an appropriate scaling of variables:
vx(px + eAx )σx + vy(py + eAy)σy + vz(pz + eAz )σz + vF t ·
p = vF ( p̃x + eÃx )σx + vF ( p̃y + eÃy)σy + vF ( p̃z + eÃz )σz +
vF t̃ · p̃, where vi = vF αi (for i = x, y, z) are the anisotropic
Fermi velocities, p̃i = αi pi are the rescaled momenta,
t̃i = ti/αi is the rescaled tilt, and Ãi = αiAi is the rescaled
vector potential. Independently rescaling the Hamiltonians
for each node, all steps of our calculation can be essentially
repeated. Based on this, we expect that the valley polarization
and the blueshift of the plasmon frequency are robust
to Fermi velocity anisotropies, at least qualitatively. A
precise quantitative study is beyond the scope of the present
work.

Finally, real WSMs host Fermi arc surface states. The
contribution from those Fermi arcs to the magneto-optical re-
sponse, neglected in our theory, should not significantly affect
our main predictions, as the penetration depth of the elec-
tromagnetic waves in weakly doped bulk WSMs can largely
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exceed the localization length of the surface states at the Fermi
level.
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APPENDIX A: EIGENSTATES OF TILTED WEYL CONES

A transverse static magnetic field B = B0̂z is added via the
Peierls substitution p → P = p + eA, with the vector poten-
tial A = (0, Bx, 0) (e > 0 for an electron) taken in the Landau
gauge. The Hamiltonian h1(p) for node 1 becomes

h1(P) = h(0)
1 (P) + W1(P), (A1)

with

h(0)
1 (P) = vF

(
Pz Px − iPy

Px + iPy −Pz

)
, (A2)

the Hamiltonian in the absence of a tilt, and with

W1(P) = vF

(
t · P 0

0 t · P

)
, (A3)

the perturbation due to the tilt.
The Hamiltonian h(0)

1 (p) is easily diagonalized by defining
the ladder operators

a = �√
2h̄

(Px − iPy), (A4)

a† = �√
2h̄

(Px + iPy). (A5)

The energy spectrum of h(0)
1 (p) consists of both positive and

negative energy Landau levels. We classify them with the
indices n, s where n = 0, 1, 2, 3, . . . is always positive and
s = +1 (−1) is a band index for the positive (negative) energy
levels. For node 1:

E1,0(pz ) = −vF pz, (A6)

E1,n �=0,s(pz ) = svF

√
2

h̄2

�2
n + p2

z , (A7)

with the corresponding eigenstates

w1,n,s,X (pz, r) = 1√
Lz

(
u1,n,s(pz )hn−1,X (x, y)

v1,n,s(pz )hn,X (x, y)

)
eipzz/h̄. (A8)

In these equations, � = √
h̄/eB is the magnetic length and

the wave functions hn,X (x, y) are the eigenstates of a two-
dimensional electron gas in a transverse magnetic field in the
Landau gauge:

hn,X (x, y) = 1√
Ly

ϕn(x − X )e−iXy/�2
, (A9)

with ϕn(x) the eigenstates of the one-dimensional harmonic
oscillator and n and X the Landau level and guiding-center
indices respectively.

The coefficients u1,n,s,pz , v1,n,s,pz , which are independent of
X , are given for n �= 0 by(

u1,n,s(pz )

v1,n,s(pz )

)
= 1√

2

⎛⎜⎝−is
√

1 − vF pz

E1,n,s (pz )√
1 + vF pz

E1,n,s (pz )

⎞⎟⎠, (A10)

and obey the normalization condition |u1,n,s(pz )|2 +
|v1,n,s(pz )|2 = 1. For the chiral Landau level n = 0, the
eigenstate is simply (

u1,0(pz )

v1,0(pz )

)
=

(
0

1

)
(A11)

and there is no band index in this case. The eigenenergies are
independent of X so that each level (n, s, pz ) has a degeneracy
given by Nϕ = S/2π�2 with S = LxLy the area of the electron
gas in the x-y plane (Lz is its extension in the z direction).

We must now obtain the energies and eigenvectors for tilted
cones. Although an analytical solution exists [9], it is more
convenient to use a numerical approach to the eigenvalue
problem since we can then study the system for arbitrary ori-
entations of the magnetic field and tilt vector or consider more
complex Hamiltonians with, for example, nonlinear terms in
the energy spectrum [13].

We write the many-body Hamiltonian for the four-node
model as

H =
∑

τ

∫
d3rψ†

τ (r)hτ (r)ψτ (r) (A12)

and expand the fermionic field operators ψτ (r) onto the
{wτ,n,s,X (pz, r)} basis (we leave as implicit the fact that t
depends on the node index τ )

ψτ (r) =
∑

n,X,pz

wτ,n,s,X (pz, r)cτ,n,s,X,pz , (A13)

where cτ,n,s,X,pz is the annihilation operator for an electron in
the wτ,n,s,X,pz (r) state. The many-body Hamiltonian can be
written as

H =
∑

τ,n,s,pz

[Eτ,n,s(pz ) + vFtz pz]c
†
τ,n,s,X,pz

cτ,n,s,X,pz

+ h̄vF√
2�

∑
τ,n,n′,s,s′,pz

Wτ,n,s,n′,s′ (pz )c†
τ,n,s,X,pz

cτ,n′,s′,X,pz .

(A14)

The matrix elements Wτ,n,s,n′,s′ (pz ) are defined by

Wτ,n,s,n′,s′ (pz ) =
∫

d3rw†
τ,n,s,X (pz, r)

×(t−a† + t+a)wτ,n′,s′X (pz, r), (A15)

with the definition

t± = tx ± ity. (A16)

Their calculation gives

Wτ,n,s,n′,s′ (pz ) = −it+u∗
τ,n,s(pz )uτ,n+1,s′ (pz )

√
nδn′,n+1

−it+v∗
τ,n,s(pz )vτ,n+1,s′ (pz )

√
n + 1δn′,n+1
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+it−u∗
τ,n,s(pz )uτ,n−1,s′ (pz )

√
n − 1δn′,n−1

+it−v∗
τ,n,s(pz )vτ,n−1,s′ (pz )

√
nδn′,n−1.

(A17)

The linear dispersion being valid only in a small region around
each Weyl node, an appropriate high-energy cutoff must be
applied to the summation over pz. That cutoff is assumed to
be small compared to the internodal separation in momentum
space.

We define the superindices I = n, s and J = n′, s′ in order
to write the Hamiltonian H in the matrix form:

H =
∑

τ,X,pz

∑
I,J

c†
I (τ, X, pz )FI,J (τ, pz )cJ (τ, X, pz ), (A18)

where cJ (τ, X, pz ) stands for the vector
(cτ,1,X,pz,cτ,2,X,pz,, cτ,3,X,pz,, . . . , cτ,N,X,pz,), where N is the
number of Landau levels n, s kept in the calculation and
FI,J (τ, pz ) is the N × N matrix given by

FI,J (τ, pz ) = [Eτ,I (pz ) + vFtz pz]δI,J + Wτ,I,J (pz ), (A19)

which is independent of the guiding-center index X .
The matrix F is Hermitian and so can be diagonalized by a

unitary transformation

F = UDU†, (A20)

where U is the matrix of the eigenvectors of F and D the
diagonal matrix of its eigenvalues EI (τ, pz ), which are the
energy of the Landau levels in the presence of the tilt.

Defining new operators dI (τ, X, pz ) by

dI (τ, X, pz ) =
∑

J

(U †)I,JcJ (τ, X, pz ), (A21)

we get the final result

H =
∑

τ,X,pz

∑
I

EI (τ, pz )d†
I (τ, X, pz )dI (τ, X, pz ). (A22)

We also consider the case where the magnetic field is in the x̂
direction. The analysis proceeds in a similar way.

The analytical results [9] for the energy levels of the tilted
cone τ = 1 are

En=0,p‖ = vFt‖ p‖ − vF

γ
p‖,

En �=0,p‖ = vFt‖ p‖ + s
1

γ

√
v2

F p2
‖ + 2h̄2nv2

F

γ �2
, (A23)

where p‖ = p · B̂, t‖ = t · B̂, and γ = (1 − |t × B̂|2)
−1/2

.

APPENDIX B: CURRENT OPERATOR

The single-particle current operator for node τ is defined
by

jτ = − ∂hτ (p)

∂Aext

∣∣∣∣
Aext→0

= −evF (σ + tσ0), (B1)

where Aext is the vector potential of an external electromag-
netic field. The total many-body current for this node is given

by

Jτ =
∫

d3rψ†
τ (r)jτψτ (r)

= −evF

∑
τ,pz,X

∑
I,J

�I,J (τ, pz )c†
τ,I,X,pz

cτ,J,X,pz

= −evF

∑
τ,pz,X

∑
I,J

ϒI,J (τ, pz )d†
I (τ, X, pz )dJ (τ, X, pz ),

(B2)

with the matrix elements defined by

�I,J (τ, pz ) =
∫

d3rw†
τ,I,X,pz

(r)(σ + tσ0)wτ,J,X,pz (r) (B3)

and the definition

ϒ = U†�U. (B4)

The matrix elements

�n,s,n′,s′ = u∗
τ,n,s(pz )vτ,n−1,s′ (pz )δn′,n−1(̂x − îy)

+v∗
τ,n,s(pz )uτ,n+1,s′ (pz )δn′,n+1(̂x + îy)

+u∗
τ,n,s(pz )uτ,n,s′ (pz )δn′,n̂z

−v∗
τ,n,s(pz )vτ,n,s′ (pz )δn′,n̂z + tδn,n′δs,s′ . (B5)

APPENDIX C: MOKE IN A NORMAL METAL

For comparison with the Kerr rotation in a WSM, we give
a short review of the Kerr effect in a normal three-dimensional
metal in a transverse magnetic field. We consider a system in
which the half-space z < 0 (region 1) is occupied by a non-
conducting medium with relative dielectric constant ε1 = 1
and the half-space z > 0 (region 2) is occupied by the normal
metal. We use the results of Sec. IV, but with the relative
dielectric tensor ←→ε of a normal metal.

1. Longitudinal propagation (q ‖ B0‖ ẑ)

For a magnetic field B = B0ẑ, the (relative) dielectric ten-
sor for a normal metal in the Drude model has the same
symmetry as ←→ε in Eq. (40). The components are given by

εxx = εyy = 1 − ω2
p

ω

ω + i
τm(

ω + i
τm

)2 − ω2
c

, (C1)

εxy = −εyx = ω2
p

ω

iωc(
ω + i

τm

)2 − ω2
c

, (C2)

εzz = 1 − ω2
p

ω

1

ω + i
τm

, (C3)

where τm is the transport relaxation time, ωc = eB0/m is the
cyclotron frequency, and ωp =

√
ne2/ε0m, with ε0 the free

space permittivity and m the effective mass of the electrons.
The dispersion relation of Eq. (42) for the two circularly
polarized electromagnetic waves in a normal metal becomes

q±(ω) = ω

c

√
ε±, (C4)
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FIG. 9. Kerr angle in the Faraday configuration (left y axis) and
dielectric function Re[ε+(ω)] (right y axis) as a function of frequency
for an external magnetic field B0 = 0.2, 0.3, 0.4 and an electronic
density ne = 0.25 × 1020 m−3.

with

ε±(ω) = εxx ∓ iεxy = 1 − ω2
p

ω

(
1

ω ± ωc + i
τm

)
. (C5)

In the pure limit (τm → ∞), the zeros of ε± are given by
(keeping only positive frequencies)

ω± =
∓ωc +

√
ω2

c + 4ω2
p

2
. (C6)

We remark that Eq. (C5) remains valid in the quantum case,
when the kinetic energy is quantized into Landau levels.

For an incident wave linearly polarized at θI = π/4 from
the x axis with amplitude Ex

0 , the reflection coefficients are
given by Eqs. (45a) and (45b), the Kerr angle is obtained from
Eq. (60) and the phases θ x

R and θ
y
R are defined in Eq. (56).

Figure 9 shows the Kerr angle θK (left y axis) calculated
from Eq. (58) (black line) for the same magnetic fields B0 =
0.2, 0.3, 0.4 T used in Fig. 7 and the same electronic density
(equivalent to the density of one node) ne = 0.25 × 1020 m−3.
The relaxation time is taken to be τm = 10 ps. As in a WSM,
the big peak in the Kerr angle occurs near the zero of the
dielectric function Re [ε+(ω)] (right y axis), i.e., at ω+, and
is shifted to lower frequencies with increasing magnetic field.
There is no particular feature of the Kerr angle at the cyclotron
frequency ωc = eB0/m, which is ωc = 0.035 × 1012 rad/s for
B = 0.2 T. The density that we use in these calculations is
much smaller than that in a normal metal. Our goal is to
compare the predictions of the Drude model with that of the
WSM, where our numerical calculation uses that particular
density.

Figure 10 shows what happens if we increase the density
to ne = 0.25 × 1022 m−3. There is more structure in the Kerr
angle, but the maximum still occurs at Re[ε+(ω+)] = 0, i.e.,
at a frequency 10 times bigger, and is again redshifted in
frequency by an increasing magnetic field. The shoulder on
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FIG. 10. Kerr angle in the Faraday configuration (left y axis) and
dielectric function Re[ε+(ω)] (right y axis) as a function of frequency
for an external magnetic field B0 = 2, 3, 4 and an electronic density
ne = 0.25 × 1022 m−3.

the left occurs at the smallest of the two zeros of Re[ε−(ω)].
At a density of ne = 1 × 1029 m−3, typical of a real metal and
keeping τm = 10 ps with B0 = 10 T, the Kerr angle is almost
constant at θK = 0.1 mrad. It peaks at Re[ε+(ω+)] = 0, i.e.,
at ω+ = 18.9 × 1015 rad/s where it reaches 3.5 mrad. The
frequency ω+ is then given by Eq. (C6), with ωcτm � ωpτm

and ω+ = ωp. The Kerr angle decreases with decreasing value
of τm.

2. Transverse propagation (q ⊥ B0‖ x̂)

With B = B0̂x, the dielectric tensor for a normal metal has
the symmetry of ←→ε in Eq. (49), except that εyy = εzz and

εxx = 1 − ω2
p

ω

1(
ω + i

τm

) , (C7)

εyy = εzz = 1 − ω2
p

ω

ω + i
τm(

ω + i
τm

)2 − ω2
c

, (C8)

εyz = −εzy = −ω2
p

ω

iωc(
ω + i

τm

)2 − ω2
c

. (C9)

Maxwell equations for this Voigt configuration give two
solutions with the polarization parallel or perpendicular to the
magnetic field and dispersion

q‖ = ω

c

√
εxx, (C10)

q⊥ = ω

c

√
εv, (C11)

where the Voigt dielectric constant is defined by

εv = εyy + ε2
yz

εzz
. (C12)
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FIG. 11. Kerr angle θK in the Voigt configuration as a func-
tion of frequency for B0 = 0.2, 0.3, 0.4 T. Parameters: ne = 0.25 ×
1020 m−3 and τm = 10 ps.

In this configuration there is an induced field in the direction
of propagation, which is given by

Ez = −εzy

εzz
Ey. (C13)

To see any variations of the Kerr angle, the incident wave
has to be polarized at an angle with respect to the x and y axis.
The reflected electric field components are then obtained from
Eq. (55), while the Kerr angle is obtained from Eq. (61). In
our calculation, we assume that the incident wave is linearly
polarized at an angle θI = π/4 with respect to the x axis, so
that Ex

0 (ω) = Ey
0 (ω). The dielectric function Re [εxx(ω)] = 0

at ω = ωp =
√

ne2/mε0.
Figure 11 shows the Kerr angle θK in the Voigt config-

uration for three different values of the magnetic field, i.e.,
B0 = 0.2, 0.3, 0.4 T, the same values as in Fig. 7 for the
WSM. The carrier density is ne = 0.25 × 1020 m−3 and the
relaxation time is τm = 10 ps. The Kerr angle is an order of
magnitude smaller than in the Faraday configuration. Its min-
imum occurs near the plasmon frequency while, in a WSM
(see Fig. 7), it is the maximum of the Kerr angle that occurs at
that frequency. Because the plasmon frequency is independent
of B0 in a metal, the frequency at which the minimum in
θK occurs is also independent of B0. The minimum in θK

increases negatively with B0. We find numerically that the
frequency at which the Kerr angle is maximal θK,max ∝ B2

0
while θK,max ∝ √

B0 in a WSM. In contrast with a WSM, this
maximum does not seem to be associated with any feature in
εv or εxx.

APPENDIX D: MAGNETIC-FIELD DEPENDENCE
OF THE PEAK IN ε+(ω)

In this Appendix we derive the magnetic-field dependence
of the low-energy peak in the Kerr angle shown in Figs. 5
and 6. This peak occurs at a frequency ω f given by the condi-

tion Re [ε+(ω f )] = 0, i.e., at

ε0ω f = σ ′′
xx − σ ′

xy (D1)

for a magnetic field pointing in the z direction. To simplify
the calculation we assume zero tilt. In this case, only σzz is
nonzero for the intraband transitions and they then do not
contribute to ω f . In terms of the current response function,
Eq. (D1) becomes

ε0ω
2
f = χ ′

xx(ω f ) − χ ′
xx(0) + χ ′′

xy(ω f ). (D2)

We assume that the main contributions to χi j come from
the transition n = −1 to n = 0 and n = 0 to n = 1. For theses
transitions and for node 1

E1(p) − E0(p) = h̄vF

�
p� + h̄vF

�

√
2 + p2�2 (D3)

and

E0(p) − E−1(p) = − h̄vF

�
p� + h̄vF

�

√
2 + p2�2. (D4)

The matrix elements of the current operator in χi j are given
by

ϒ
(x)
01 (p)ϒ (x)

10 (p) = 1

1 + 1
2 (p� −

√
2 + p2�2)2

, (D5)

with the relation

ϒ
(x)
−1,0(p)ϒ (y)

0,−1(p) = iϒ (x)
0,1(−p)ϒ (x)

1,0(−p). (D6)

Since h̄ω f � E1(p) − E0(p), E0(p) − E−1(p), we can ex-
pand the denominator in the current response to get

χ ′
xx(ω f ) − χ ′

xx(0) = (α0,1 + α−1,0)ω2
f , (D7)

χ ′′
xy(ω f ) = (β0,1 + β−1,0)ω f . (D8)

The frequency

ω f = β0,1 + β−1,0

ε0 − (α0,1 + α−1,0)
. (D9)

The coefficients in Eq. (D9) are given by

β1,0 = 2e2

4π2h̄

1

�

∫ +∞

−∞
dyϒ (x)

0,1(y)ϒ (x)
1,0(y)

f1(y) − f0(y)

[E1(y) − E0(y)]2

= e2

4π2h̄

1

�

∫ pF �

−∞
dy

1

y2 − y
√

y2 + 2 + 2
(D10)

and

β0,−1 = 2e2

4π2h̄

1

�

∫ +∞

−∞
dyϒ (x)

−1,0(y)ϒ (x)
0,−1(y)

f0(y)− f−1(y)

[E0(y)−E−1(y)]2

= − e2

4π2h̄

1

�

∫ −pF �

−∞
dy

1

y2 − y
√

y2 + 2 + 2
. (D11)

They combine to give

β1,0 + β0,−1 = e2 pF

4π2h̄
, (D12)

where pF is the Fermi momentum and En(y) are the single-
particle energies expressed in units of h̄vF /�.
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For the coefficients α, the definitions are

α1,0 = 2e2

4π2h̄vF

∫ +∞

−∞
dyϒ (x)

0,1(y)ϒ (x)
1,0(y)

f1(y) − f0(y)

[E1(y) − E0(y)]3

= − 2e2

4π2h̄vF

∫ pF �

−∞
dy

1

1 + 1
2 (y +

√
2 + y2)2

× 1

(−y +
√

2 + y2)3
(D13)

and

α0,−1 = 2e2

4π2h̄vF

∫ +∞

−∞
dyϒ (x)

0,−1(y)ϒ (x)
−1,0(y)

f−1(y)− f0(y)

[E−1(y)−E0(y)]3

= 2e2

4π2 h̄vF

∫ −pF �

−∞
dy

1

1 + 1
2 (y +

√
2 + y2)2

× 1

(y −
√

2 + y2)3
. (D14)

They combine to give

α1,0 + α0,−1 = − e2

8π2h̄vF
(pF � +

√
2 + (pF �)2). (D15)

Within the small-frequency approximation, the expression
for the frequency ω f is now, summing the contribution of the
four nodes:

ω f =
4e2 pF

4π2 h̄ε0[
1 + 4e2

8π2 h̄vF ε0
(pF � +

√
2 + (pF �)2)

] . (D16)

The density of states for the chiral level of one node is
gn=0(E ) = 1

4π2�2 h̄vF
, so that the Fermi momentum is given by

ne = gn=0(E )h̄vF pF , where ne is the density in node 1. Thus
pF � = 4π2�3ne. With ne = 0.25 × 1020 m−3 and B0 = 0.2 T,
i.e., pF � = 0.19 � 2 and we can further approximate

ω f = 1(
1 + 4 1√

2π
αg

) 4ene

ε0B0
, (D17)

where αg = e2/4π h̄ε0vF is the effective fine-structure con-
stant for the WSM. The frequency shift of the large peak in
the Faraday configuration is thus inversely proportional to the
magnetic field. We have checked that Eq. (D16) is in good
agreement with the numerical value of Re [ε+(ω f )] = 0. As
an example, for B0 = 0.2 T, we find ω f ≈ 1.06 × 1012 rad/s
from Eq. (D16) which is indeed close to the numerical value
0.98 × 1012 rad/s.
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