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Enhancement of impact ionization in Hubbard clusters by disorder and
next-nearest-neighbor hopping
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We perform time-resolved exact diagonalization of the Hubbard model with time-dependent hoppings on small
clusters of up to 12 sites. Here, the time dependence originates from a classic electromagnetic pulse, which
mimics the impact of a photon. We investigate the behavior of the double occupation and spectral function
after the pulse for different cluster geometries and onsite potentials. We find impact ionization in all studied
geometries except for one-dimensional chains. Adding next-nearest-neighbor hopping to the model leads to a
significant enhancement of impact ionization, as does disorder and geometric frustration of a triangular lattice.
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I. INTRODUCTION

A more efficient solar energy conversion is urgently sought
after. Conventional semiconductor solar cells are, however,
limited by the Shockley-Queisser limit [1] of 34% effi-
ciency. A different class of materials has been shown to
possess the potential to overcome this barrier [2–5]: transition
metal oxides. These materials are at integer filling mostly
Mott insulators with strong electronic correlations that result
in a spectral gap. Such a gap is necessary for the active,
photon-absorbing region of a solar cell. In Mott insulators a
phenomenon called impact ionization may take place [2,4,5],
which makes it possible to produce more than one electron-
hole pair per photon. The timescale of impact ionization can
be a few femtoseconds and hence several orders of magnitude
faster than the electron-phonon processes in these materials
(typically of the timescale of picoseconds). This is in strong
contrast to semiconductor solar cells where impact ionization
is of the order of several picoseconds [1,6,7] so that any excess
kinetic energy of the photon-generated electron-hole pair is
absorbed as thermal lattice vibrations, instead of producing
electrical energy. This leads to the Shockley-Queisser limit in
the first place. Aside from the prospects of impact ionization,
transition metal oxides can be produced as heterostructures
with a potential gradient at a polar interface. This gradient
or the corresponding field enables an electron-hole separation
and allows one to harvest the excess charge in the form of a
current [3,5,8,9]. Experimentally, such transition metal oxide
heterostructures have been demonstrated to act as solar cells,
on the basis of the Mott insulators LaVO3 [10,11] and LaFeO3

[12].
In this paper we focus only on the phenomenon of im-

pact ionization, that is creation of an additional electron-hole
pair, after photoexcitation of the first one, due to electron-
electron interaction. It has been studied theoretically in the
Hubbard model on a lattice with dynamical mean-field theory
[4,5], using Fermi’s golden rule [2,13] and the Boltzmann

equation [14]. Experimentally, evidence for impact ionization
was demonstrated in VO2 [15] and in quantum dots [16–18].

Here, we provide a complementary theoretical approach:
instead of studying a nonequilibrium extended system with
an approximate method, we use exact diagonalization of the
Hubbard model on a small cluster of sites [19,20]. The in-
teraction with light is modeled by adding a time-dependent
classical light pulse to the Hamiltonian via Peierls’ substitu-
tion. We confirm that impact ionization is present in clusters
as small as eight sites and analyze its dependence on model
parameters and geometry. Surprisingly, we find that disorder
does not damage the effect, but leads to an enhancement of
impact ionization. While in part this effect may be specific to
the small system sizes we are able to study (up to 12 sites),
our study certainly provides an incentive to study the effects
of disorder in extended systems with impact ionization.

As far as geometry and connectivity are concerned, we
find that the number of neighbors is important: the more
neighbors available for the electrons to hop to, the stronger the
impact ionization. We do not find impact ionization in chain
geometries with only nearest-neighbor hopping. Apart from a
small number of neighbors, the one-dimensional (1D) systems
are hosting strong antiferromagnetic spin fluctuations [21],
which may be disfavorable for impact ionization. Indeed, for a
10-site fragment of a triangular lattice, which is magnetically
frustrated, we find quite strong impact ionization.

As the basic measure for impact ionization we take the
increase of double occupation as a function of time at times
after the light pulse, when also the total energy does not
change any more. Then, the increase of double occupation can
only be caused by impact ionization since photoexcitation is
no longer possible. We also calculate the nonequilibrium time-
dependent spectral function and analyze the time evolution of
spectral weight in the Hubbard bands. The impact ionization
makes itself visible in the spectral weight shift both inside
the upper Hubbard band as well as from the upper Hubbard
band to the lower Hubbard band occurring at times after the
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pulse. We also see photoinduced gap filling (photomelting of
the Mott insulator) that is stronger in cases where impact ion-
ization is also stronger. The phenomenon of light-induced gap
filling has also been reported in [14,19,22]. In equilibrium,
a related filling of the Mott-Hubbard gap occurs at elevated
temperature [23].

The paper is organized as follows: In Sec. II we introduce
the model, notation, and units used throughout the paper.
We also describe here the different geometries we study. In
Sec. III we present our results for the double occupation and
spectral function during and after the electric field pulse. Dif-
ferent geometries of the Hubbard clusters are studied: chains
and boxes with nearest-neighbor hopping only in Sec. III A,
additional next-nearest-neighbor hopping in Sec. III B, a tri-
angular geometry in Sec. III C, and the effect of disorder in
Sec. III D. Finally, we identify common trends for the different
geometries in Sec. III E and summarize our main findings in
Sec. IV. Additional plots are also presented in the Appendix.

II. MODEL AND METHOD

The paradigm model for studying strongly interacting elec-
trons is the Hubbard model [24], given by the following
Hamiltonian:

Ĥ =
∑
i, j,σ

vi j ĉ
†
jσ ĉiσ + U

∑
i

ni↑ni↓. (1)

Here, ĉ†
iσ (ĉiσ ) creates (annihilates) an electron on site i with

spin σ, niσ = ĉ†
iσ ĉiσ is the occupation number operator, U >

0 is the local Coulomb repulsion, and vi j for i �= j describes
the hopping amplitude from site i to j and for i = j an ad-
ditional, site-dependent onsite potential. In the following we
will restrict the hopping to either nearest-neighbor (NN) or
NN and next-nearest-neighbor (NNN) sites. We also choose
the system to be half-filled with the number of electrons with
either spin given by Ns/2 (with Ns being the number of sites).

A. Peierls’ substitution

The light is modeled as a classical electric field pulse [4]

�E (t ) = �E0 sin[ωp(t − tp)]e− (t−tp )2

2σ2 (2)

of width σ , peaked around the time tp, and with frequency ωp.
We set the units of frequency equal to the units of energy (h̄ ≡
1) and the unit of time is the inverse of the unit of energy. For
typical values of the NN hopping in transition metal oxides
∼0.3 eV, the unit of time is around 2 fs.

The electromagnetic (EM) field is included in the Hubbard
Hamiltonian using Peierls’ substitution [25], which adds a
time dependence to the hoppings:

vi j → vi j (t ) = vi j exp

(
−ie

∫ �Rj

�Ri

�A(�r′, t )d�r′
)

. (3)

We use a gauge where the scalar potential vanishes and �E =
−∂t �A(t ). The wavelength of light is assumed to be much
longer than the system size, which renders �A only time de-
pendent. The value of the integral in (3) for different pairs of
sites i and j depends on �A · ( �Rj − �Ri ). The time dependence
has the same form for all hoppings. The vector potential �A(t )

FIG. 1. Example of a 2 × 3 box geometry with onsite potential
equal on all sites vii = vos, NN hopping vh in horizontal direction,
and vt in the vertical direction as well as two different NNN (diago-
nal) hoppings vd1 and vd2. In our simulations, the time-independent
prefactors are equal for NN hoppings vt = vh ≡ 1 and for NNN
hoppings vd1 = vd2 ≡ vd . If the vector potential �A is chosen along
one of the diagonal directions (as shown in the figure and employed
in our calculation), the geometric factor gi j determining the time
dependence in (4) is the same for vh and vt , it is twice as big for
vd1 and zero for vd2.

is obtained by integrating the �E field in (2), and can be further
approximated by only integrating the sine function in (2) if
the light pulse contains many ωp oscillations (i.e., 1/ωp 
 σ ).
Then, we arrive at the following time dependence of the hop-
pings:

vi j (t ) = vi j exp

(
igi ja{cos[ωp(t − tp)] − b}e− (t−tp )2

2σ2

)
, (4)

where gi j is a dimensionless parameter that depends only on
geometry and is given by the relative angle between �A and
�Rj − �Ri. The dimensionless parameter a describes the strength
of the EM field, whereas b can be used to set the initial phase
factor of the hoppings to 1. Note that the Peierls’ substitution
introduces only a phase factor to the hoppings and does not
change their absolute value. For all results presented in this
paper, the NN hoppings will be set to have equal absolute
value and this hopping amplitude is used as the unit of energy,
i.e., |vi j | = 1.

B. Geometry

The information about the geometry of the system is en-
tirely given by the elements of the hopping matrix vi j . We use
open boundary conditions and chain or box geometries. The
distance between sites is taken to be equal in the horizontal
and vertical directions. The direction of the vector potential �A
is chosen to create a 45o angle with the horizontal direction,
as sketched in Fig. 1 for a 2 × 3 box. This way the geometric
factor gi j needed in Eq. (4) is the same for vertical and hor-
izontal NN hoppings, twice as big for NNN hopping parallel
to �A, and zero for NNN hopping perpendicular to �A.
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C. Disorder

To study the effects of site disorder we use a set of uni-
formly distributed random numbers (box disorder):

εi ∈ (−�/2,�/2), i = 1, . . . , Ns (5)

which shift the onsite potentials from their particle-hole sym-
metric value of −U/2, i.e.,

vii = −U

2
+ εi. (6)

In all plots presented in Sec. III the strength of disorder is
given as a percentage of the Coulomb interaction U , i.e., as the
ratio �/U × 100%. The results are averaged (with arithmetic
averaging) over the disorder realizations.

D. Time evolution

In order to calculate the time evolution of the system driven
out of equilibrium by a time-dependent light pulse, we solve
the time-dependent Schrödinger equation

i∂t |ψ (t )〉 = Ĥ (t )|ψ (t )〉, |ψ (0)〉 = |ψ0〉 (7)

using a time-stepping algorithm described in detail in
Ref. [19], for a finite system of Ns sites. The initial state |ψ0〉
of the time evolution is always taken to be the ground state.
The time is discretized and for each time step δt the midpoint
rule

|ψ (t + δt )〉 ≈ exp [−iδtH (t + δt/2)]|ψ (t )〉 (8)

is applied. For higher-order Magnus integrators applied to
similar problems, see Ref. [26]. The resulting matrix expo-
nentiation is performed using Krylov subspace method [27].
We used the value of δt = 0.005 for all computations in this
paper.

E. Impact ionization

The phenomenon of impact ionization can be understood
as follows: with a fixed quantum of photon energy, the excited
electrons and holes (or doublons and holons) have excess
kinetic energy. If the photon energy is larger than twice the
Mott gap, it is possible to convert the excess kinetic energy
through a process coined impact ionization [6,7,28] into po-
tential energy of one (or more) additional electron-hole pairs.
The easiest way to observe if such processes take place is to
look at the time-dependent double occupation (the potential
energy in the Hubbard model is just given by double occupa-
tion multiplied by U ). In the following we hence compute the
time-dependent site-averaged double occupation:

〈d̂(t )〉 = 1

Ns

Ns∑
i=1

〈ψ (t )|d̂i|ψ (t )〉, (9)

with d̂i = n̂i↑n̂i↓.
Another source of physical information about the system

is the part of the spectral function that describes the occu-
pied states A<(ω, t ). In equilibrium it is time independent
and given by the spectral function A(ω) multiplied by the
Fermi-Dirac distribution function fFD(ω). In nonequilibrium
we obtain A<(ω, t ) by a forward Fourier transform [29] of the

FIG. 2. The geometry of the Ns = 10 site cluster (denoted as
tri-10). The sites are taken to be equidistant with equal hopping
amplitude.

lesser Green’s function

A<
i jσ (ω, t ) = 1

π
Im

∫ ∞

0
eiωtrel G<

i jσ (t, t + trel )dtrel. (10)

Having obtained the time evolution of the system |ψ (t )〉 from
Eq. (7), we can calculate G< directly from

G<
i jσ (t, t ′) = i〈ψ (t ′)|ĉ†

jσT e−i
∫ t ′

t H (τ )dτ ĉiσ |ψ (t )〉, (11)

where T is the time-ordering operator and the time evolution
between times t and t ′ is calculated with the same time-
stepping algorithm as |ψ (t )〉. Since the spectrum is discrete in
ω for finite systems, we multiply G< in (10) with a broadening
function e−εtrel in our numerical implementation, which trans-
lates to a Lorentzian broadening in frequencies. The maximal
value of trel for the numerical evaluation of the integral in (10)
was tmax

rel ≈ 80.
In the following we will be interested in the site-averaged

lesser part of the local spectral function:

A<(ω, t ) = 1

Ns

Ns∑
i=1

A<
iiσ (ω, t ), (12)

which is identical for both spin directions here.

III. RESULTS

In the following, we present results obtained for several
cluster sizes Ns and geometries:

(i) chains of length Ns = 8 and 12 sites with only NN
hopping, with or without disorder;

(ii) boxes (two-dimensional rectangular clusters) of sizes
2 × 4, 2 × 6, and 4 × 3 with only NN or NN and NNN hop-
ping, as depicted in Fig. 1 (the strength of the NNN hopping
is denoted by vd = |vd1| = |vd2| in the following), with or
without site disorder;

(iii) a cluster Ns = 10 sites as depicted in Fig. 2, with NN
hopping, which we denote as tri-10 cluster in the following,
as this cluster can be envisaged as part of a triangular lattice.

In all cases we use open boundary conditions and half-
filling with the onsite potentials either equal to −U/2 (no
disorder) or modified according to Eqs. (5) and (6) if we
consider disorder. The parameters of the model and the pulse
(interaction U , pulse frequency ωp, and intensity a) are chosen
so that the effects discussed are most pronounced (for the
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FIG. 3. Average double occupation as a function of time for a
12-site chain, a 2 × 6 box, and a 4 × 3 box at U = 8, ωp = 11, and
a = 0.8. The blue, red, and orange straight lines are linear fits to the
data in the range t ∈ [10, 30]. A horizontal gray line is added to better
visualize the small slope of the yellow curve.

2 × 4 cluster we present a parameter scan in Appendix D and
for the 12-site clusters we used the parameters from [30]). The
center of the pulse is set to tp = 5, the width to σ = 2, and
the time step is δτ = 0.005 (for more computational details
see Ref. [19], where the same time-stepping algorithm was
applied). We always start the time evolution from the ground
state, which is an insulator for all geometries and disorders.

A. Systems with only NN hopping

We begin with presenting in Fig. 3 the double occupation
as a function of time for three 12-site systems: a 12-site chain,
2 × 6 box, and 4 × 3 box, with only NN hopping and no disor-
der. The double occupation rises significantly during the pulse
at tp ± σ = 5 ± 2 for all three systems: Energy is pumped
into the system and electron-hole (or doublon-holon) pairs are
created. For the 4 × 3 box we see an additional rise of 〈d̂〉 for
later times, after the pulse is switched off, and the total energy
does not change any more (cf. the time dependence of total
energy per site shown in Fig. 4). This further rise of potential
energy (which is proportional to double occupation) is due to

0 5 10 15 20 25 30
−4.5

−4.0

−3.5

−3.0

−2.5

t

E Chain 12 Sites

Box 2x6

Box 4x3

FIG. 4. Energy per site as a function of time for a 12-site chain,
a 2 × 6 box, and a 4 × 3 box. The same parameters as in Fig. 3.

impact ionization. Electrons initially excited across the gap to
the upper Hubbard band have excess high kinetic energy. This
excess kinetic energy is reduced by creating further electron-
hole pairs.1 This phenomenon has already been reported for
extended systems [4,14] and was also observed for the 4 × 3
box by Maislinger and Evertz [20]. We do not find any impact
ionization in chain geometries (we have investigated chains
up to 14 sites). For the 2 × 6 box we see only a tiny rise of
the double occupation. Since the double occupation fluctuates
over time, we added linear fits to the data in Fig. 3. The
fitting was done only for times after the pulse, t ∈ [10, 30],
when the total energy of the system did not change any more.
For the 12-site chain the fit gives a horizontal line (the linear
coefficient k < 10−6).

In Fig. 5 we show the corresponding (site averaged)
A<(ω, t ) for the three 12-site systems for several different
times after the pulse: t = 10, 25, 30. Physically, A<(ω, t )
corresponds to a momentum-integrated photoemission spec-
troscopy, under certain approximations. The most visible
difference between the plots is that for the chain geometry
the spectral function remains practically unchanged, whereas
for the other two systems there are significant spectral weight
shifts inside the Hubbard bands and in the 4 × 3 system also
between the bands. A similar redistribution of spectral weight
for an extended Bethe lattice has been found in Ref. [4].
To quantify the weight shifts inside the upper Hubbard band
(UHB), we separate it into the lower part of UHB (ω ∈ [0, 4])
and upper part of UHB (ω ∈ (4, 8]). The division point of
ω = 4, indicated in Fig. 5 by a vertical dashed line, is chosen
approximately in the middle of the UHB. The conclusions we
make do not depend on its specific choice, as long as it is close
to the middle of the UHB.

In Fig. 6 we show the integrated spectral weight in the
thusly defined upper and lower parts of the UHB together
with their sum as a function of time after the pulse. We see
that in both box geometries there is a spectral weight shift
to the lower part of the UHB (the electrons lose the kinetic
energy) that is accompanied by a total weight gain in the UHB,
which is stronger for the 4 × 3 geometry. The additional gain
originates from impact ionization, which generates additional
doublons. We do not observe such weight shifts in the 12-
site chain. Interestingly, as seen in the 2 × 6 system, not all
kinetic energy lost by the weight shift to smaller frequencies
is converted to potential energy (the increase of the total UHB
weight is very small). It is in this case mostly compensated
by a parallel shift inside the lower Hubbard band (LHB) [cf.
the blue and red curves in Fig. 5(b)]. This is the first step of
thermalization that takes place inside the Hubbard bands, as
discussed in detail in Ref. [14].

Another important difference between the three 12-site
geometries is the behavior of the gap upon pumping energy
into the system. All three systems are initially Mott insulators
with a gap of similar size. This can be seen in Fig. 5, where we
plot in gray the A<(ω) for the equilibrium ground state. After

1At later times in realistic systems the electron-phonon interaction
would be important for relaxation. Since we have only electronic
effects in our model, we do not consider longer times and restrict
to t � 30. In Ref. [20] also longer times (up to 300) are shown.
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(a)

(b)

(c)

FIG. 5. A<(ω, t ) at three different times t for the (a) 12-site
chain, (b) 2 × 6 box, and (c) 4 × 3 box, with the same parameters
as in Fig. 3. The gray curve is A<(ω) in the ground state. The dashed
line indicates the separation into lower and upper parts of the UHB
used in Fig. 6. The results are broadened with ε = 0.04.

the pulse we see gap filling in both box geometries, but not in
the chain. For the chain there remains a clear gap with zero
spectral weight between the upper and lower Hubbard bands,
although it is the chain that initially absorbs the most energy
and double occupations (cf. Fig. 3). The gap filling is the
strongest in the 4 × 3 box where also impact ionization is the
strongest. The photoinduced gap filling has previously been
reported in exact diagonalization [19,22] and for extended
systems in dynamical mean-field theory [4], but it is missed
by the Boltzmann approach [14].

The reason for different behavior of the chain as compared
to the box geometries lies very likely in the difference in
dimensionality of these systems. Although the systems we
investigated are very small, the 1D chain and two-dimensional
(2D) box geometries show qualitatively different behavior. It
is not entirely clear whether this difference stems from strong

10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

t

W
ei
gh
t

Chain 12 Sites

Box 2x6

Box 4x3

FIG. 6. Spectral weight shifts in the UHB calculated from
A<(ω, t ) shown in Fig. 5 for the three 12-site geometries. The lines
show integrals of A<(ω) for a given time t over the following inter-
vals: [0,4] (thick line), (4,8] (thin line), and [0,8] (dashed line). The
values are normalized with respect to the integral over [0,8] at t = 9.

antiferromagnetic (AFM) spin fluctuations in one dimension
[21] or from the fact that the 1D chain hosts fewer non-
degenerate eigenstates. For the box geometries we certainly
also have AFM fluctuations, but they are weaker than in 1D
(see also Sec. III E). Also, for our system sizes many sites
belong to the boundary, which further influences the result (for
site-resolved results see Appendix A). We have also searched
for signatures of impact ionization in similar systems with
periodic boundary conditions, but the parameter scan gave
no positive results. In small periodic systems the symmetry
is high, which leads to many degenerate energy eigenvalues.
In effect, there are fewer different energies that the electrons
can have after the pulse. Consequently, the range of optimal
values of U and ω needed for impact ionization is strongly
reduced.

B. Systems with NN and NNN hopping

Since we cannot further increase the dimensionality of the
cluster (due to a prohibitively large computational effort), we
increased the number of available sites to which electrons can
hop by adding a NNN hopping. It increases the connectivity
of the system, which we understand here not as the number
of NN but as the total number of neighbors j of site i with
nonzero vi j .

In Fig. 7 we present a comparison between the average
double occupation for systems without and with NNN hop-
ping. We immediately see that for the same parameters the
double occupation after the pulse in the 4 × 3 box increases
significantly steeper with time when NNN hopping is added.
That is, NNN hopping boosts impact ionization. There is also
improvement for the 2 × 6 system, but not a very significant
one. Further increasing the value of vd does not enhance im-
pact ionization for both systems. Let us also note that not only
the slope after the photon pulse but also the overall increase
of double occupation is bigger when NNN hopping is added
(the system can absorb more energy).

In a significantly smaller system of eight sites with 2 ×
4 box geometry we also find impact ionization for similar
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FIG. 7. Average double occupation as a function of time for a
2 × 6 box and a 4 × 3 box with U = 8, ωp = 11, and a = 0.8 (the
same parameters as in Fig. 3), comparing the boxes without and with
NNN hopping vd . The straight lines are linear fits to the data in range
t ∈ [10, 30]. A horizontal gray line is again added for reference.

parameters as for the 2 × 6 box (slightly smaller U and ω

seem to give better results, see Appendix D for a parameter
scan). In Fig. 8 we present the average double occupation for
different values of the NNN hopping. The bottom (orange)
curve is the result with only NN hopping (vd = 0). The slope
of the increase after the pulse is steeper than in the case of the
2 × 6 box. It is either due to the fact that we did not find the
optimal parameter set for the 2 × 6 box or, in the bigger box,
AFM spin fluctuations might play a stronger role than in a
smaller box, where boundary effects are stronger. The extent
of boundary effects can be seen in Appendix A, where we
show site-resolved double occupation and spectral function
for different systems.

To quantify the enhancement of impact ionization upon
increasing the NNN hopping we define the rate of impact
ionization k as the slope of the linear fit to the data points in

FIG. 8. Average double occupation as a function of time for a
2 × 4 box and different values of the NNN hopping vd . The parame-
ters are U = 6, ωp = 9, and a = 0.8. The straight lines are linear fits
to the data in range t ∈ [10, 30]. A horizontal gray line is also added
for reference. Inset: rate of impact ionization k defined as the slope
of the linear fits in the [10,30] time interval as a function of vd .

FIG. 9. Average double occupation as a function of time for the
10-site cluster (tri-10) depicted in Fig. 2 and different values of the
pulse strength a. The parameters are U = 8, ωp = 11. The straight
lines are linear fits to the data in range t ∈ [10, 30]. A horizontal gray
line is also added for reference.

the time interval [10,30].2 In the inset of Fig. 8 we show how
k, i.e., the rate of impact ionization, depends on the strength
of NNN hopping vd . This dependence is not monotonous
and reaches a maximum at vd ≈ 0.7. As we show later, in
Sec. III E, when the overall average double occupation reaches
≈0.2, the rate of impact ionization gets lower.

C. Triangular lattice with 10 sites

Another qualitatively different geometry is obtained by
taking a fragment of a triangular lattice as depicted in Fig. 2.
This system has only NN hopping, but the EM vector po-
tential influences hoppings in different directions differently,
as explained in Sec. II A and also illustrated in Fig. 2. Due
to frustration AFM fluctuations are suppressed (see also
Sec. III E). Among the systems studied, this system has (to-
gether with the 4 × 3 box with NNN hopping) the largest
connectivity.

In Fig. 9 we show the average double occupation for the
10-site triangular lattice fragment (tri-10 cluster) for different
values of the pulse strength a. In this geometry we find the
impact ionization is the most pronounced and noticeable al-
ready for small pulse strengths, when the overall increase of
double occupation is relatively small. As already seen in the
inset of Fig. 8 for the 2 × 4 box, the rate of impact ionization
reaches its maximum when the overall double occupation is
around 0.2 and then gets lower. This is better visible in Fig. 10,
where we show the rate of impact ionization k and the double
occupation directly after the pulse (at t = 10) as a function
of the pulse strength a. While the double occupation after the
pulse increases approximately linearly with the pulse strength
a for moderate values of a, the rate of impact ionization, quite

2The measure of the secondary rise of double occupation could
also be, e.g., the ratio of the finally obtained double occupancies (at
t = 30) to the ones present directly after the pulse (at t = 10). But
since the double occupation oscillates in time, it would require some
averaging over time. We found the linear coefficient of the fit between
t = 10 and 30 to be more reliable and not sensitive to oscillations.
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FIG. 10. Rate of impact ionization k obtained from the fits to data
in Fig. 9 (left vertical axis, black) and the average double occupation
at t = 10 (right vertical axis, orange) as a function of the pulse
strength a for the 10-site triangular lattice cluster (tri-10). Same
parameters as in Fig. 9.

counterintuitively, only grows sublinearly for small values
of a.

D. Systems with disorder

In semiconductor solar cells randomly distributed impuri-
ties are a source of large inefficiencies due to additional in-gap
states. The generated electrons and holes may get trapped at
these impurities, decreasing the overall electrical current and
energy harvested in the solar cell. In transition metal oxides
a similar defect trapping may be expected for the prevalent
defects: oxygen vacancies. We are unable here to address this
trapping of the generated current as it requires much larger
systems than we can study with exact diagonalization. For
small clusters and without the transport effect, we observe a
quite interesting, opposite effect: introducing disorder lowers
the symmetry of the systems and opens more possibilities for

FIG. 11. Comparison of the average double occupation for the
eight-site chain and the 2 × 6 box for cases with and without dis-
order. The data points for disordered systems are averages over
Nseeds = 31 disorder realizations. The parameters are U = 6, ωp =
9, and a = 0.6 for the eight-site chain and U = 8, ωp = 11, a = 0.8
for the 2 × 6 box. The disorder strength is �/U = 30% and 25%,
respectively. The straight lines are linear fits to the data in range
t ∈ [10, 30]. A horizontal gray line is also added for reference.

FIG. 12. Average double occupation for the 2 × 4 box for differ-
ent disorder strengths �/U (in %). The data points are averages over
Nseeds = 31 disorder realizations. The parameters are U = 6, ωp =
9, and a = 0.8. The straight lines are linear fits to the data in range
t ∈ [10, 30]. A horizontal gray line is also added for reference. In-
set: rate of impact ionization k as a function of disorder strength
�/U (in %).

energy match for impact ionization3 (see also Appendix C).
Impact ionization is strongly enhanced by disorder, increasing
the efficiency of solar energy conversion.

We introduce site disorder by changing the values of
the onsite potentials as described in Eqs. (5) and (6) (box
disorder). The results we present in the following are aver-
aged (arithmetically) over disorder realizations. In case of the
chain geometry we still do not observe impact ionization (see
Fig. 11), but for the 2 × 6 box there is a slightly stronger
rise of double occupation when we add 25% disorder (the
percentage given in all plots is the ratio �/U × 100%).

For the 2 × 4 system, which is computationally less de-
manding, we show in Fig. 12 the time-dependent double
occupation for several disorder strengths. Adding disorder
leads to a strong increase of the rate of impact ionization by
up to a factor of 2, with a maximum again at the point when
the double occupation after the pulse is ≈0.2.

Please note that our random potential is a highly idealized
model. In real materials there may be, e.g., oxygen vacancies
in transition metal oxides that all have the same potential
strength, which rather corresponds to a binary disorder distri-
bution. However, there are further adatoms, other impurities,
and lattice mismatches so that a binary disorder distribution is
similarly idealized.

E. General considerations

The different ways of modifying the Hubbard model,
changing the geometry, adding the NNN hopping or disorder,
seem all to influence the system in the direction of stronger
impact ionization. Except for the chain geometry, where we
did not observe impact ionization at all (k < 10−6 for chains
of up to 14 sites).

3As we already mentioned at the end of Sec. III A, high symmetry
of the system leads to fewer eigenvalues of the Hamiltonian and this
is not favorable for impact ionization.
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FIG. 13. Rate of impact ionization k vs mean double occupation
at time t = 10, 〈d (t = 10)〉, for different scans of parameters (see
legend box where a: pulse strength, dis = �/U : disorder strength,
vd : NNN hopping strength) for the 2 × 4 and 4 × 3 boxes and the
triangular lattice with 10 sites (tri-10 cluster). Parameters for the 2 ×
4 box: U = 6, ωp = 9, a = 0.8 (or as in the legend); for the 4 × 3
box and tri-10 cluster: U = 8, ωp = 11 and a as in the legend.

In Fig. 13 we show the rate of impact ionization for dif-
ferent systems as a function of double occupation directly
after the pulse, i.e., at t = 10. Different double occupations
are obtained by changing either the pulse strength a, the NNN
hopping vd , or the disorder strength �/U . This way, we can
plot the results from the previous figures and additional data
in a single figure.

In all cases the rate k increases with increasing 〈d (t =
10)〉 and reaches a maximum when 〈d (t = 10)〉 ≈ 0.2. This
somewhat universal behavior indicates that the rate of impact
ionization depends in the first place on the number of initially
generated double occupations (doublons). Since the number
of the latter is limited for a finite number of electrons, we see
a clear maximum.

FIG. 14. The static spin-spin correlation function 〈Ŝz
i (t =

0)Ŝz
i+δi(t

′ = 0)〉 for different systems as a function of the distance
δi from site i = 0 in the horizontal direction. The site i = 0 is the
leftmost site for chains (8 × 1 and 12 × 1) and double chains (2 × 4
and 2 × 6) and the leftmost middle site for 4 × 3 and tri-10 cluster.
The same correlation function for the 2 × 4 box with different NNN
hoppings vd is shown in the inset.

(a)

(c)

(b)

(d)

FIG. 15. A<(ω, t ) at different times t for the (a) 2 × 4 box,
(b) 2 × 4 box with 30% disorder, (c) 2 × 4 box with NNN hop-
ping vd = 0.3, and (d) 10-site cluster (tri-10). The parameters are
U = 6, ωp = 9, a = 0.8 for (a)–(c) and U = 8, ωp = 11, a = 0.8
for (d). The dashed line indicates the separation into lower and upper
parts of the UHB used in Fig. 16. The gray curve is A<(ω) in the
ground state. The results are broadened with ε = 0.04.

For smaller values of 〈d (t = 10)〉 the behavior of k is
more differentiated between the systems. For both box ge-
ometries there seems to be a certain threshold of 〈d (t = 10)〉
below which we do not observe impact ionization. This is not
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FIG. 16. Spectral weight shifts in the UHB calculated from
A<(ω, t ) shown in Fig. 15 for the four cases (a)–(d). The lines show
integrals of A<(ω) for a given time t over the following intervals for
2 × 4 box: [0, 3] (thick line), (3, 6] (thin line), and [0, 6] (dashed
line); and for the tri-10-cluster: [0, 4] (thick line), (4, 8] (thin line),
and [0, 8] (dashed line). The values are normalized with respect to
the integral over [0, 6] (box) or [0, 8] (tri-10 cluster) at t = 9.

the case for the geometrically frustrated triangular geometry
where AFM fluctuations are suppressed.

As an illustration of the suppression of AFM fluctuations
in the frustrated geometry, we present in Fig. 14 the static
spin-spin correlation function 〈Ŝz

i Ŝz
i+δi〉 (with Ŝz

i = ni↑ − ni↓)
for different systems as a function of the distance δi from
site i in the horizontal direction. We choose the leftmost site
i for chains and double chains and the leftmost middle site
for 4 × 3 and tri-10 geometries in order to show the longest
possible distance.4 For both chains shown (8 × 1 and 12 × 1)
the AFM correlations are the strongest. With changing the
geometry to double chains, there is a significant drop in
strength, especially for the first neighbor. This drop is slightly
stronger for the 2 × 4 box than for the 2 × 6 box. For the
4 × 3 box we see a still stronger decrease and for the fully
frustrated tri-10 cluster we do not see AFM correlations at
all.

The spin-spin correlation function for different NNN hop-
pings in the 2 × 4 cluster, shown in the inset of Fig. 14,
also shows suppression of AFM correlations but only when
the NNN hopping is strong. This does not correlate with
the increased impact ionization already for vd = 0.3 in this
system. However, even for small values of vd the num-
ber of degenerate eigenstates of the system is decreased
(see Appendix C) and there are more possibilities for
an energy match in the process of generating additional
electron-hole pairs. This is the case also for systems with
disorder.

The spectral weight shifts inside and between Hubbard
bands that we described in Sec. III A for 12-site systems are
also present in the smaller systems we studied. In Fig. 15 we
show A<(ω, t ) for several times after the pulse. In all cases
we see the spectral weight shift from the upper part of the

4The overall picture does not change qualitatively if we pick a
different site i, but the distances we can show become shorter.

UHB to its lower part and the reduction of spectral weight in
the LHB. Analogously to Fig. 6, we also plot for the data in
Fig. 15 the integrated spectral weight as a function of time for
regimes that we define as lower and upper parts of the UHB.
The overall behavior of the spectral weight is similar in all
four cases and also analogous to the 4 × 3 system.

IV. SUMMARY

We have studied the time evolution of the double occu-
pation and the (lesser) spectral function for small Hubbard
clusters during and after an electric field pulse which mod-
els the impact of a photon. A particular focus of our
work is the study of impact ionization which creates more
than a single electron-hole pair per photon. The additional
electron-hole pairs are generated after the photon pulse. This
genuine correlation effect bears some potential for appli-
cations as it can boost the efficiency of solar cells. More
electron-hole pairs mean a larger current and more electrical
energy.

We study a number of different geometries and parameter
ranges, and find, as in Ref. [20], impact ionization for clus-
ters with box and triangular geometries, but not for strictly
one-dimensional chains. It can be strongly enhanced when
including next-nearest-neighbor hoppings, the geometrical
frustration and larger connectivity of a triangular lattice, or
disorder. All of these variations of the Hamiltonian have in
common that they both increase the number of nondegenerate
eigenstates and suppress antiferromagnetic fluctuations. The
latter may be unfavorable for impact ionization since the first
electron-hole pair created by the photon can transfer its excess
energy to rearrange (disorder) the spin background instead
of creating a second electron-hole pair. The larger number
of nondegenerate eigenstates might be more relevant when
studying impact ionization for a small cluster, but is possi-
bly less crucial for extended systems. Our results hence still
call for a complementary study in the thermodynamic limit.
Irrespective of this caveat, we have demonstrated that one can
actually study impact ionization for small clusters, and we
identified some recipes to enhance it.

Even if some of our findings are modified for thick films
or bulklike Mott insulators, they nonetheless have experimen-
tal relevance. Impact ionization has also been observed in
quantum dots [16] possibly bridged to a reservoir through
small (hydrocarbon) molecules [17,18]. Indeed, Hubbard-type
models are suitable for describing the conjugated π bonds
in such molecules [31,32] as well as simple quantum dots.
While our study is on the most basic model level, the effect
that disorder enhances impact ionization might be exploited
here, twisting the molecule or the shape of the quantum
dot.
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FIG. 17. Site-resolved double occupation for the 4 × 3 box for
the same parameters as in Fig. 3. Different colors correspond to
different sites arranged as shown in the legend. The black curve
shows the average over all sites. The horizontal gray line serves only
as a guide to the eye.

Numerical computations were performed in part on the Vi-
enna Scientific Cluster (VSC).

APPENDIX A: SITE-RESOLVED DOUBLE OCCUPATION
AND SPECTRAL FUNCTIONS

In Figs. 17 and 18 we show site-resolved double occu-
pation for the 4 × 3, 2 × 6, and 2 × 4 boxes, respectively,
for the same parameters as the average double occupations
shown in Figs. 3 and 8. A similar discussion for the chain
geometry can be found in Ref. [19]. For the 4 × 3 box,
Fig. 17, the time-dependent double occupation d (t ) differs
quite strongly between middle (6,7), edge (2,3,5,8,10,11),
and corner (1,4,9,12) sites, but all of them show secondary
increase of double occupation (impact ionization). For the
2 × 6 box, left panel of Fig. 18, the differences between edge
(1,6,7,12) and middle (all other sites) are not so large and no
sites show impact ionization. In the case of the 2 × 4 box,
right panel of Fig. 18, also all sites show impact ionization
but it is hardly visible since both fluctuations of the double
occupations and differences between sites are very large.

For the two systems with stronger boundary effects, the
4 × 3 and 2 × 4 boxes, we also show the (lesser) spectral
functions A<(ω) for all sites independently, for different times
after the pulse (Figs. 19 and 20, respectively). The evolution
of the spectral weight is analogous to the averaged one in
Figs. 5 and 15, with the spectral weight shift within the upper
Hubbard band as described in Sec. III A. In both 4 × 3 and
2 × 4 boxes, the edge sites are more insulating than the middle
sites, where the gap filling after the pulse is more significant.

APPENDIX B: CONVERGENCE IN NUMBER OF
DISORDER REALIZATIONS

To obtain data presented in Sec. III D, we performed dis-
order averaging over Nseeds = 31 disorder realizations. We
here show the convergence of the result for different strengths
of disorder. Although the number of disorder realizations
Nseeds = 31 is relatively small, our results are reasonably con-
verged. Please keep in mind that aside from the disorder
averaging, there is also site averaging. This explains why con-
vergence is already achieved with quite few different disorder
realizations.

To this end, let us define the relative error for the three
quantities studied in the main text. It is given by the relative
difference after Nseeds disorder realizations to the Nmax

seeds = 31
of the main text:

(i) relative error in the mean double occupancy (shown in
Fig. 21):

�〈d〉
〈d〉 (Nseeds) =

∫ tmax

0

∣∣〈d〉(t, Nseeds) − 〈d〉(t, Nmax
seeds

)∣∣dt∫ tmax

0 〈d〉(t, Nmax
seeds

)
dt

;

(B1)

(ii) relative error in the rate of impact ionization (shown in
Fig. 22):

�k

k
(Nseeds) = k(Nseeds) − k

(
Nmax

seeds

)
k
(
Nmax

seeds

) ; (B2)

FIG. 18. Site-resolved double occupation for the 2 × 6 box (left) for the same parameters as in Fig. 3 and for the 2 × 4 box (right) for
the same parameters as in Fig. 8 with vd = 0. Different colors correspond to different sites arranged as shown in the legend. The black curve
shows the average over all sites. The horizontal gray line serves only as a guide to the eye.
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FIG. 19. Site-resolved spectral function A<(ω) for the 4 × 3 box for the same parameters as in Fig. 3. The arrangement of the plots
corresponds to the arrangement of sites. Different colors correspond to different times after the pulse as shown in the legend at the top. Gray
line corresponds to A<(ω) for t = 0.

(iii) relative error in the average local spectral function (shown
in Fig. 23):

�A<
t

A<
t

(Nseeds) =
∫ ωmax

ωmin

∣∣A<
t (ω, Nseeds) − A<

t

(
ω, Nmax

seeds

)∣∣dω∫ ωmax

ωmin
A<

t

(
ω, Nmax

seeds

)
dω

.

(B3)

From Figs. 21, 22, and 23 we see that the for the 2 × 4 box
the convergence is rather fast: the relative errors �〈d〉

〈d〉 (Nseeds)

and �A<
t

A<
t

(Nseeds) are below 1% at all four times and �k
k (Nseeds)

falls under 5% error after Nseeds ∼ 17 disorder configurations.
For the eight-site chain with 30% disorder �〈d〉

〈d〉 (Nseeds) con-
verges somewhat more slowly in Fig. 21. We do not calculate
�k
k (Nseeds) for the chain because for all Nseeds, k is effectively

zero(<10−6).

FIG. 20. Site-resolved spectral function A<(ω) for 2 × 4 box for the same parameters as in Fig. 8 and vd = 0. The arrangement of the plots
corresponds to the arrangement of sites. Different colors correspond to different times after the pulse as shown in the legend at the top. Gray
line corresponds to A<(ω) for t = 0.
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FIG. 21. Difference of 〈d〉(Nseeds ) relative to Nseeds = 31 as de-
fined by Eq. (B1) for the 2 × 4 box with different levels of disorder
and the eight-site chain with 30% disorder. The parameters are U =
6, ω = 9, a = 0.8.

FIG. 22. Difference of k(Nseeds ) relative to Nseeds = 31 as defined
by Eq. (B2) for the 2 × 4 box with different levels of disorder. The
same parameters as in Fig. 21.

FIG. 23. Difference of A<
t (Nseeds ) relative to Nseeds = 31 as de-

fined by Eq. (B3) for the 2 × 4 box with 30% disorder at different
times t . The same parameters as in Fig. 21.

APPENDIX C: EIGENVALUE DEGENERACY FOR
SYSTEMS WITH DISORDER OR NNN HOPPING

As a measure of the degree of eigenvalue degeneracy we
consider

D =
dim(H )∑

i=1

dim(H )∑
j = 1 j �= i

θ (δE − |Ei − Ej |), (C1)

where Ei is the ith eigenenergy of the Hamiltonian (1) (in the
block with a fixed particle number and spin). δE is a tolerance
width regarding differences in eigenvalues. For δE → 0 (or
machine precision), D measures the actual degeneracies of the
system. We chose this measure since it takes the multiplicity
of the degeneracy into account.

In the 2 × 4 box any amount of disorder lifts all degen-
eracies in the system (see top panel of Fig. 24) and therefore
we rather measure how many eigenvalues are clustered within

FIG. 24. Measure of degeneracy as defined in Eq. (C1) for a
2 × 4 box depending on next-nearest-neighbor hopping vd (blue) or
disorder strength �/U (orange). The numerical tolerance is set to
δE = 10−7 for the upper panel (absolute degeneracy within numer-
ical precision) and to δE = 0.01 in the lower panel. The disorder
curve is calculated as the average over disorder realizations and the
error bars denote standard deviation. Note that D = O(10−1) in the
upper panel for �/U > 0 is because most disorder realizations have
D = 0 and some (accidental) D = 1.
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a small interval δE = 0.01 (bottom panel), which counts not
exact but near degeneracies. As we see in the bottom panel
of Fig. 24, D is reduced with increasing disorder strength
�/U and NNN hopping. In the case of NNN hopping, the
number of degeneracies increases when we set vd = 1, which
makes the NN and NNN hoppings equal and the system more
symmetric again.

APPENDIX D: PARAMETER SCAN FOR THE 2 × 4 BOX

In Fig. 25 we show the dependence of the impact ionization
rate k (as defined in Sec. III B) on the parameters U and pulse
frequency ωp for the 2 × 4 box with only NN hopping (vd =
0; that is the reference system to which we add NNN hopping
and disorder). We see that the range of parameters, where
we see impact ionization (positive k) is quite small, with a
maximum at U = 6 and ωp ≈ 10. For the computations in the
paper we chose a slightly smaller ωp = 9 to avoid saturation
of the double occupation already in the reference system. The
same parameters we choose then for all 2 × 4 systems. In the

FIG. 25. Dependence of impact ionization rate k (as defined in
Sec. III B) on the parameters U and pulse frequency ωp for the 2 × 4
box with only NN hopping (vd = 0).

case of 12-site systems we chose the parameters based on
Ref. [30].
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